1
|
Homma F, Huang J, van der Hoorn RAL. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat Commun 2023; 14:6040. [PMID: 37758696 PMCID: PMC10533508 DOI: 10.1038/s41467-023-41721-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Adapted plant pathogens from various microbial kingdoms produce hundreds of unrelated small secreted proteins (SSPs) with elusive roles. Here, we used AlphaFold-Multimer (AFM) to screen 1879 SSPs of seven tomato pathogens for interacting with six defence-related hydrolases of tomato. This screen of 11,274 protein pairs identified 15 non-annotated SSPs that are predicted to obstruct the active site of chitinases and proteases with an intrinsic fold. Four SSPs were experimentally verified to be inhibitors of pathogenesis-related subtilase P69B, including extracellular protein-36 (Ecp36) and secreted-into-xylem-15 (Six15) of the fungal pathogens Cladosporium fulvum and Fusarium oxysporum, respectively. Together with a P69B inhibitor from the bacterial pathogen Xanthomonas perforans and Kazal-like inhibitors of the oomycete pathogen Phytophthora infestans, P69B emerges as an effector hub targeted by different microbial kingdoms, consistent with a diversification of P69B orthologs and paralogs. This study demonstrates the power of artificial intelligence to predict cross-kingdom interactions at the plant-pathogen interface.
Collapse
Affiliation(s)
- Felix Homma
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Jie Huang
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
| |
Collapse
|
2
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Hotinger JA, Pendergrass HA, Peterson D, Wright HT, May AE. Phage-Related Ribosomal Protease (Prp) of Staphylococcus aureus: In Vitro Michaelis-Menten Kinetics, Screening for Inhibitors, and Crystal Structure of a Covalent Inhibition Product Complex. Biochemistry 2022; 61:1323-1336. [PMID: 35731716 DOI: 10.1021/acs.biochem.2c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phage-related ribosomal proteases (Prps) are essential for the assembly and maturation of the ribosome in Firmicutes, including the human pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Clostridium difficile. These bacterial proteases cleave off an N-terminal extension of a precursor of ribosomal protein L27, a processing step that is essential for the formation of functional ribosomes. This essential role of Prp in these pathogens has identified this protease as a potential antibiotic target. In this work, we determine the X-ray crystal structure of a covalent inhibition complex at 2.35 Å resolution, giving the first complete picture of the active site of a functional Prp. We also characterize the kinetic activity and screen for potential inhibitors of Prp. This work gives the most complete characterization of the structure and specificity of this novel class of proteases to date.
Collapse
Affiliation(s)
- Julia A Hotinger
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather A Pendergrass
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Darrell Peterson
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - H Tonie Wright
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aaron E May
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
4
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Gisdon FJ, Bombarda E, Ullmann GM. Serine and Cysteine Peptidases: So Similar, Yet Different. How the Active-Site Electrostatics Facilitates Different Reaction Mechanisms. J Phys Chem B 2022; 126:4035-4048. [PMID: 35609250 DOI: 10.1021/acs.jpcb.2c01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic mechanisms of serine and cysteine peptidases are similar: the proton of the nucleophile (serine or cysteine) is transferred to the catalytic histidine, and the nucleophile attacks the substrate for cleavage. However, they differ in an important aspect: cysteine peptidases form a stable ion-pair intermediate in a stepwise mechanism, while serine peptidases follow a concerted mechanism. While it is known that a positive electrostatic potential at the active site of cysteine peptidases stabilizes the cysteine anion in the ion-pair state, the physical basis of the concerted mechanism of serine peptidases is poorly understood. In this work, we use continuum electrostatic analysis and quantum mechanical/molecular mechanical (QM/MM) simulations to demonstrate that a destabilization of an anionic serine by a negative electrostatic potential in combination with a compact active site geometry facilitates a concerted mechanism in serine peptidases. Moreover, we show that an anionic serine would destabilize the protein significantly compared to an anionic cysteine in cysteine peptidases, which underlines the necessity of a concerted mechanism for serine peptidases. On the basis of our calculations on an inactive serine mutant of a natural cysteine peptidase, we show that the energy barrier for the catalytic mechanism can be substantially decreased by introducing a negative electrostatic potential and by reducing the relevant distances indicating that these parameters are essential for the activity of serine peptidases. Our work demonstrates that the concerted mechanism of serine peptidases represents an evolutionary innovative way to perform catalysis without the energetically expensive need to stabilize the anionic serine. In contrast in cysteine peptidases, the anionic cysteine is energetically easily accessible and it is a very efficient nucleophile, making these peptidases mechanistically simple. However, a cysteine is highly oxygen sensitive, which is problematic in an aerobic environment. On the basis of the analysis in this work, we suggest that serine peptidases represent an oxygen-insensitive alternative to cysteine peptidases.
Collapse
Affiliation(s)
- Florian J Gisdon
- Biochemistry, University of Bayreuth, Universitätsstraße 30, BGI, 95447 Bayreuth, Germany.,Computational Biochemistry, University of Bayreuth, Universitätsstraße 30, BGI, 95447 Bayreuth, Germany
| | - Elisa Bombarda
- Computational Biochemistry, University of Bayreuth, Universitätsstraße 30, BGI, 95447 Bayreuth, Germany
| | - G Matthias Ullmann
- Computational Biochemistry, University of Bayreuth, Universitätsstraße 30, BGI, 95447 Bayreuth, Germany
| |
Collapse
|
6
|
Gisdon FJ, Feiler CG, Kempf O, Foerster JM, Haiss J, Blankenfeldt W, Ullmann GM, Bombarda E. Structural and Biophysical Analysis of the Phytochelatin-Synthase-Like Enzyme from Nostoc sp. Shows That Its Protease Activity is Sensitive to the Redox State of the Substrate. ACS Chem Biol 2022; 17:883-897. [PMID: 35377603 DOI: 10.1021/acschembio.1c00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochelatins (PCs) are nonribosomal thiol-rich oligopeptides synthetized from glutathione (GSH) in a γ-glutamylcysteinyl transpeptidation reaction catalyzed by PC synthases (PCSs). Ubiquitous in plant and present in some invertebrates, PCSs are involved in metal detoxification and homeostasis. The PCS-like enzyme from the cyanobacterium Nostoc sp. (NsPCS) is considered to be an evolutionary precursor enzyme of genuine PCSs because it shows sufficient sequence similarity for homology to the catalytic domain of the eukaryotic PCSs and shares the peptidase activity consisting in the deglycination of GSH. In this work, we investigate the catalytic mechanism of NsPCS by combining structural, spectroscopic, thermodynamic, and theoretical techniques. We report several crystal structures of NsPCS capturing different states of the catalyzed chemical reaction: (i) the structure of the wild-type enzyme (wt-NsPCS); (ii) the high-resolution structure of the γ-glutamyl-cysteine acyl-enzyme intermediate (acyl-NsPCS); and (iii) the structure of an inactive variant of NsPCS, with the catalytic cysteine mutated into serine (C70S-NsPCS). We characterize NsPCS as a relatively slow enzyme whose activity is sensitive to the redox state of the substrate. Namely, NsPCS is active with reduced glutathione (GSH), but is inhibited by oxidized glutathione (GSSG) because the cleavage product is not released from the enzyme. Our biophysical analysis led us to suggest that the biological function of NsPCS is being a part of a redox sensing system. In addition, we propose a mechanism how PCS-like enzymes may have evolved toward genuine PCS enzymes.
Collapse
Affiliation(s)
- Florian J. Gisdon
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Christian G. Feiler
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Oxana Kempf
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Johannes M. Foerster
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Jonathan Haiss
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - G. Matthias Ullmann
- Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Elisa Bombarda
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Commun Biol 2022; 5:272. [PMID: 35347220 PMCID: PMC8960835 DOI: 10.1038/s42003-022-03186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Burkholderiapseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites. The crystal structure of the toxin from the pathogenic bacterium Burkholderia pseudomallei in complex with its target, human eIF4A, provides insights into substrate specificity and may facilitate the design of inhibitors for the treatment of melioidosis.
Collapse
|
8
|
Bhattacharya S, Palillo A. Structural and dynamic studies of the peptidase domain from Clostridium thermocellum PCAT1. Protein Sci 2022; 31:498-512. [PMID: 34865273 PMCID: PMC8820281 DOI: 10.1002/pro.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023]
Abstract
The export of antimicrobial peptides is mediated by diverse mechanisms in bacterial quorum sensing pathways. One such binary system employed by gram-positive bacteria is the PCAT1 ABC transporter coupled to a cysteine protease. The focus of this study is the N-terminal C39 peptidase (PEP) domain from Clostridium thermocellum PCAT1 that processes its natural substrate CtA by cleaving a conserved -GG- motif to separate the cargo from the leader peptide prior to secretion. In this study, we are primarily interested in elucidating the dynamic and structural determinants of CtA binding and how it is coupled to cleavage efficiency in the PCAT1 PEP domain. To this end, we have characterized CtA interactions with PEP domain and PCAT1 transporter in detergent micelles using solution nuclear magnetic resonance spectroscopy. The bound CtA structure revealed the disordered C-terminal cargo peptide is linked by a sterically hindered cleavage site to a helix docked within a hydrophobic cavity in the PEP domain. The wide range of internal motions detected by amide nitrogen (N15 ) relaxation measurements in the free enzyme and substrate-bound complex suggests the binding site is relatively floppy. This flexibility plays a key role in the structural rearrangement necessary to relax steric inhibition in the bound substrate. In conjunction with previously reported PCAT1 structures, we offer fresh insight into the ATP-mediated association between PEP and transmembrane domains as a putative mechanism to optimize peptide cleavage by regulating the width and flexibility of the enzyme active site.
Collapse
Affiliation(s)
| | - Anthony Palillo
- Laboratory of Membrane Biology and Biophysics, The Rockefeller UniversityNew YorkNew YorkUSA,Joan and Sanford I Weill Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
9
|
The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. CRYSTALS 2021. [DOI: 10.3390/cryst11111438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A covalent serine protease inhibitor—Na-p-Tosyl-Lysyl Chloromethylketone (TCK) is a modified lysine residue tosylated at the N-terminus and chloromethylated at the C-terminus, one molecule of which is capable of forming two covalent bonds with both Ser and His catalytic residues, was co-crystallized with modified oligopeptidase B (OpB) from Serratia proteomaculans (PSPmod). The kinetics study, which preceded crystallization, shows that the stoichiometry of TCK-dependent inhibition of PSPmod was 1:2 (protein:inhibitor). The crystal structure of the PSPmod-TCK complex, solved at a resolution of 2.3 Å, confirmed a new type of inhibitor binding. Two TCK molecules were bound to one enzyme molecule: one with the catalytic Ser, the other with the catalytic His. Due to this mode of binding, the intermediate state of PSPmod and the disturbed conformation of the catalytic triad were preserved in the PSPmod-TCK complex. Nevertheless, the analysis of the amino acid surroundings of the inhibitor molecule bound to the catalytic Ser and its comparison with that of antipain-bound OpB from Trypanosoma brucei provided an insight in the structure of the PSPmod substrate-binding pocket. Supposedly, the new type of binding is typical for the interaction of chloromethylketone derivatives with two-domain OpBs. In the open conformational state that these enzymes are assumed in solution, the disordered configuration of the catalytic triad prevents simultaneous interaction of one inhibitor molecule with two catalytic residues.
Collapse
|
10
|
Lisboa J, Pereira C, Rifflet A, Ayala J, Terceti MS, Barca AV, Rodrigues I, Pereira PJB, Osorio CR, García-Del Portillo F, Gomperts Boneca I, do Vale A, Dos Santos NMS. A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida Cleaves the Peptidoglycan of Potentially Competing Bacteria. mSphere 2021; 6:e00736-20. [PMID: 33536321 PMCID: PMC7860986 DOI: 10.1128/msphere.00736-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.
Collapse
Affiliation(s)
- Johnny Lisboa
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM Groupe Avenir, Paris, France
- CNRS, UMR "Integrated and Molecular Microbiology," Paris, France
| | - Juan Ayala
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alba V Barca
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inês Rodrigues
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Macromolecular Structure Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco García-Del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM Groupe Avenir, Paris, France
- CNRS, UMR "Integrated and Molecular Microbiology," Paris, France
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Oanca G, Asadi M, Saha A, Ramachandran B, Warshel A. Exploring the Catalytic Reaction of Cysteine Proteases. J Phys Chem B 2020; 124:11349-11356. [PMID: 33264018 DOI: 10.1021/acs.jpcb.0c08192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine proteases play a major role in many life processes and are the target of key drugs. The reaction mechanism of these enzymes is a complex process, which involves several steps that are divided into two main groups: acylation and deacylation. In this work, we studied the energy profile for the acylation and a part of the deacylation reaction of three different enzymes, cruzain, papain, and the Q19A-mutated papain with the benzyloxycarbonyl-phenylalanylarginine-4-methylcoumaryl-7-amide (CBZ-FR-AMC) substrate. The calculations were performed using the EVB and PDLD/S-LRA methods. The overall agreement between the calculated and observed results is encouraging and indicates that we captured the correct reaction mechanism. Finally, our finding indicates that the minimum of the reaction profile, between the acylation and deacylation steps, should provide an excellent state for the binding of covalent inhibitors.
Collapse
Affiliation(s)
- Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Balajee Ramachandran
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.,Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630 004, India
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
12
|
Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci Rep 2020; 10:19570. [PMID: 33177555 PMCID: PMC7658999 DOI: 10.1038/s41598-020-76172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
The Ananas comosus stem extract is a complex mixture containing various cysteine proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 μM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium.
| | - Erik Maquoi
- Laboratoire de Biologie Des Tumeurs Et du Développement, GIGA-Cancer, Université de Liège, 4000, Liège, Belgium
| | - François Delbrassine
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Raphael Herman
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Nasiha M'Rabet
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Rafaèle Calvo Esposito
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Paulette Charlier
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Frédéric Kerff
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
13
|
Świderek K, Moliner V. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 M pro by QM/MM computational methods. Chem Sci 2020; 11:10626-10630. [PMID: 34094317 PMCID: PMC8162313 DOI: 10.1039/d0sc02823a] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
SARS-CoV-2 Mpro is one of the enzymes essential for the replication process of the virus responsible for the COVID-19 pandemic. This work is focused on exploring its proteolysis reaction by means of QM/MM methods. The resulting free energy landscape of the process provides valuable information on the species appearing along the reaction path and suggests that the mechanism of action of this enzyme, taking place in four steps, slightly differs from that of other cysteine proteases. Our predictions, which are in agreement with some recently published experimental data, can be used to guide the design of COVID-19 antiviral compounds with clinical potential. The molecular mechanism of the proteolysis reaction catalyzed by SARS-CoV-2 Mpro, one of the enzymes essential for the replication process of the virus responsible for the COVID-19 pandemic, is described using computational QM/MM methods.![]()
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I 12071 Castelló Spain
| |
Collapse
|
14
|
Saranya V, Radhika R, Shankar R, Vijayakumar S. In silico studies of the inhibition mechanism of dengue with papain. J Biomol Struct Dyn 2020; 39:1912-1927. [PMID: 32249700 DOI: 10.1080/07391102.2020.1742205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dengue virus is becoming a major global disease; the envelope protein is the major target for vaccine development against Dengue. Nowadays, the attention has focused on developing inhibitors based on Papain is a promising target for treating Dengue. In the present work, the theoretical studies of E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and His159) complexes are analysed by Density Functional Theory (M06-2X/cc-pVDZ) method. Among the E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and Hys159) complexes, E-protein(Glu76)…Papain(Cys25) complex has the highest interaction value of -352.22 kcal/mol. Moreover, the natural bond orbital analysis also supports the above results. The 100 ns Molecular Dynamics simulation reveals that, E-protein(Ala54-Ile129)…Papain(Cys25) complex had the lowest root mean square deviation value of 1 Å compared to the E-protein(Ala54-Ile129)… Papain(Asn175 & His159) complexes. The salt bridge formation between the Asp103 and Lys110 residues are the important stabilizing factor in E-protein(Ala54-Ile129)…Papain(Cys25) complex. This result can extend our knowledge of the functional behaviour of Papain and provides structural insight to target Envelope protein as forthcoming drug targets in Dengue.
Collapse
|
15
|
Liu C, Barrett TM, Chen X, Ferrie JJ, Petersson EJ. Fluorescent Probes for Studying Thioamide Positional Effects on Proteolysis Reveal Insight into Resistance to Cysteine Proteases. Chembiochem 2019; 20:2059-2062. [PMID: 30950552 PMCID: PMC7021225 DOI: 10.1002/cbic.201900115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Thioamide substitutions of the peptide backbone have been shown to reduce proteolytic degradation, and this property can be used to generate competitive protease inhibitors and to stabilize peptides toward degradation in vivo. Here, we present a straightforward sensor design that allows a systematic study of the positional effects of thioamide substitution by using real-time fluorescence. Thioamide scanning in peptide substrates of five papain family cysteine proteases demonstrates that a thioamide at or near the scissile bond can slow proteolysis in all cases, but that the magnitude of the effects varies with position and protease in spite of high sequence homology. Mechanistic investigation of papain proteolysis reveals that the thioamide effects derive from reductions in both affinity (KM ) and turnover number (kcat ). Computational modeling allows these effects to be understood based on disruption of key enzyme-substrate hydrogen bonds, providing a model for future rational use of thioamides to confer cysteine protease resistance.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, P. R. China
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Xing Chen
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem 2018; 266:183-191. [DOI: 10.1016/j.foodchem.2018.05.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/29/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
17
|
Elsässer B, Zauner FB, Messner J, Soh WT, Dall E, Brandstetter H. Distinct Roles of Catalytic Cysteine and Histidine in the Protease and Ligase Mechanisms of Human Legumain As Revealed by DFT-Based QM/MM Simulations. ACS Catal 2017; 7:5585-5593. [PMID: 28932620 PMCID: PMC5600538 DOI: 10.1021/acscatal.7b01505] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Indexed: 11/30/2022]
Abstract
![]()
The cysteine protease enzyme legumain hydrolyzes peptide bonds
with high specificity after asparagine and under more acidic conditions
after aspartic acid [BakerE. N.1980, 141, 441−4847003158; BakerE. N.; 1977, 111, 207–210859183; DrenthJ.; 1976, 15, 3731–3738952885; MenardR.; 1994, 137; PolgarL.1978, 88, 513–521689035; StorerA. C.; 1994, 244, 486–5007845227. Remarkably,
legumain additionally exhibits ligase activity that prevails at pH
> 5.5. The atomic reaction mechanisms including their pH dependence
are only partly understood. Here we present a density functional theory
(DFT)-based quantum mechanics/molecular mechanics (QM/MM) study of
the detailed reaction mechanism of both activities for human legumain
in solution. Contrasting the situation in other papain-like proteases,
our calculations reveal that the active site Cys189 must be present
in the protonated state for a productive nucleophilic attack and simultaneous
rupture of the scissile peptide bond, consistent with the experimental
pH profile of legumain-catalyzed cleavages. The resulting thioester
intermediate (INT1) is converted by water attack on the thioester
into a second intermediate, a diol (INT2), which is released by proton
abstraction by Cys189. Surprisingly, we found that ligation is not
the exact reverse of the proteolysis but can proceed via two distinct
routes. Whereas the transpeptidation route involves aminolysis of
the thioester (INT1), at pH 6 a cysteine-independent, histidine-assisted
ligation route was found. Given legumain’s important roles
in immunity, cancer, and neurodegenerative diseases, our findings
open up possibilities for targeted drug design in these fields.
Collapse
Affiliation(s)
- Brigitta Elsässer
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Florian B. Zauner
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Johann Messner
- Information
Management, University of Linz, Alternberger Strasse 69, A-4040 Linz, Austria
| | - Wai Tuck Soh
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Elfriede Dall
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Hans Brandstetter
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| |
Collapse
|
18
|
Matagne A, Bolle L, El Mahyaoui R, Baeyens-Volant D, Azarkan M. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. PHYTOCHEMISTRY 2017; 138:29-51. [PMID: 28238440 DOI: 10.1016/j.phytochem.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Crude pineapple proteases extract (aka stem bromelain; EC 3.4.22.4) is an important proteolytic mixture that contains enzymes belonging to the cysteine proteases of the papain family. Numerous studies have been reported aiming at the fractionation and characterization of the many molecular species present in the extract, but more efforts are still required to obtain sufficient quantities of the various purified protease forms for detailed physicochemical, enzymatic and structural characterization. In this work, we describe an efficient strategy towards the purification of at least eight enzymatic forms. Thus, following rapid fractionation on a SP-Sepharose FF column, two sub-populations with proteolytic activity were obtained: the unbound (termed acidic) and bound (termed basic) bromelain fractions. Following reversible modification with monomethoxypolyethylene glycol (mPEG), both fractions were further separated on Q-Sepharose FF and SP-Sepharose FF, respectively. This procedure yielded highly purified molecular species, all titrating ca. 1 mol of thiol group per mole of enzyme, with distinct biochemical properties. N-terminal sequencing allowed identifying at least eight forms with proteolytic activity. The basic fraction contained previously identified species, i.e. basic bromelain forms 1 and 2, ananain forms 1 and 2, and comosain (MEROPS identifier: C01.027). Furthermore, a new proteolytic species, showing similarities with basic bomelain forms 1 and 2, was discovered and termed bromelain form 3. The two remaining species were found in the acidic bromelain fraction and were arbitrarily named acidic bromelain forms 1 and 2. Both, acidic bromelain forms 1, 2 and basic bromelain forms 1, 2 and 3 are glycosylated, while ananain forms 1 and 2, and comosain are not. The eight protease forms display different amidase activities against the various substrates tested, namely small synthetic chromogenic compounds (DL-BAPNA and Boc-Ala-Ala-Gly-pNA), fluorogenic compounds (like Boc-Gln-Ala-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC), and proteins (azocasein and azoalbumin), suggesting a specific organization of their catalytic residues. All forms are completely inhibited by specific cysteine and cysteine/serine protease inhibitors, but not by specific serine and aspartic protease inhibitors, with the sole exception of pepstatin A that significantly affects acidic bromelain forms 1 and 2. For all eight protease forms, inhibition is also observed with 1,10-phenanthrolin, a metalloprotease inhibitor. Metal ions (i.e. Mn2+, Mg2+ and Ca2+) showed various effects depending on the protease under consideration, but all of them are totally inhibited in the presence of Zn2+. Mass spectrometry analyses revealed that all forms have a molecular mass of ca. 24 kDa, which is characteristic of enzymes belonging to the papain-like proteases family. Far-UV CD spectra analysis further supported this analysis. Interestingly, secondary structure calculation proves to be highly reproducible for all cysteine proteases of the papain family tested so far (this work; see also Azarkan et al., 2011; Baeyens-Volant et al., 2015) and thus can be used as a test for rapid identification of the classical papain fold.
Collapse
Affiliation(s)
- André Matagne
- Université de Liège, Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, Liège, Belgium
| | - Laetitia Bolle
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - Rachida El Mahyaoui
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - Danielle Baeyens-Volant
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - Mohamed Azarkan
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
19
|
Arafet K, Ferrer S, Moliner V. Computational Study of the Catalytic Mechanism of the Cruzain Cysteine Protease. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kemel Arafet
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Silvia Ferrer
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
20
|
Ramakrishnan C, Kutumbarao NHV, Suhitha S, Velmurugan D. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain. Chem Biol Drug Des 2017; 89:772-782. [PMID: 28054451 DOI: 10.1111/cbdd.12901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Chikungunya virus is a growing human pathogen transmitted by mosquito bite. It causes fever, chills, nausea, vomiting, joint pain, headache, and swelling in the joints. Its replication and propagation depend on the protease activity of the Chikungunya virus-nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into individual functional units. The N-terminal segment of papain is structurally identical with the Chikungunya virus-nsP2 protease. Hence, molecular dynamics simulations were performed to compare molecular mechanism of these proteases. The Chikungunya virus-snP2 protease shows more conformational changes and adopts an alternate conformation. However, N-terminal segment of these two proteases has identical active site scaffold with the conserved catalytic diad. Hence, some of the non-peptide inhibitors of papain were used for induced fit docking at the active site of the nsP2 to assess the binding mode. In addition, the peptides that connect different domains/protein in Chikungunya virus poly-protein were also subjected for docking. The overall results suggest that the active site scaffold is the same in both the proteases and a possibility exists to experimentally assess the efficacy of some of the papain inhibitors to inhibit the Chikungunya virus-nsP2.
Collapse
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Sivasubramanian Suhitha
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
21
|
Eakin AE, McKerrow JH, Craik CS. A Cysteine Protease is a Target for the Enzyme Structure-Based Design of Antiparasitic Drugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/00928615950290s102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ann E. Eakin
- Departments of Pharmaceutical Chemistry and Pathology, University of California, San Francisco, California
| | - James H. McKerrow
- Department of Pathology, University of California, San Francisco, California
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry University of California, San Francisco, California
| |
Collapse
|
22
|
Ferguson TEG, Reihill JA, Walker B, Hamilton RA, Martin SL. A Selective Irreversible Inhibitor of Furin Does Not Prevent Pseudomonas Aeruginosa Exotoxin A-Induced Airway Epithelial Cytotoxicity. PLoS One 2016; 11:e0159868. [PMID: 27459298 PMCID: PMC4961418 DOI: 10.1371/journal.pone.0159868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause disease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consisting of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar compound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aeruginosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.
Collapse
Affiliation(s)
- Timothy E. G. Ferguson
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - James A. Reihill
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Robert A. Hamilton
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - S. Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
RCH3···O Interactions in Biological Systems: Are They Trifurcated H-Bonds or Noncovalent Carbon Bonds? CRYSTALS 2016. [DOI: 10.3390/cryst6030026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Abstract
Cathepsins are proteases found in all animals as well as other organisms. There are approximately a dozen members of this family, which are distinguished by their structure, their catalytic mechanism, and which proteins they cleave. Most of the members become activated at the low pH found in lysosomes. Cathepsins have been identified as therapeutic targets in the search for new drugs against a number of human pathologies, including cancer, Alzheimer's, and osteoporosis. A number of natural products have been reported as selective inhibitors of some cathepsins. Chemical structure of natural products as inhibitors of cathepsins can be very diverse. Some peptidic natural products are inhibitors of the cysteine protease cathepsins such as E-64 isolated from Aspergillus, which is a cathepsin B inhibitor, or more recently the marine cyanobacterial metabolite gallinamide A which is a selective inhibitor of human cathepsin L. Also amino acid derivatives have been reported as inhibitors of cathepsin A. Other natural products include chalcone natural products possessing cytotoxic activities against prostate cancer cells and inhibiting cysteine cathepsins in vitro, antipain and its analogues isolated from Streptomyces as inhibitors of cathepsin K, and natural biflavones as novel inhibitors of cathepsins B and K. In this review we will report the most representative examples of natural products as inhibitors of cathepsins, especially the ones reported during the last decade.
Collapse
|
25
|
Madern N, Queyriaux N, Chevalley A, Ghasemi M, Nicolotti O, Ciofini I, Mangiatordi GF, Salmain M. Piano-stool d 6 -rhodium(III) complexes of chelating pyridine-based ligands and their papain bioconjugates for the catalysis of transfer hydrogenation of aryl ketones in aqueous medium. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Baeyens-Volant D, Matagne A, El Mahyaoui R, Wattiez R, Azarkan M. A novel form of ficin from Ficus carica latex: Purification and characterization. PHYTOCHEMISTRY 2015; 117:154-167. [PMID: 26083455 DOI: 10.1016/j.phytochem.2015.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/28/2023]
Abstract
A novel ficin form, named ficin E, was purified from fig tree latex by a combination of cation-exchange chromatography on SP-Sepharose Fast Flow, Thiopropyl Sepharose 4B and fplc-gel filtration chromatography. The new ficin appeared not to be sensitive to thiol derivatization by a polyethylene glycol derivative, allowing its purification. The protease is homogeneous according to PAGE, SDS-PAGE, mass spectrometry, N-terminal micro-sequencing analyses and E-64 active site titration. N-terminal sequencing of the first ten residues has shown high identity with the other known ficin (iso)forms. The molecular weight was found to be (24,294±10)Da by mass spectrometry, a lower value than the apparent molecular weight observed on SDS-PAGE, around 27 kDa. Far-UV CD data revealed a secondary structure content of 22% α-helix and 26% β-sheet. The protein is not glycosylated as shown by carbohydrate analysis. pH and temperature measurements indicated maxima activity at pH 6.0 and 50 °C, respectively. Preliminary pH stability analyses have shown that the protease conserved its compact structure in slightly acidic, neutral and alkaline media but at acidic pH (<3), the formation of some relaxed or molten state was evidenced by 8-anilino-1-naphtalenesulfonic acid binding characteristics. Comparison with the known ficins A, B, C, D1 and D2 (iso)forms revealed that ficin E showed activity profile that looked like ficin A against two chromogenic substrates while it resembled ficins D1 and D2 against three fluorogenic substrates. Enzymatic activity of ficin E was not affected by Mg(2+), Ca(2+) and Mn(2+) at a concentration up to 10mM. However, the activity was completely suppressed by Zn(2+) at a concentration of 1mM. Inhibitory activity measurements clearly identified the enzyme as a cysteine protease, being unaffected by synthetic (Pefabloc SC, benzamidine) and by natural proteinaceous (aprotinin) serine proteases inhibitors, by aspartic proteases inhibitors (pepstatin A) and by metallo-proteases inhibitors (EDTA, EGTA). Surprisingly, it was well affected by the metallo-protease inhibitor o-phenanthroline. The enzymatic activity was however completely blocked by cysteine proteases inhibitors (E-64, iodoacetamide), by thiol-blocking compounds (HgCl2) and by cysteine/serine proteases inhibitors (TLCK and TPCK). This is a novel ficin form according to peptide mass fingerprint analysis, specific amidase activity, SDS-PAGE and PAGE electrophoretic mobility, N-terminal sequencing and unproneness to thiol pegylation.
Collapse
Affiliation(s)
- Danielle Baeyens-Volant
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - André Matagne
- University of Liège, Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, Liège, Belgium
| | - Rachida El Mahyaoui
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - Ruddy Wattiez
- University of Mons-Hainaut, Faculty of Sciences, Department of Proteomics and Microbiology, Interdisciplinary Center of Mass Spectrometry (CISMa), Mons, Belgium
| | - Mohamed Azarkan
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
27
|
Cleary JA, Doherty W, Evans P, Malthouse JPG. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1382-91. [PMID: 26169698 PMCID: PMC7185411 DOI: 10.1016/j.bbapap.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/19/2023]
Abstract
Two new papain inhibitors have been synthesized where the terminal α-carboxyl groups of Z-Phe-Ala-COOH and Ac-Phe-Gly-COOH have been replaced by a proton to give Z-Phe-Ala-H and Ac-Phe-Gly-H. We show that for papain, replacing the terminal carboxylate group of a peptide inhibitor with a hydrogen atom decreases binding 3–4 fold while replacing an aldehyde or glyoxal group with a hydrogen atom decreases binding by 300,000–1,000,000 fold. Thiohemiacetal formation by papain with aldehyde or glyoxal inhibitors is shown to be ~ 10,000 times more effective than hemiacetal or hemiketal formation with chymotrypsin. It is shown using effective molarities, that for papain, thiohemiacetal stabilization is more effective with aldehyde inhibitors than with glyoxal inhibitors. The effective molarity obtained when papain is inhibited by an aldehyde inhibitor is similar to the effective molarity obtained when chymotrypsin is inhibited by glyoxal inhibitors showing that both enzymes can stabilize tetrahedral adducts by similar amounts. Therefore the greater potency of aldehyde and glyoxal inhibitors with papain is not due to greater thiohemiacetal stabilization by papain compared to the hemiketal and hemiacetal stabilization by chymotrypsin, instead it reflects the greater intrinsic reactivity of the catalytic thiol group of papain compared to the catalytic hydroxyl group of chymotrypsin. It is argued that while the hemiacetals and thiohemiacetals formed with the serine and cysteine proteases respectively can mimic the catalytic tetrahedral intermediate they are also analogues of the productive and non-productive acyl intermediates that can be formed with the cysteine and serine proteases. We compare thiohemiacetal and hemiacetal stabilization by papain and chymotrypsin. An aldehyde or glyoxal group increases binding by 300,000–1,000,000 fold. Thiohemiacetal formation is ~ 10,000 fold greater than hemiacetal formation. Thiohemiacetal formation is more effective with aldehyde than glyoxal inhibitors. Both papain and chymotrypsin stabilize tetrahedral adducts by similar amounts.
Collapse
Affiliation(s)
- Jennifer A Cleary
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - William Doherty
- School of Chemistry, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- School of Chemistry, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - J Paul G Malthouse
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
28
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
29
|
Mangel WF, San Martín C. Structure, function and dynamics in adenovirus maturation. Viruses 2014; 6:4536-70. [PMID: 25421887 PMCID: PMC4246237 DOI: 10.3390/v6114536] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/18/2023] Open
Abstract
Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a "molecular sled" to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed.
Collapse
Affiliation(s)
- Walter F Mangel
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Carmen San Martín
- Department of Macromolecular Structure and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
30
|
Abstract
Papain has long been known to cause the gelation of mammalian fibrinogens. It has also been reported that papain-fibrin is insoluble in dispersing solvents like strong urea or sodium bromide solutions, similar to what is observed with thrombin-generated clots in the presence of factor XIIIa and calcium. In those old studies, both the gelation and subsequent clot stabilization were attributed to papain, although the possibility that the second step might be due to contaminating factor XIII in fibrinogen preparations was considered. I have revisited this problem in light of knowledge acquired over the past half-century about thiol proteases like papain, which mostly cleave peptide bonds, and transglutaminases like factor XIIIa that catalyze the formation of ε-lysyl-γ-glutamyl cross-links. Recombinant fibrinogen, inherently free of factor XIII and other plasma proteins, formed a stable gel when treated with papain alone. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the intermolecular cross-linking in papain-fibrin leads to γ-chain dimers, trimers, and tetramers, just as is the case with thrombin-factor XIIIa-stabilized fibrin. Mass spectrometry of bands excised from gels showed that the cross-linked material is quite different from what occurs with factor XIIIa, however. With papain, the cross-linking occurs between γ chains in neighboring protofibrils becoming covalently linked in a "head-to-tail" fashion by a transpeptidation reaction involving the α-amino group of γ-Tyr1 and a papain cleavage site at γ-Gly403 near the carboxy terminus, rather than by the (reciprocal) "tail-to-tail" manner that occurs with factor XIIIa and that depends on cross-links between γ-Lys406 and γ-Gln398.
Collapse
Affiliation(s)
- Russell F Doolittle
- Departments of Chemistry & Biochemistry and Molecular Biology, University of California at San Diego , La Jolla, California 92093-0314, United States
| |
Collapse
|
31
|
de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B, Pomowski A, Huntington JA, Potempa J, Gomis-Rüth FX. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem 2014; 289:32291-32302. [PMID: 25266723 DOI: 10.1074/jbc.m114.602052] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys(477)-His(444)-Asp(388), rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.
Collapse
Affiliation(s)
- Iñaki de Diego
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Maryta N Sztukowska
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Tibisay Guevara
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Barbara Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Anja Pomowski
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jan Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202,; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland, and.
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|
32
|
Lemaire PA, Huang L, Zhuo Y, Lu J, Bahnck C, Stachel SJ, Carroll SS, Duong LT. Chondroitin sulfate promotes activation of cathepsin K. J Biol Chem 2014; 289:21562-72. [PMID: 24958728 DOI: 10.1074/jbc.m114.559898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin K (CatK), a major lysosomal collagenase produced by osteoclasts, plays an important role in bone resorption. Evidence exists that the collagenase activity of CatK is promoted by chondroitin sulfate (CS), a sulfated glycosaminoglycan. This study examines the role of CS in facilitating CatK activation. We have demonstrated that chondroitin 4-sulfate (C4-S) promotes autoprocessing of the pro-domain of CatK at pH ≤ 5, leading to a fully matured enzyme with collagenase and peptidase activities. We present evidence to demonstrate this autoactivation process is a trans-activation event that is efficiently inhibited by both the covalent cysteine protease inhibitor E-64 and the reversible selective CatK inhibitor L-006,235. During bone resorption, CatK and C4-S are co-localized at the ruffled border between osteoclast bone interface, supporting the proposal that CatK activation is accomplished through the combined action of the acidic environment together with the presence of a high concentration of C4-S. Formation of a multimeric complex between C4-S and pro-CatK has been speculated to accelerate CatK autoactivation and promote efficient collagen degradation. Together, these results demonstrate that CS plays an important role in contributing to the enhanced efficiency of CatK collagenase activity in vivo.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Structural Chemistry, and
| | | | - Shawn J Stachel
- Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| | | | | |
Collapse
|
33
|
Wei D, Huang X, Tang M, Zhan CG. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide. Biochemistry 2013; 52:5145-54. [PMID: 23862626 PMCID: PMC3770148 DOI: 10.1021/bi400629r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Possible reaction pathways for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide (APGNA) have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations. The whole hydrolysis process includes two stages: acylation and deacylation. For the acylation stage of the catalytic reaction, we have explored three possible paths (A, B, and C) and the corresponding free energy profiles along the reaction coordinates. It has been demonstrated that the most favorable reaction path in this stage is path B consisting of two reaction steps: the first step is a proton transfer to form a zwitterionic form (i.e., Cys-S⁻/His-H⁺ ion-pair), and the second step is the nucleophilic attack on the carboxyl carbon of the substrate accompanied by the dissociation of 4-nitroanilide. The deacylation stage includes the nucleophilic attack of a water molecule on the carboxyl carbon of the substrate and dissociation between the carboxyl carbon of the substrate and the sulfhydryl sulfur of Cys25 side chain. The free energy barriers calculated for the acylation and deacylation stages are 20.0 and 10.7 kcal/mol, respectively. Thus, the acylation is rate-limiting. The overall free energy barrier calculated for papain-catalyzed hydrolysis of APGNA is 20.0 kcal/mol, which is reasonably close to the experimentally derived activation free energy of 17.9 kcal/mol.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Mingsheng Tang
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
34
|
Brocklehurst K, Philpott MP. Cysteine proteases: mode of action and role in epidermal differentiation. Cell Tissue Res 2013; 351:237-44. [PMID: 23344364 DOI: 10.1007/s00441-013-1557-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
Desquamation or cell shedding in mammalian skin is known to involve serine proteases, aspartic proteases and glycosidases. In addition, evidence continues to accumulate that papain-like cysteine proteases and an inhibitor cystatin M/E largely confined to the cutaneous epithelia also play key roles in the process. This involves the complete proteolysis of cell adhesive structures of the stratum corneum, the corneodesmosomes and notably of the desmogleins. Continual cell replacement in the epidermis is the result of the balance between the loss of the outer squames and mitosis of the cells in the basal cell layer. This article provides a brief account of the salient features of the characteristics and catalytic mechanism of cysteine proteases, followed by a discussion of the relevant epidermal biology. The proteases include the asparaginyl endopeptidase legumain, which exerts a strict specificity for the hydrolysis of asparaginyl bonds, cathepsin-V and cathepsin-L. The control of these enzymes by cystatin M/E regulates the processing of transglutaminases and is crucial in the biochemical pathway responsible for regulating the cross-linking and desquamation of the stratum corneum. In addition, caspase-14 has now been shown to play a major part in epidermal maturation. Uncontrolled proteolytic activity leads to abnormal hair follicle formation and deleterious effects on the skin barrier function.
Collapse
Affiliation(s)
- Keith Brocklehurst
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
35
|
Buller AR, Labonte JW, Freeman MF, Wright NT, Schildbach JF, Townsend CA. Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis. J Mol Biol 2012; 422:508-18. [PMID: 22706025 PMCID: PMC3428426 DOI: 10.1016/j.jmb.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 11/01/2022]
Abstract
cis-Autoproteolysis is a post-translational modification necessary for the function of ThnT, an enzyme involved in the biosynthesis of the β-lactam antibiotic thienamycin. This modification generates an N-terminal threonine nucleophile that is used to hydrolyze the pantetheinyl moiety of its natural substrate. We determined the crystal structure of autoactivated ThnT to 1.8Å through X-ray crystallography. Comparison to a mutationally inactivated precursor structure revealed several large conformational rearrangements near the active site. To probe the relevance of these transitions, we designed a pantetheine-like chloromethyl ketone inactivator and co-crystallized it with ThnT. Although this class of inhibitor has been in use for several decades, the mode of inactivation had not been determined for an enzyme that uses an N-terminal nucleophile. The co-crystal structure revealed the chloromethyl ketone bound to the N-terminal nucleophile of ThnT through an ether linkage, and analysis suggests inactivation through a direct displacement mechanism. More importantly, this inactivated complex shows that three regions of ThnT that are critical to the formation of the substrate binding pocket undergo rearrangement upon autoproteolysis. Comparison of ThnT with other autoproteolytic enzymes of disparate evolutionary lineage revealed a high degree of similarity within the proenzyme active site, reflecting shared chemical constraints. However, after autoproteolysis, many enzymes, like ThnT, are observed to rearrange in order to accommodate their specific substrate. We propose that this is a general phenomenon, whereby autoprocessing systems with shared chemistry may possess similar structural features that dissipate upon rearrangement into a mature state.
Collapse
Affiliation(s)
- Andrew R. Buller
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason W. Labonte
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael F. Freeman
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nathan T. Wright
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joel F. Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Craig A. Townsend
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
36
|
Abstract
Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- Philip A Rea
- Carolyn Hoff Lynch Biology Laboratory, Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Wu KH, Hsieh YH, Tai PC. Mutational analysis of Cvab, an ABC transporter involved in the secretion of active colicin V. PLoS One 2012; 7:e35382. [PMID: 22539970 PMCID: PMC3335142 DOI: 10.1371/journal.pone.0035382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca2+-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V.
Collapse
Affiliation(s)
- Kai-Hui Wu
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Phang C. Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Hu W, Guan Z, Deng X, He YH. Enzyme catalytic promiscuity: The papain-catalyzed Knoevenagel reaction. Biochimie 2012; 94:656-61. [PMID: 21963435 DOI: 10.1016/j.biochi.2011.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Hu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | |
Collapse
|
39
|
Hussain S, Khan A, Gul S, Resmini M, Verma CS, Thomas EW, Brocklehurst K. Identification of interactions involved in the generation of nucleophilic reactivity and of catalytic competence in the catalytic site Cys/His ion pair of papain. Biochemistry 2011; 50:10732-42. [PMID: 22044167 DOI: 10.1021/bi201207z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the roles of noncovalent interactions within the enzyme molecule and between enzyme and substrate or inhibitor is an essential goal of the investigation of active center chemistry and catalytic mechanism. Studies on members of the papain family of cysteine proteinases, particularly papain (EC 3.4.22.2) itself, continue to contribute to this goal. The historic role of the catalytic site Cys/His ion pair now needs to be understood within the context of multiple dynamic phenomena. Movement of Trp177 may be necessary to expose His159 to solvent with consequent decrease in its degree of electrostatic solvation of (Cys25)-S(-). Here we report an investigation of this possibility using computer modeling of quasi-transition states and pH-dependent kinetics using 3,3'-dipyridazinyl disulfide, its n-propyl and phenyl derivatives, and 4,4'-dipyrimidyl disulfide as reactivity probes that differ in the location of potential hydrogen-bonding acceptor atoms. Those interactions that influence ion pair geometry and thereby catalytic competence, including by transmission of the modulatory effect of a remote ionization with pK(a) 4, were identified. A key result is the correlation between the kinetic influence of the modulatory trigger of pK(a) 4 and disruption of the hydrogen bond donated by the indole N-H of Trp177, the hydrophobic shield of the initial "intimate" ion pair. This hydrogen bond is accepted by the amide O of Gln19-a component of the oxyanion hole that binds the tetrahedral species formed from the substrate during the catalytic act. The disruption would be expected to contribute to the mobility of Trp177 and possibly to the effectiveness of the binding of the developing oxyanion.
Collapse
Affiliation(s)
- Syeed Hussain
- Laboratory of Structural and Mechanistic Enzymology, School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Azarkan M, Matagne A, Wattiez R, Bolle L, Vandenameele J, Baeyens-Volant D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. PHYTOCHEMISTRY 2011; 72:1718-1731. [PMID: 21665232 DOI: 10.1016/j.phytochem.2011.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 05/28/2023]
Abstract
The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Free University of Brussels, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
41
|
Guo B, Lin J, Ye K. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J Biol Chem 2011; 286:21937-43. [PMID: 21543324 DOI: 10.1074/jbc.m111.230706] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1-P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1'. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.
Collapse
Affiliation(s)
- Bihong Guo
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
42
|
Syrén PO, Hult K. Amidases Have a Hydrogen Bond that Facilitates Nitrogen Inversion, but Esterases Have Not. ChemCatChem 2011. [DOI: 10.1002/cctc.201000448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Nishie M, Sasaki M, Nagao JI, Zendo T, Nakayama J, Sonomoto K. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 2011; 286:11163-9. [PMID: 21303905 DOI: 10.1074/jbc.m110.212704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn(106) is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT.
Collapse
Affiliation(s)
- Mami Nishie
- Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Zhang N, Zhong R, Yan H, Jiang Y. Structural Features Underlying Selective Inhibition of GSK3β by Dibromocantharelline: Implications for Rational Drug Design. Chem Biol Drug Des 2011; 77:199-205. [DOI: 10.1111/j.1747-0285.2010.01069.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc Natl Acad Sci U S A 2011; 108:2222-7. [PMID: 21245344 DOI: 10.1073/pnas.1013388108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The attachment of ubiquitin (Ub) and the Ub-like (Ubl) molecule interferon-stimulated gene 15 (ISG15) to cellular proteins mediates important innate antiviral responses. Ovarian tumor (OTU) domain proteases from nairoviruses and arteriviruses were recently found to remove these molecules from host proteins, which inhibits Ub and ISG15-dependent antiviral pathways. This contrasts with the Ub-specific activity of known eukaryotic OTU-domain proteases. Here we describe crystal structures of a viral OTU domain from the highly pathogenic Crimean-Congo haemorrhagic fever virus (CCHFV) bound to Ub and to ISG15 at 2.5-Å and 2.3-Å resolution, respectively. The complexes provide a unique structural example of ISG15 bound to another protein and reveal the molecular mechanism of an ISG15 cross-reactive deubiquitinase. To accommodate structural differences between Ub and ISG15, the viral protease binds the β-grasp folds of Ub and C-terminal Ub-like domain of ISG15 in an orientation that is rotated nearly 75° with respect to that observed for Ub bound to a representative eukaryotic OTU domain from yeast. Distinct structural determinants necessary for binding either substrate were identified and allowed the reengineering of the viral OTU protease into enzymes with increased substrate specificity, either for Ub or for ISG15. Our findings now provide the basis to determine in vivo the relative contributions of deubiquitination and deISGylation to viral immune evasion tactics, and a structural template of a promiscuous deubiquitinase from a haemorrhagic fever virus that can be targeted for inhibition using small-molecule-based strategies.
Collapse
|
46
|
Synthesis, Characterization and Luminescence Properties of Dipyridin-2-ylamine Ligands and Their Bis(2,2′-bipyridyl)ruthenium(II) Complexes and Labelling Studies of Papain fromCarica papaya. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
|
48
|
Reduction of benzaldehyde catalyzed by papain-based semisynthetic enzymes. Appl Biochem Biotechnol 2010; 162:1506-16. [PMID: 20383756 DOI: 10.1007/s12010-009-8856-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
Some features of native enzyme's active site were used to conjunction with a chemical reagent or modifying group, which would generate new functionality different from the natural enzyme. In order to obtain an efficient catalyst, we have designed four different molecular size N-derivatives of modifiers and introduced them into the active site of papain to obtain new semisynthetic enzymes, which were used as catalyst in reduction of benzaldehyde to yield benzyl alcohol respectively, and the reactions carried out with recycling agent in 0.1 M phosphate buffer pH 6.5 at 37 degrees C. The results had shown that a longer N-derivative of semisynthetic enzyme had higher catalytic activity. Furthermore, we propose a plausible model for the catalytic mechanism in the semisynthetic enzymes system.
Collapse
|
49
|
Knuckley B, Causey CP, Pellechia PJ, Cook PF, Thompson PR. Haloacetamidine-based inactivators of protein arginine deiminase 4 (PAD4): evidence that general acid catalysis promotes efficient inactivation. Chembiochem 2010; 11:161-5. [PMID: 20014086 DOI: 10.1002/cbic.200900698] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysregulated protein arginine deiminase (PAD) activity, particularly PAD4, has been suggested to play a role in the onset and progression of numerous human diseases, including rheumatoid arthritis (RA). Given the potential role of PAD4 in RA, we set out to develop inhibitors/inactivators that could be used to modulate PAD activity and disease progression. This effort led to the discovery of two mechanism-based inactivators, denoted F- and Cl-amidine, that inactivate PAD4 by the covalent modification of an active-site cysteine that is critical for catalysis. To gain further insights into the mechanism of inactivation by these compounds, the effect of pH on the rates of inactivation was determined. These results, combined with the results of solvent isotope effect and proton inventory studies, strongly suggest that the inactivation of PAD4 by F- and Cl-amidine proceeds by a multistep mechanism that involves the protonation and stabilization of the tetrahedral intermediate formed upon nucleophilic attack by the active-site cysteine, that is, Cys645. Stabilization of this intermediate would help to drive the halide-displacement reaction, which results in the formation of a three-membered sulfonium ring that ultimately collapses to form the inactivated enzyme. This finding-that protonation of the tetrahedral intermediate is important for enzyme inactivation-also suggests that, during catalysis, protonation of the analogous intermediate is required for efficient substrate turnover.
Collapse
Affiliation(s)
- Bryan Knuckley
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
50
|
Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Bioorg Med Chem 2009; 17:6914-25. [DOI: 10.1016/j.bmc.2009.08.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/21/2009] [Accepted: 08/13/2009] [Indexed: 01/11/2023]
|