1
|
Maestro MA, Seoane S. The Centennial Collection of VDR Ligands: Metabolites, Analogs, Hybrids and Non-Secosteroidal Ligands. Nutrients 2022; 14:nu14224927. [PMID: 36432615 PMCID: PMC9692999 DOI: 10.3390/nu14224927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of vitamin D a century ago, a great number of metabolites, analogs, hybrids and nonsteroidal VDR ligands have been developed. An enormous effort has been made to synthesize compounds which present beneficial properties while attaining lower calcium serum levels than calcitriol. This structural review covers VDR ligands published to date.
Collapse
Affiliation(s)
- Miguel A. Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira, s/n, 15008 A Coruña, Spain
- Correspondence:
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago, Campus Vida, 15005 Santiago, Spain
| |
Collapse
|
2
|
Haris A, Lam YPY, Wootton CA, Theisen A, Marzullo BP, Schorr P, Volmer DA, O’Connor PB. Differentiation of Dihydroxylated Vitamin D 3 Isomers Using Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1022-1030. [PMID: 35561028 PMCID: PMC9164238 DOI: 10.1021/jasms.2c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Vitamin D compounds are a group of secosteroids derived from cholesterol that are vital for maintaining bone health in humans. Recent studies have shown extraskeletal effects of vitamin D, involving vitamin D metabolites such as the dihydroxylated vitamin D3 compounds 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. Differentiation and characterization of these isomers by mass spectrometry can be challenging due to the zero-mass difference and minor structural differences between them. The isomers usually require separation by liquid chromatography (LC) prior to mass spectrometry, which adds extra complexity to the analysis. Herein, we investigated and revisited the use of fragmentation methods such as collisional induced dissociation (CID), infrared multiphoton dissociation (IRMPD), electron induced dissociation (EID), and ultraviolet photodissociation (UVPD), available on a 12T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) to generate characteristic fragments for the dihydroxylated vitamin D3 isomers that can be used to distinguish between them. Isomer-specific fragments were observed for the 1,25-dihydroxyvitamin D3, which were clearly absent in the 24,25-dihydroxyvitamin D3 MS/MS spectra using all fragmentation methods mentioned above. The fragments generated due to cleavage of the C-6/C-7 bond in the 1,25-dihydroxyvitamin D3 compound demonstrate that the fragile OH groups were retained during fragmentation, thus enabling differentiation between the two dihydroxylated vitamin D3 isomers without the need for prior chromatographic separation or derivatization.
Collapse
Affiliation(s)
- Anisha Haris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Yuko P. Y. Lam
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Alina Theisen
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Bryan P. Marzullo
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pascal Schorr
- Institut
für Chemie, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Dietrich A. Volmer
- Institut
für Chemie, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Kawagoe F, Mototani S, Yasuda K, Mano H, Sakaki T, Kittaka A. Stereoselective Synthesis of 24-Fluoro-25-Hydroxyvitamin D 3 Analogues and Their Stability to hCYP24A1-Dependent Catabolism. Int J Mol Sci 2021; 22:ijms222111863. [PMID: 34769295 PMCID: PMC8584271 DOI: 10.3390/ijms222111863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Two 24-fluoro-25-hydroxyvitamin D3 analogues (3,4) were synthesized in a convergent manner. The introduction of a stereocenter to the vitamin D3 side-chain C24 position was achieved via Sharpless dihydroxylation, and a deoxyfluorination reaction was utilized for the fluorination step. Comparison between (24R)- and (24S)-24-fluoro-25-hydroxyvitamin D3 revealed that the C24-R-configuration isomer 4 was more resistant to CYP24A1-dependent metabolism than its 24S-isomer 3. The new synthetic route of the CYP24A1 main metabolite (24R)-24,25-dihydroxyvitamin D3 (6) and its 24S-isomer (5) was also studied using synthetic intermediates (30,31) in parallel.
Collapse
Affiliation(s)
- Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Tokyo 173-8605, Japan; (F.K.); (S.M.)
| | - Sayuri Mototani
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Tokyo 173-8605, Japan; (F.K.); (S.M.)
| | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan; (K.Y.); (H.M.); (T.S.)
| | - Hiroki Mano
- Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan; (K.Y.); (H.M.); (T.S.)
| | - Toshiyuki Sakaki
- Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan; (K.Y.); (H.M.); (T.S.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Tokyo 173-8605, Japan; (F.K.); (S.M.)
- Correspondence: ; Tel.: +81-3-3964-8109; Fax: +81-3-3964-8117
| |
Collapse
|
4
|
Sakamoto R, Nagata A, Ohshita H, Mizumoto Y, Iwaki M, Yasuda K, Sakaki T, Nagasawa K. Chemical Synthesis of Side-Chain-Hydroxylated Vitamin D 3 Derivatives and Their Metabolism by CYP27B1. Chembiochem 2021; 22:2896-2900. [PMID: 34250710 DOI: 10.1002/cbic.202100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/07/2021] [Indexed: 11/09/2022]
Abstract
1α,25-Dihydroxyvitamin D3 (abbreviated here as 1,25D3 ) is a hormonally active form of vitamin D3 (D3 ), and is produced from D3 by CYP27 A1-mediated hydroxylation at C25, followed by CYP27B1-mediated hydroxylation at C1. Further hydroxylation of 25D3 and 1,25D3 occurs at C23, C24 and C26 to generate corresponding metabolites, except for 1,25R,26D3 . Since the capability of CYP27B1 to hydroxylate C1 of side-chain-hydroxylated metabolites other than 23S,25D3 and 24R,25D3 has not been examined, we have here explored the role of CYP27B1 in the C1 hydroxylation of a series of side-chain-hydroxylated D3 derivatives. We found that CYP27B1 hydroxylates the R diastereomers of 24,25D3 and 25,26D3 more effectively than the S diastereomers, but shows almost no activity towards either diastereomer of 23,25D3 . This is the first report to show that CYP27B1 metabolizes 25,26D3 to the corresponding 1α-hydroxylated derivative, 1,25,26D3 . It will be interesting to examine the physiological relevance of this finding.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Akiko Nagata
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Haruki Ohshita
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuka Mizumoto
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Miho Iwaki
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| |
Collapse
|
5
|
Kawagoe F, Mototani S, Yasuda K, Nagasawa K, Uesugi M, Sakaki T, Kittaka A. Introduction of fluorine atoms to vitamin D 3 side-chain and synthesis of 24,24-difluoro-25-hydroxyvitamin D 3. J Steroid Biochem Mol Biol 2019; 195:105477. [PMID: 31541729 DOI: 10.1016/j.jsbmb.2019.105477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
During our ongoing studies of vitamin D, we focused on the vitamin D3 side-chain 24-position, which is the major metabolic site of human CYP24A1. In order to inhibit the metabolism of vitamin D3, 24,24-difluorovitamin D3analogues are important candidates. In this paper, we report the practical introduction of the difluoro-unit to the 24-position to synthesize 24,24-difluoro-CD ring (1) and 24,24-difluoro-25-hydroxyvitamin D3 (2).
Collapse
Affiliation(s)
- Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; AMED-CREST, The Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan
| | - Sayuri Mototani
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kaori Yasuda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Kazuo Nagasawa
- AMED-CREST, The Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Motonari Uesugi
- AMED-CREST, The Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Sakaki
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; AMED-CREST, The Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan.
| |
Collapse
|
6
|
Zand L, Kumar R. The Use of Vitamin D Metabolites and Analogues in the Treatment of Chronic Kidney Disease. Endocrinol Metab Clin North Am 2017; 46:983-1007. [PMID: 29080646 PMCID: PMC5977979 DOI: 10.1016/j.ecl.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are associated with abnormalities in bone and mineral metabolism, known as CKD-bone mineral disorder. CKD and ESRD cause skeletal abnormalities characterized by hyperparathyroidism, mixed uremic osteodystrophy, osteomalacia, adynamic bone disease, and frequently enhanced vascular and ectopic calcification. Hyperparathyroidism and mixed uremic osteodystrophy are the most common manifestations due to phosphate retention, reduced concentrations of 1,25-dihydroxyvitamin D, intestinal calcium absorption, and negative calcium balance. Treatment with 1-hydroxylated vitamin D analogues is useful.
Collapse
Affiliation(s)
- Ladan Zand
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55901, USA.
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55901, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55901, USA.
| |
Collapse
|
7
|
Abstract
Hypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.
Collapse
Affiliation(s)
- Peter J Tebben
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ravinder J Singh
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Rajiv Kumar
- Divisions of Endocrinology (P.J.T., R.K.) and Nephrology and Hypertension (R.K.), and Departments of Pediatric and Adolescent Medicine (P.J.T.), Internal Medicine (P.J.T., R.K.), Laboratory Medicine and Pathology (R.J.S.), and Biochemistry in Molecular Biology (R.K.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
8
|
Lancaster ST, Blackburn J, Blom A, Makishima M, Ishizawa M, Mansell JP. 24,25-Dihydroxyvitamin D3 cooperates with a stable, fluoromethylene LPA receptor agonist to secure human (MG63) osteoblast maturation. Steroids 2014; 83:52-61. [PMID: 24513053 DOI: 10.1016/j.steroids.2014.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/18/2013] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
Abstract
Vitamin D receptor (VDR) agonists supporting human osteoblast (hOB) differentiation in the absence of bone resorption are attractive agents in a bone regenerative setting. One potential candidate fulfilling these roles is 24,25-dihydroxy vitamin D3 (24,25D). Over forty years ago it was reported that supraphysiological levels of 24,25D could stimulate intestinal calcium uptake and aid bone repair without causing bone calcium mobilisation. VDR agonists co-operate with certain growth factors to enhance hOB differentiation but whether 24,25D might act similarly in promoting cellular maturation has not been described. Given our discovery that lysophosphatidic acid (LPA) co-operated with VDR agonists to enhance hOB maturation, we co-treated MG63 hOBs with 24,25D and a phosphatase-resistant LPA analog. In isolation 24,25D inhibited proliferation and stimulated osteocalcin expression. When co-administered with the LPA analog there were synergistic increases in alkaline phosphatase (ALP). These are encouraging findings which may help realise the future application of 24,25D in promoting osseous repair.
Collapse
Affiliation(s)
- Sarah Tamar Lancaster
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Julia Blackburn
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jason Peter Mansell
- Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
9
|
Nicoletti D, Gregorio C, Mouriño A, Maestro M. A short practical approach to 24R,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2010; 121:43-5. [PMID: 20385233 DOI: 10.1016/j.jsbmb.2010.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 01/28/2023]
Abstract
A synthesis of the vitamin D3 metabolite 24R,25-dihydroxyvitamin D3 (1) by Lythgoe's Wittig-Horner approach is described. The key step of the synthesis is the stereocontrolled introduction of the 24-hydroxyl group by a palladium(0)-induced [3,3]-sigmatropic rearrangement on a 22R-allylic acetate (7).
Collapse
Affiliation(s)
- Daniel Nicoletti
- Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
10
|
d- and l-Serine, useful synthons for the synthesis of 24-hydroxyvitamin D3 metabolites. A formal synthesis of 1α,24R,25-(OH)3-D3, 24R,25-(OH)2-D3 and 24S,25-(OH)2-D3. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Bikle DD, Morrissey RL, Zolock DT, Rasmussen H. The intestinal response to vitamin D. Rev Physiol Biochem Pharmacol 2006; 89:63-142. [PMID: 7015459 DOI: 10.1007/bfb0035265] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
|
13
|
Magyar A, Szendi Z, Forgó P, Mák M, Görls H, Sweet F. Stereoselective reactions of (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene derivatives form 27-nor-3,20,23,26-tetrahydroxy-cholesten-22-ones and related bromo ketones. Steroids 2004; 69:35-42. [PMID: 14715375 DOI: 10.1016/j.steroids.2003.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.
Collapse
Affiliation(s)
- Angéla Magyar
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Kobayashi N, Higashi T, Saito K, Murayama T, Douya R, Shimada K. Specificity of polyclonal antibodies raised against a novel 24,25-dihydroxyvitamin D3-bovine serum albumin conjugant linked through the C-11alpha or C-3 position. J Steroid Biochem Mol Biol 1997; 62:79-87. [PMID: 9366501 DOI: 10.1016/s0960-0760(97)00016-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel hapten-carrier conjugants were prepared by coupling 11 alpha-hemiglutaryloxy-(24R)-24,25-dihydroxyvitamin D3 or (24R)-24,25-dihydroxyvitamin D3 [24,25(OH)2D3] 3-hemiglutarate with bovine serum albumin (BSA), to obtain an antibody with high specificity and affinity for use in 24,25(OH)2D3 immunoassay. The polyclonal antibodies showing high titre were each elicited in three or four rabbits against these two conjugants; the antibodies obtained from the former and the latter conjugants were expressed as Ab11 and Ab3, respectively. These had a much higher affinity for 24,25(OH)2D3 than that of the vitamin D binding protein (DBP). Specificity of the antibodies was investigated by crossreactivities with 11 related compounds in a radioimmunoassay (RIA) system. The Abll well discriminated the 1 alpha-hydroxylated metabolites such as 1,24,25(OH)3D3 (< or = 0.69%) and 1,25(OH)2D3 (< or = 0.25%), but significantly crossreacted with some side chain modified compounds such as (24S)-24,25-dihydroxyvitamin D3 [24S,25(OH)2D3] (> or = 67%), 25(OH)D3 (> or = 14%) and 25,26(OH)2D3 (> or = 23%). On the other hand, the Ab3 showed only negligible crossreactivities with the compounds having a different side chain structure such as 24S,25(OH)2D3 (< or = 3.0%), 25(OH)D3 (< 0.3%) and 25,26(OH)2D3 (< or = 0.53%). A significant crossreaction was found only with 1,24,25(OH)3D3 (> or = 68%). These results demonstrated that the Ab3 are promising for developing an immunoassay system which is much more specific and sensitive than conventional competitive protein binding assays based on DBP.
Collapse
Affiliation(s)
- N Kobayashi
- Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Okuda K, Usui E, Ohyama Y. Recent progress in enzymology and molecular biology of enzymes involved in vitamin D metabolism. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41484-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Kobayashi N, Higashi T, Shimada K. Synthesis of (24R)-11α-(4-carboxybutyryloxy)-24,25-dihydroxyvitamin D3: a novel haptenic derivative producing antibodies of high affinity for (24R)-24,25-dihydroxyvitamin D3. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/p19940000269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|
18
|
Atkin I, Pita JC, Ornoy A, Agundez A, Castiglione G, Howell DS. Effects of vitamin D metabolites on healing of low phosphate, vitamin D-deficient induced rickets in rats. Bone 1985; 6:113-23. [PMID: 3874635 DOI: 10.1016/8756-3282(85)90315-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A model of low-phosphate, vitamin D-deficient rachitic rats was used to compare the effects of 1 alpha(OH)D3, 1,25(OH)2D3, and 24,25(OH)2D3 on cartilage and bone. The rats were maintained for 3 weeks on a high-calcium, low-phosphate, vitamin D-deficient diet, during which period they developed severe rickets. The rachitic rats were injected for 2 or 3 consecutive days with a physiologic dose of either metabolite. Other littermates were given a single dose of 50,000 IU of cholecalciferol in combination with a normal diet. Samples of cartilage fluid (Cfl) and of blood were removed prior to sacrifice for biochemical studies of some parameters of calcification. These parameters were correlated with the results of light and electron microscopic studies of the growth plate cartilage and bone. Treatment with 1 alpha (OH)D3 or with 1,25(OH)2D3, in spite of increasing Ca and P levels in the Cfl, induced only partial healing of the rickets. In contrast, 24,25(OH)2D3 or vitamin D with a normal diet resulted in complete morphologic and biochemical healing of the rickets. Transmission electron microscopic (TEM) studies have shown partial mineralization of the wide hypertrophic zone of the growth plate following treatment with 1 alpha(OH)D3 or with 1,25(OH)2D3. Mineralization was more complete with 24,25(OH)2D3 treatment. The results of this study emphasize the importance of 24,25(OH)2D3 for normal endochondral bone formation and mineralization.
Collapse
|
19
|
Perlman K, Schnoes HK, Tanaka Y, DeLuca HF, Kobayashi Y, Taguchi T. Chemical synthesis of (24R)-24,25-dihydroxy[26,27-3H]vitamin D3 of high specific activity. Biochemistry 1984; 23:5041-8. [PMID: 6333896 DOI: 10.1021/bi00316a033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chemical synthesis of (24R)-24,25-dihydroxy-[26,27-3H]vitamin D3, and its 24-epimer has been devised that allows introduction of 3H at the terminal step of the synthesis. The epimeric mixture is derivatized as the tris(trimethylsilyl) ethers and resolved by high-performance liquid chromatography. The product has a specific activity of 178 Ci/mmol and is fully active in binding to the rat plasma vitamin D binding protein and in the elevation of serum calcium levels of vitamin D deficient rats. The synthesis begins with the readily available 3 beta-hydroxy-5-cholenic acid methyl ester and involves a Pummerer rearrangement, introduction of the delta 7, irradiation, and isolation of the 26,27-dinor-25-carboxylic acid methyl ester of vitamin D3. This compound is then treated with a Grignard reagent containing 3H (80 +/- 10 Ci/mmol).
Collapse
|
20
|
Hodsman AB, Wong EG, Sherrard DJ, Brickman AS, Lee DB, Singer FR, Norman AW, Coburn JW. Preliminary trials with 24,25-dihydroxyvitamin D3 in dialysis osteomalacia. Am J Med 1983; 74:407-14. [PMID: 6338716 DOI: 10.1016/0002-9343(83)90959-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fifteen patients with dialysis osteomalacia were treated with 24,25-dihydroxyvitamin D3 in dosages up to 10 micrograms per day for two to 24 months. All had previously had no improvement during treatment with calcitriol but had been remarkably susceptible to hypercalcemia. When 24,25-dihydroxyvitamin D3 was given with either calcitriol or dihydrotachysterol, serum calcium levels were significantly lower than during treatment with calcitriol or dihydrotachysterol alone. Eight of nine patients who received combined therapy with 24,25-dihydroxyvitamin D3 and calcitriol for longer than two months had clinical improvement; six patients underwent repeated bone biopsy and showed evidence of improved bone mineralization. Patients who received 24,25-dihydroxyvitamin D3 alone did not improve clinically. Since 24,25-dihydroxyvitamin D3 appears to improve calcium homeostasis and bone mineralization in some patients with severe dialysis osteomalacia when administered with 1-hydroxylated vitamin D metabolites, further controlled studies are warranted.
Collapse
|
21
|
Facile, stereoselective synthesis of (24R)-24,25-dihydroxyvitamin D3 using D-glyceric acid as a chiral synthon. Tetrahedron Lett 1980. [DOI: 10.1016/s0040-4039(00)71123-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Härkönen M, Adlercreutz H, Dabek JT, O'Riordan JL. In vitro oxidation of vitamin D metabolites of steroid dehydrogenases. JOURNAL OF STEROID BIOCHEMISTRY 1979; 11:1205-8. [PMID: 513739 DOI: 10.1016/0022-4731(79)90185-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Tanaka Y, DeLuca HF, Kobayashi Y, Taguchi T, Ikekawa N, Morisaki M. Biological activity of 24,24-difluoro-25-hydroxyvitamin D3. Effect of blocking of 24-hydroxylation on the functions of vitamin D. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50299-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science 1978; 201:835-7. [PMID: 684411 DOI: 10.1126/science.684411] [Citation(s) in RCA: 199] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When hens are raised to sexual maturity from hatching with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] as their sole source of cholecalciferol (vitamin D3), fertile eggs appear to develop normally but fail to hatch. When hens receive a combination of 1,25(OH)2D3 and 24R,25-dihydroxyvitamin D3 [24,25(OH)2D3], hatchability equivalent to that with hens given vitamin D3 is obtained. These results suggest a biological role for 24,25(OH)2D3 not previously recognized.
Collapse
|
25
|
Kremer R, Guillemant S. A simple and specific competitive protein binding assay for 24,25-dihydroxyvitamin D in human serum. Clin Chim Acta 1978; 86:187-94. [PMID: 657542 DOI: 10.1016/0009-8981(78)90132-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A sensitive and specific competitive protein binding assay for 24,25-dihydroxyvitamin D was developed using rat kidney cytosol as the binding protein. It also included a chromatographic step on a Sephadex LH 20 column to separate the metabolite specifically. The average value for 24, 25-dihydroxyvitamin D in serum in 19 male and female healthy subjects aged from 20 to 40 was found to be 8.24 +/- 0.34 ng/ml (1.98 +/- 0.08 . 10(-8) mol/l) mean +/- S.D. In hepatic insufficiencies the levels are higher (14.15 +/- 3.59 ng/ml) than in normal subjects. A comparison between 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D levels was made.
Collapse
|
26
|
|
27
|
Walling MW, Hartenbower DL, Coburn JW, Norman AW. Effects of 1 alpha,25-, 24R,25-, and 1 alpha,24R,25-hydroxylated metabolites of vitamin D3 on calcium and phosphate absorption by duodenum from intact and nephrectomized rats. Arch Biochem Biophys 1977; 182:251-7. [PMID: 883833 DOI: 10.1016/0003-9861(77)90305-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Miravet L, Redel J, Carre M, Queillé ML, Bordier P. The biological activity of synthetic 25,26-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol in vitamin D-deficient rats. CALCIFIED TISSUE RESEARCH 1976; 21:145-52. [PMID: 1000334 DOI: 10.1007/bf02547391] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The biological activity of synthetic 24,25 and 25,26 diOHD3 was studied in vitamin D-deficient rats. The purpose of this study was to investigate the influence of small doses of both metabolites (0.125-0.250 mug) upon intestinal calcium transport and bone calcium mobilization. Both metabolites were able to increase calcium absorption in rats maintained on a calcium-deficient diet, but failed to do it in rats on a normal calcium diet. Bilateral nephrectomy suppressed this effect. The "bone calcium mobilization" of both derivatives was measured in vitamin D and calcium- or phosphorus-deprived rats after one intravenous dose. When serum calcium was initially low, 24,25 and 25,26 diOHD3 increased serum calcium moderately, but the increment was only significant with 24,25 diOHD3. When serum calcium was normal before the injection, both metabolites decreased serum calcium significantly, and the decrease was greater with 24,25 diOHD3. Intraperitoneal administration of the metabolites for 5 consecutive days produced a significant increase of calcium in serum and bone ash.
Collapse
|
29
|
Pedersen JI, Ghazarian JG, Orme-Johnson NR, DeLuca HF. Isolation of chick renal mitochondrial ferredoxin active in the 25-hydroxyvitamin D3-1alpha-hydroxylase system. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33338-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Peacock M, Taylor GA, Redel J. The action of two metabolites of vitamin D3; 25,26-dihydroxycholecalciferol (25,26(OH)2D3) and 24, 25-dihydroxycholecalciferol (24,25(OH)2D3) on bone resorption. FEBS Lett 1976; 62:248-50. [PMID: 1278366 DOI: 10.1016/0014-5793(76)80067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Tahaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys 1975; 171:521-6. [PMID: 1200639 DOI: 10.1016/0003-9861(75)90061-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Jones G, DeLuca HF. High-pressure liquid chromatography: separation of the metabolites of vitamins D2 and D3 on small-particle silica columns. J Lipid Res 1975. [DOI: 10.1016/s0022-2275(20)34495-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Tanaka Y, DeLuca HF, Ikekawa N, Morisaki M, Koizumi N. Determination of stereochemical configuration of the 24-hydroxyl group of 24,25-dihydroxyvitamin D3 and its biological importance. Arch Biochem Biophys 1975; 170:620-6. [PMID: 1190783 DOI: 10.1016/0003-9861(75)90157-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Redel J, Bazely N, Calando Y, Delbarre F. The synthesis of 24,25-dihydroxycholecalciferol, a metabolite of vitamin D. JOURNAL OF STEROID BIOCHEMISTRY 1975; 6:117-9. [PMID: 1152460 DOI: 10.1016/0022-4731(75)90192-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Abstract
25xi,26-Dihydroxycholecalciferol (25xi,26-dihydroxyvitamin D3), a metabolite of vitamin D3 preferentially active on intestine has been synthesized. This compound was prepared by converting 3beta-hydroxy-27-norcholest-5-en-25-one to 25xi,26-epoxy-5-cholesten--3beta-ol and base-catalyzed hydrolysis of the latter to 5-cholestene-3beta,25xi,26-triol; allylic bromination of the corresponding triacetate, and dehydrobromination gave the required 5,7-diene which yielded the vitamin derivative upon photolysis (Figure 3). The synthetic product shows the same activity pattern as the natural metabolite: at dose levels of 0.25 mug, the compound stimulates intestinal calcium transport, but has no effect on bone calcium mobilization in rats maintained on a vitamin D-deficient, low calcium diet. Higher doses (2.5 mug) elicit a more pronounced intestinal calcium transport response, but also have no significant effect on the bone mobilization system. The compound exhibits no biologial activity in nephrectomized animals.
Collapse
|
36
|
Synthesis of active forms of vitamin D VI synthesis of (24R)- and (24S)-24,25-dihydroxyvitamin D3. Tetrahedron Lett 1975. [DOI: 10.1016/s0040-4039(00)71765-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Schnoes HK, Deluca HF. Synthetic analogs of 1alpha,25-dihydroxyvitamin D3 and their biological activity. VITAMINS AND HORMONES 1975; 32:385-406. [PMID: 4617403 DOI: 10.1016/s0083-6729(08)60019-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Lam HY, Onisko BL, Schnoes HK, DeLuca HF. Synthesis and biological activity of 3-deoxy-1alpha-hydroxyvitamin D3. Biochem Biophys Res Commun 1974; 59:845-9. [PMID: 4370422 DOI: 10.1016/s0006-291x(74)80056-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Abstract
Vitamin D-deficient rats produce [(3)H]1,25-dihydroxyvitamin D(3) from [(3)H]25-hydroxyvitamin D(3) regardless of dietary content of calcium or phosphate. A daily dose of 130 picomoles of 1,25-dihydroxyvitamin D(3) for a period of 5 days reduces production of [(3)H]1,25-dihydroxyvitamin D(3) to essentially zero and stimulates production of [(3)H]24,25-dihydroxyvitamin D(3). A daily dose of 325 picomoles of 25-hydroxyvitamin D(3) has a similar but less dramatic effect. On the other hand, 650 picomoles daily of 24,25-dihydroxyvitamin D(3) given to vitamin D-deficient rats had no effect. Thus it appears that 1,25-dihydroxyvitamin D(3) is an important factor in the regulation of kidney metabolism of 25-hydroxyvitamin D(3).
Collapse
|