1
|
Sozańska N, Klepka BP, Niedzwiecka A, Zhukova L, Dadlez M, Greb-Markiewicz B, Ożyhar A, Tarczewska A. The molecular properties of the bHLH TCF4 protein as an intrinsically disordered hub transcription factor. Cell Commun Signal 2025; 23:154. [PMID: 40149012 PMCID: PMC11948756 DOI: 10.1186/s12964-025-02154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Transcription factor 4 (TCF4) is a member of the basic helix-loop-helix (bHLH) family of transcription factors that guides proper embryogenesis, particularly neurogenesis, myogenesis, heart development and hematopoiesis. The interaction of TCF4 with DNA is dependent on the presence of a conserved bHLH domain, particularly the presence of a basic (b) motif. Most mutations in the Tcf4 gene are either associated with the development of serious nervous system disorders, such as Pitt-Hopkins syndrome or schizophrenia, or are lethal. Although TCF4 is essential for the proper development and function of the human body, there is a lack of fundamental knowledge about the structure of TCF4 since structural studies were previously limited exclusively to its bHLH. METHODS Recombinant full-length TCF4 was expressed in bacterial cells and purified using chromatographic techniques. To compare the properties of TCF4 in its apo and holo form, we determined the dissociation constant (KD) of the TCF4:DNA complex using independent methods, including fluorescence polarization (FP), electrophoretic mobility shift assay (EMSA), and fluorescence correlation spectroscopy (FCS). Then we compared the properties of TCF4 in its apo and holo form in relation to the changes of the conformation of the polypeptide chain (hydrogen/deuterium exchange mass spectrometry; HDX-MS), hydrodynamic properties (e.g., sedimentation-velocity analytical ultracentrifugation; SV-AUC), and stability (thermal shift, circular dichroism; CD). RESULTS We demonstrate the molecular characteristics of TCF4, the dimer of which is one of the largest intrinsically disordered proteins (IDPs) described to date. According to our findings, the structure of TCF4 is extensively disordered. Only the bHLH domain exhibits a stable fold. Strikingly, Ephrussi-box (E-box) binding via the bHLH domain has no significant effect on the disordered nature of TCF4, but it does influence the dynamic of bHLH and stability of the protein. CONCLUSIONS We suggest that bHLH plays the role of an anchor localizing TCF4 to specific gene sequences. The dual nature of the TCF4 structure and the fact that the intrinsically disordered regions (IDRs) represent most of the protein sequence, suggest that TCF4 may act as a hub transcription factor regulating the expression of specific genes through the interaction of IDRs with gene-specific partners.
Collapse
Affiliation(s)
- Nikola Sozańska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Barbara P Klepka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, Warsaw, PL-02668, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, Warsaw, PL-02668, Poland
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
| |
Collapse
|
2
|
Senger J, Schulz A, Seitl I, Heider M, Fischer L. Importance of the 5' untranslated region for recombinant enzyme production in isolated Bacillus subtilis 007. AMB Express 2025; 15:24. [PMID: 39918718 PMCID: PMC11805744 DOI: 10.1186/s13568-025-01832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The production of industrial enzymes requires an efficient expression system with a suitable host. This study investigated the isolated Bacillus subtilis 007 as a host for expressing three enzymes with potential application in the food industry. Firstly, testing the PaprE and P43 promoters and the corresponding 5' untranslated regions revealed great differences in the production of the recently discovered β-galactosidase from Paenibacillus wnnyii. Expression controlled by the PaprE promoter yielded a significantly higher activity of 2515 µkat/L, compared to 56 µkat/L with the P43 promoter. Modifications on the PaprE core promoter region or the spacer, the sequence between the Shine-Dalgarno sequence and the start codon, did not improve β-galactosidase production. Since the aprE 5' untranslated region contributes to a high mRNA stability, it was incorporated into the P43 construct to determine whether mRNA stability is responsible for the differences observed in β-galactosidase production. Interestingly, mRNA stability was significantly improved and led to a nearly 50-fold higher β-galactosidase production of 2756 µkat/L. This strategy was successfully validated by the expression of two other enzymes: the cellobiose-2-epimerase from Caldicellulosiruptor saccharolyticus and the β-glucosidase from Pyrococcus furiosus. These findings underscored the crucial role of post-transcriptional regulation and emphasized mRNA stability as a key role in recombinant enzyme production in B. subtilis 007.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Martin Heider
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
3
|
Bechtel A, Seitl I, Pross E, Hetzel F, Keutgen M, Fischer L. Recombinant production of Paenibacillus wynnii β-galactosidase with Komagataella phaffii. Microb Cell Fact 2024; 23:263. [PMID: 39367390 PMCID: PMC11452983 DOI: 10.1186/s12934-024-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The β-galactosidase from Paenibacillus wynnii (β-gal-Pw) is a promising candidate for lactose hydrolysis in milk and dairy products, as it has a higher affinity for the substrate lactose (low KM value) compared to industrially used β-galactosidases and is not inhibited by the hydrolysis-generated product D-galactose. However, β-gal-Pw must firstly be produced cost-effectively for any potential industrial application. Accordingly, the yeast Komagataella phaffii was chosen to investigate its feasibility to recombinantly produce β-gal-Pw since it is approved for the regulated production of food enzymes. The aim of this study was to find the most suitable way to produce the β-gal-Pw in K. phaffii either extracellularly or intracellularly. RESULTS Firstly, 11 different signal peptides were tested for extracellular production of β-gal-Pw by K. phaffii under the control of the constitutive GAP promoter. None of the signal peptides resulted in a secretion of β-gal-Pw, indicating problems within the secretory pathway of this enzyme. Therefore, intracellular β-gal-Pw production was investigated using the GAP or methanol-inducible AOX1 promoter. A four-fold higher volumetric β-galactosidase activity of 7537 ± 66 µkatoNPGal/Lculture was achieved by the K. phaffii clone 27 using the AOX1 promoter in fed-batch bioreactor cultivations, compared to the clone 5 using the GAP promoter. However, a two-fold higher specific productivity of 3.14 ± 0.05 µkatoNPGal/gDCW/h was achieved when using the GAP promoter for β-gal-Pw production compared to the AOX1 promoter. After partial purification, a β-gal-Pw enzyme preparation with a total β-galactosidase activity of 3082 ± 98 µkatoNPGal was obtained from 1 L of recombinant K. phaffii culture (using AOX1 promoter). CONCLUSION This study showed that the β-gal-Pw was produced intracellularly by K. phaffii, but the secretion was not achieved with the signal peptides chosen. Nevertheless, a straightforward approach to improve the intracellular β-gal-Pw production with K. phaffii by using either the GAP or AOX1 promoter in bioreactor cultivations was demonstrated, offering insights into alternative production methods for this enzyme.
Collapse
Affiliation(s)
- Anna Bechtel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Frank Hetzel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Mario Keutgen
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Su CC, Zhang Z, Lyu M, Cui M, Yu EW. Cryo-EM structures of the human band 3 transporter indicate a transport mechanism involving the coupled movement of chloride and bicarbonate ions. PLoS Biol 2024; 22:e3002719. [PMID: 39167625 PMCID: PMC11338459 DOI: 10.1371/journal.pbio.3002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/20/2024] [Indexed: 08/23/2024] Open
Abstract
The band 3 transporter is a critical integral membrane protein of the red blood cell (RBC), as it is responsible for catalyzing the exchange of bicarbonate and chloride anions across the plasma membrane. To elucidate the structural mechanism of the band 3 transporter, detergent solubilized human ghost membrane reconstituted in nanodiscs was applied to a cryo-EM holey carbon grid to define its composition. With this approach, we identified and determined structural information of the human band 3 transporter. Here, we present 5 different cryo-EM structures of the transmembrane domain of dimeric band 3, either alone or bound with chloride or bicarbonate. Interestingly, we observed that human band 3 can form both symmetric and asymmetric dimers with a different combination of outward-facing (OF) and inward-facing (IF) states. These structures also allow us to obtain the first model of a human band 3 molecule at the IF conformation. Based on the structural data of these dimers, we propose a model of ion transport that is in favor of the elevator-type mechanism.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Senger J, Seitl I, Pross E, Fischer L. Secretion of the cytoplasmic and high molecular weight β-galactosidase of Paenibacillus wynnii with Bacillus subtilis. Microb Cell Fact 2024; 23:170. [PMID: 38867249 PMCID: PMC11167759 DOI: 10.1186/s12934-024-02445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS In this study, the cytoplasmic and 120 kDa β-galactosidase of Paenibacillus wynnii (β-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the β-gal-Pw gene led to an increase in extracellular β-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular β-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular β-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION For the first time, the β-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
6
|
Ambe LA, Limunga E, Mbah CE, Adela N, Eric N, Ngoe M, Sone B, Lochnit G, Tachu JB, Wanji S, Taubert A, Hermosilla C, Kamena F. Identification and Characterization of Onchocerca volvulus Heat Shock Protein 70 ( OvHSP70) as Novel Diagnostic Marker of Onchocerciasis in Human Urine. Pathogens 2024; 13:293. [PMID: 38668248 PMCID: PMC11053476 DOI: 10.3390/pathogens13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/29/2024] Open
Abstract
Despite several decades of mass drug administration and elimination-related activities, human onchocerciasis still represents a major parasitic threat in endemic regions. Among the challenges encountered by the elimination program is the lack of a suitable diagnostic tool that is accurate and non-invasive. Currently used methods are either invasive or not suitable for monitoring large numbers of patients. Herein, we describe the identification and characterization of Onchocerca volvulus heat shock protein 70 (OvHSP70) as a novel diagnostic biomarker for human onchocerciasis, which can directly be detected in urine samples of infected patients. This nematode-specific antigen was identified through LC-MS after differential SDS-PAGE using urine-derived protein extracts from O. volvulus-infected patients in Cameroon. Polyclonal antibodies generated in rabbits after cloning and expression of OvHSP70 in Escherichia coli reliably differentiated between urine samples from infected- and uninfected patients in a hypoendemic area of human onchocerciasis. These results provide an excellent basis for further development of a non-invasive and scalable diagnostic assay for human onchocerciasis using urine samples. Such a urine-based diagnostic assay will be of major importance for the elimination program of human onchcerciasis in endemic countries.
Collapse
Affiliation(s)
- Lum Abienwi Ambe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Elisabeth Limunga
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Clarisse Engowei Mbah
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Ngwewondo Adela
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaounde P.O. Box 13033, Cameroon; (C.E.M.); (N.A.)
| | - Ndumu Eric
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Martha Ngoe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Bertrand Sone
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Julius Babila Tachu
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon;
- Research Foundation in Tropical Disease and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Anja Taubert
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (E.L.); (N.E.); (M.N.); (B.S.); (J.B.T.)
| |
Collapse
|
7
|
Sharma R, Ungar D, Dyson E, Rimmer S, Chechik V. Functional magnetic nanoparticles for protein delivery applications: understanding protein-nanoparticle interactions. NANOSCALE 2024; 16:2466-2477. [PMID: 38205681 DOI: 10.1039/d3nr04544g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Iron oxide nanoparticles (IONPs) surface functionalised with thermo-responsive polymers can encapsulate therapeutic proteins and release them upon heating with an alternating magnetic field above the lower critical solution temperature (LCST). In order to make this delivery system clinically-relevant, we prepared IONPs coated with poly-N-isopropylmethacrylamide (PNIPMAM), a polymer with LCST above human body temperature. The optimal polymer chain length and nanoparticle size to achieve LCST of ca. 45 °C were 19 kDa PNIPMAM and 16 nm IONPs. The PNIPMAM-coated IONPs could encapsulate a range of proteins which were released upon heating above LCST in the presence of a competitor protein or serum. A small amount of encapsulated protein leakage was observed below LCST. The efficiency of protein encapsulation and release was correlated with molecular weight and glycosylation state of the proteins. Magnetic heating resulted in a faster protein release as compared to conventional heating without significant temperature increase of the bulk solution.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, University of York, UK.
| | | | - Edward Dyson
- Polymer and Biomaterials Chemistry Laboratories, University of Bradford, UK
| | - Stephen Rimmer
- Polymer and Biomaterials Chemistry Laboratories, University of Bradford, UK
| | | |
Collapse
|
8
|
Vungutur V, Yu S, McCabe S, Fung C, Zhao N. A simple and highly reproducible method for the detection of erythrocyte membrane ZIP metal transporters by immunoblotting. Methods Enzymol 2023; 687:87-102. [PMID: 37666640 PMCID: PMC10755855 DOI: 10.1016/bs.mie.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Manganese is one of the essential trace elements found in erythrocytes. Metal transporters situated on the plasma membrane generally facilitate the movement of manganese into and out of cells. This study aims at determining whether two recently discovered manganese importers, ZIP8 and ZIP14, are located in the erythrocyte membrane. We outline a simple, effective and repeatable method for the isolation of erythrocyte membrane from a minimum of 50 µL mouse blood, followed by the identification of ZIP metal transporters using immunoblotting. Our results revealed that ZIP8 is expressed within the erythrocyte membrane, in contrast to ZIP14 which is not identified using immunoblotting approach. A direct measurement of the ZIP8 protein expression in erythrocyte membranes could provide valuable information for further analyzing its biological function.
Collapse
Affiliation(s)
- Varalakshmi Vungutur
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Suetmui Yu
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Shannon McCabe
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Caitlin Fung
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
9
|
Toma L, Vignali G, Maffioli E, Tambuzzi S, Giaccari R, Mattarozzi M, Nonnis S, Milioli M, Franceschetti L, Paredi G, Negri A, Riccardi B, Cattaneo C, Careri M, Tedeschi G, Bruno S. Mass spectrometry-based proteomic strategy for ecchymotic skin examination in forensic pathology. Sci Rep 2023; 13:6116. [PMID: 37059833 PMCID: PMC10104867 DOI: 10.1038/s41598-023-32520-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics has recently attracted the attention from forensic pathologists. This work is the first report of the development of a shotgun bottom-up proteomic approach based on rapid protein extraction and nano-liquid chromatography/high-resolution mass spectrometry applied to full-thickness human skin for the differential analysis of normal and ecchymotic tissues to identify new biomarkers for bruise characterization and dating. We identified around 2000 proteins from each pooled extract. The method showed excellent precision on independent replicates, with Pearson correlation coefficients always higher than 95%. Glycophorin A, a known biomarker of vital wounds from immunochemical studies, was identified only in ecchymotic tissues, as confirmed by Western blotting analysis. This finding suggests that this protein can be used as a MS-detectable biomarker of wound vitality. By focusing on skin samples from individuals with known wound dating, besides Glycophorin A, other proteins differentially expressed in ecchymotic samples and dependant on wound age were identified, although further analysis on larger datasets are needed to validate these findings. This study paves the way for an in-depth investigation of the potential of MS-based techniques for wound examination in forensic pathology, overcoming the limitations of immunochemical assays.
Collapse
Affiliation(s)
- Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Giulia Vignali
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy
| | - Stefano Tambuzzi
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Roberta Giaccari
- Food and Drug Department, University of Parma, 43124, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy.
- CRC Innovation for Well-Being and Environment (I-WE), University of Milan, 20133, Milan, Italy.
| | - Marco Milioli
- Department of Pharmacokinetic, Biochemistry and Metabolism, Global Research and Preclinical Development, Chiesi Farmaceutici Spa, 43122, Parma, Italy
| | - Lorenzo Franceschetti
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gianluca Paredi
- Food and Drug Department, University of Parma, 43124, Parma, Italy
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy
| | - Benedetta Riccardi
- Department of Pharmacokinetic, Biochemistry and Metabolism, Global Research and Preclinical Development, Chiesi Farmaceutici Spa, 43122, Parma, Italy
| | - Cristina Cattaneo
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy
- CRC Innovation for Well-Being and Environment (I-WE), University of Milan, 20133, Milan, Italy
| | - Stefano Bruno
- Food and Drug Department, University of Parma, 43124, Parma, Italy
| |
Collapse
|
10
|
Lee CH, Tang JC, Hendricks NG, Anvari B. Proteomes of Micro- and Nanosized Carriers Engineered from Red Blood Cells. J Proteome Res 2023; 22:896-907. [PMID: 36792548 PMCID: PMC10756254 DOI: 10.1021/acs.jproteome.2c00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Red blood cell (RBC)-derived systems offer a potential platform for delivery of biomedical cargos. Although the importance of specific proteins associated with the biodistribution and pharmacokinetics of these particles has been recognized, it remains to be explored whether some of the key transmembrane and cytoskeletal proteins responsible for immune-modulatory effects and mechanical integrity of the particles are retained. Herein, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quantitative tandem mass tag mass spectrometry in conjunction with bioinformatics analysis, we have examined the proteomes of micro- and nanosized erythrocyte ghosts doped with indocyanine green and compared them with those of RBCs. We identified a total of 884 proteins in each set of RBCs, micro-, and nanosized particles, of which 8 and 45 proteins were expressed at significantly different relative abundances when comparing micro-sized particles vs RBCs and nanosized particles vs RBCs, respectively. We found greater differences in relative abundances of some mechano-modulatory proteins, such as band 3 and protein 4.2, and immunomodulatory proteins like CD44, CD47, and CD55 in nanosized particles as compared to RBCs. Our findings highlight that the methods utilized in fabricating RBC-based systems can induce substantial effects on their proteomes. Mass spectrometry data are available at ProteomeXchange with the identifier PXD038780.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jack C Tang
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Nathan G Hendricks
- Institute for Integrative Genome Biology, Proteomics Core, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
11
|
da Camara N, Dubery IA, Piater LA. Proteome Analysis of Nicotiana tabacum Cells following Isonitrosoacetophenone Treatment Reveals Defence-Related Responses Associated with Priming. PLANTS (BASEL, SWITZERLAND) 2023; 12:1137. [PMID: 36903995 PMCID: PMC10005295 DOI: 10.3390/plants12051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and metabolomic studies of various INAP-treated plant systems have provided substantial insight into this compound's defence-inducing and priming capabilities. To complement previous 'omics' work in this regard, a proteomic approach of time-dependent responses to INAP was followed. As such, Nicotiana tabacum (N. tabacum) cell suspensions were induced with INAP and changes monitored over a 24-h period. Protein isolation and proteome analysis at 0, 8, 16 and 24 h post-treatment were performed using two-dimensional electrophoresis followed by the gel-free eight-plex isobaric tags for relative and absolute quantitation (iTRAQ) based on liquid chromatography and mass spectrometry. Of the identified differentially abundant proteins, 125 were determined to be significant and further investigated. INAP treatment elicited changes to the proteome that affected proteins from a wide range of functional categories: defence, biosynthesis, transport, DNA and transcription, metabolism and energy, translation and signalling and response regulation. The possible roles of the differentially synthesised proteins in these functional classes are discussed. Results indicate up-regulated defence-related activity within the investigated time period, further highlighting a role for proteomic changes in priming as induced by INAP treatment.
Collapse
|
12
|
Meng J, Wang YY, Hao YP. Application of two glycosylated Lactobacillus surface layer proteins in coating cationic liposomes. World J Microbiol Biotechnol 2023; 39:108. [PMID: 36856865 DOI: 10.1007/s11274-023-03549-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The ability of isolated surface layer proteins (SLPs) to reassemble on suitable surfaces enables the application of SLPs in various fields of nanotechnology. In this work, SLPs from Lactobacillus buchneri BNCC 187,964 and L. kefir BNCC 190,565 were extracted and verified as glycosylated proteins. They were applied to coat on the surface of cationic liposomes. The absorption of the two SLPs on liposomes induced the zeta potential reduction and particle size increase. The two kinds of SLP-coated liposomes demonstrated better thermal, light and pH stability than the control liposomes. And the L. kefir SLP showed better protective effects than the L. buchneri SLP. Moreover, both of the SLPs could endow liposomes with the function of binding ferritin as observed by transmission electron microscope. Fourier transform infrared spectroscopy illustrated that the interaction between the two SLPs and liposomes was similar. The recrystallization of the two SLPs on the liposomes might drive the lipid into a higher order state and hydrogen bonds were formed between the two SLPs and the liposomes. All the findings demonstrated that L. kefir SLP and L. buchneri SLP had great potential to be explored as effective coating agents to improve the stability and function of cationic liposomes.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.Yes, all have been checked.
Collapse
Affiliation(s)
- Jun Meng
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China.
| | - Yan-Yang Wang
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China
| | - Yun-Peng Hao
- College of Food Science and Technology, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Beltran JL, McGrath LG, Caruso S, Bain RK, Hendrix CE, Kamran H, Johnston HG, Collings RM, Henry MCN, Abera TAL, Donoso VA, Carriker EC, Thurtle-Schmidt BH. Borate Transporters and SLC4 Bicarbonate Transporters Share Key Functional Properties. MEMBRANES 2023; 13:235. [PMID: 36837738 PMCID: PMC9959716 DOI: 10.3390/membranes13020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Borate transporters are membrane transport proteins that regulate intracellular borate levels. In plants, borate is a micronutrient essential for growth but is toxic in excess, while in yeast, borate is unnecessary for growth and borate export confers tolerance. Borate transporters share structural homology with human bicarbonate transporters in the SLC4 family despite low sequence identity and differences in transported solutes. Here, we characterize the S. cerevisiae borate transporter Bor1p and examine whether key biochemical features of SLC4 transporters extend to borate transporters. We show that borate transporters and SLC4 transporters share multiple properties, including lipid-promoted dimerization, sensitivity to stilbene disulfonate-derived inhibitors, and a requirement for an acidic residue at the solute binding site. We also identify several amino acids critical for Bor1p function and show that disease-causing mutations in human SLC4A1 will eliminate in vivo function when their homologous mutations are introduced in Bor1p. Our data help elucidate mechanistic features of Bor1p and reveal significant functional properties shared between borate transporters and SLC4 transporters.
Collapse
|
14
|
Mittermeier F, Hafner N, XypoliaVasila K, Weuster‐Botz D. Co‐Cultivation of
Aspergillus niger
and
Trichoderma reesei
Enables Efficient Production of Enzymes for the Hydrolysis of Wheat Bran. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fabian Mittermeier
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Nathalie Hafner
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Konstantina XypoliaVasila
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Dirk Weuster‐Botz
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| |
Collapse
|
15
|
Vaisey G, Banerjee P, North AJ, Haselwandter CA, MacKinnon R. Piezo1 as a force-through-membrane sensor in red blood cells. eLife 2022; 11:e82621. [PMID: 36515266 PMCID: PMC9750178 DOI: 10.7554/elife.82621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Piezo1 is the stretch activated Ca2+ channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave 'dimple'. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by 'curvature coupling' between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell.
Collapse
Affiliation(s)
- George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Alison J North
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
16
|
Vercellati C, Marcello AP, Fattizzo B, Zaninoni A, Seresini A, Barcellini W, Bianchi P, Fermo E. Effect of primary lesions in cytoskeleton proteins on red cell membrane stability in patients with hereditary spherocytosis. Front Physiol 2022; 13:949044. [PMID: 36035481 PMCID: PMC9413078 DOI: 10.3389/fphys.2022.949044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
We investigated by targeted next generation sequencing the genetic bases of hereditary spherocytosis in 25 patients and compared the molecular results with the biochemical lesion of RBC membrane obtained by SDS-PAGE analysis. The HS diagnosis was based on available guidelines for diagnosis of congenital hemolytic anemia, and patients were selected because of atypical clinical presentation or intra-family variability, or because presented discrepancies between laboratory investigation and biochemical findings. In all patients but 5 we identified pathogenic variants in SPTA1, SPTB, ANK1, SLC4A1, EPB42 genes able to justify the clinical phenotype. Interestingly, a correspondence between the biochemical lesion and the molecular defect was identified in only 11/25 cases, mostly with band 3 deficiency due to SLC4A1 mutations. Most of the mutations in SPTB and ANK1 gene didn’t hesitate in abnormalities of RBC membrane protein; conversely, in two cases the molecular lesion didn’t correspond to the biochemical defect, suggesting that a mutation in a specific cytoskeleton protein may result in a more complex RBC membrane damage or suffering. Finally, in two cases the HS diagnosis was maintained despite absence of both protein defect and molecular lesion, basing on clinical and family history, and on presence of clear laboratory markers of HS. The study revealed complex relationships between the primary molecular lesion and the final effect in the RBC membrane cytoskeleton, and further underlines the concept that there is not a unique approach to the diagnosis of HS.
Collapse
Affiliation(s)
- Cristina Vercellati
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Anna Paola Marcello
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Bruno Fattizzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Anna Zaninoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Agostino Seresini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Laboratorio Centrale, UOS Laboratorio Genetica Medica, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Paola Bianchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
- *Correspondence: Paola Bianchi,
| | - Elisa Fermo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| |
Collapse
|
17
|
Kettner L, Seitl I, Fischer L. Toward Oral Supplementation of Diamine Oxidase for the Treatment of Histamine Intolerance. Nutrients 2022; 14:nu14132621. [PMID: 35807806 PMCID: PMC9268349 DOI: 10.3390/nu14132621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
A new diamine oxidase (DAO-1) was discovered recently in the yeast Yarrowia lipolytica PO1f and investigated for its histamine degradation capability under simulated intestinal conditions. DAO-1 was formulated together with catalase as a sucrose-based tablet. The latter (9 × 7 mm; 400 mg) contained 690 nkat of DAO-1 activity, which was obtained from a bioreactor cultivation of a genetically modified Y. lipolytica with optimized downstream processing. The DAO-1 tablet was tested in a histamine bioconversion experiment under simulated intestinal conditions in the presence of food constituents, whereby about 30% of the histamine was degraded in 90 min. This amount might already be sufficient to help people with histamine intolerance. Furthermore, it was found that the stability of DAO-1 in a simulated intestinal fluid is influenced distinctively by the presence of a food matrix, indicating that the amount and type of food consumed affect the oral supplementation with DAO. This study showed for the first time that a microbial DAO could have the potential for the treatment of histamine intolerance by oral supplementation.
Collapse
|
18
|
Paolo C, Andrea G, Elli FM, Rossella G, Erika P, Milena B, Thiele S, Francesca G, Giovanna M, Franco A. A complex pheotype in a girl with a novel heterozygous missense variant (p.Ile56Phe) of the GNAS gene. Orphanet J Rare Dis 2022; 17:83. [PMID: 35197096 PMCID: PMC8867619 DOI: 10.1186/s13023-022-02252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GNAS is a complex gene that encodes Gsα, a signaling protein that triggers a complex network of pathways. Heterozygous inactivating mutations in Gsα-coding GNAS exons cause hormonal resistance; on the contrary, activating mutations in Gsα result in constitutive cAMP stimulation. Recent research has described a clinical condition characterized by both gain and loss of Gsα function, due to a heterozygous de novo variant of the maternal GNAS allele. PATIENTS AND METHODS We describe a girl with a complex combination of clinical signs and a new heterozygous GNAS variant. For the molecular analysis of GNAS gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples. In silico analysis was performed to predict the possible in vivo effect of the detected novel genetic variant. The activity of Gsα protein was in vitro analyzed from samples of erythrocyte membranes, recovered from heparinized blood samples. RESULTS We found a new heterozygous missense c.166A > T-(p.Ile56Phe) GNAS variant in exon 2, inherited from the mother that determined a reduced activity of 50% of Gsα protein function. The analysis of her parents showed a 20-25% reduction in Gsα protein activity in the mother and a normal function in the father. Clinically our patient presented a multisystemic disorder characterized by hyponatremia compatible with a nephrogenic syndrome of inappropriate antidiuresis, subclinical hyperthyroidism, subclinical hypercortisolism, precocious thelarche and pubarche and congenital bone abnormalities. CONCLUSIONS This is the first time that the new variant c.166A > T (p.Ile56Phe) on exon 2 of GNAS gene, originated on maternal allele, has been described as probable cause of a multisystemic disorder. Although the mutation is associated with a reduced activity of the function of Gsα protein, this unusual phenotype on the contrary suggests a mild functional gain.
Collapse
Affiliation(s)
- Cavarzere Paolo
- Pediatric Division, Department of Pediatrics, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| | - Gastaldi Andrea
- Pediatric Division, Department of Pediatrics, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Francesca Marta Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaudino Rossella
- Pediatric Division, Department of Pediatrics, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Peverelli Erika
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brugnara Milena
- Pediatric Division, Department of Pediatrics, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Susanne Thiele
- Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Luebeck, Germany
| | - Granata Francesca
- General Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mantovani Giovanna
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antoniazzi Franco
- Pediatric Division, Department of Pediatrics, University Hospital of Verona, Piazzale Stefani 1, 37126, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Regional Center for the Diagnosis and Treatment of Children and Adolescents Rare Skeletal Disorders. Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Ma S, Tang L, Wu C, Tang H, Pu X, Niu J. Study on Management of Blood Transfusion Therapy in Patients with Hereditary Spherocytosis. Appl Bionics Biomech 2022; 2022:6228965. [PMID: 35126660 PMCID: PMC8816590 DOI: 10.1155/2022/6228965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hereditary spherocytosis (HS) is a chronic hemolytic disorder caused by inherited defects in the red blood cell membrane. This study discusses the treatment strategy for the decline in hemoglobin level in three HS probands with moderately severe or severe hemolysis and summarizes the appropriate laboratory tests that help improve clinical management of blood transfusion in HS patients. Three probands who were diagnosed with HS in our hospital and their family members were included in this study. Clinical data of the three families were reviewed to summarize their hematopoietic characteristics. DNA from all family members of the 3 HS probands was amplified by polymerase chain reaction (PCR) and sequenced by the Sanger method to assess genetic relation for HS. Based on the sequencing results, the type of mutated membrane protein in each proband was analyzed using the eosin-5'-maleimide (EMA) binding test and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The hemoglobin level was reduced in all 3 probands after different levels of infection. The fluorescence of EMA-labeled red blood cell (RBC) was decreased. DNA sequencing showed that His54Pro, Leu1858Val, and 6531-12C>T compound heterozygous mutations were present in the SPTA1 gene of patient I-1, Arg344Gln and c.609+86G>A heterozygous mutations were present in the SLC4A1 gene of patient II-1, and Leu2032Pro homozygous mutation was present in the SPTB gene of patient III-1. SDS-PAGE results demonstrated that the concentration of band 3 was reduced in II-1, whereas the levels of the corresponding mutant proteins in the other probands were unchanged. The family members of the respective patients presented mutations in major genes causing HS. The Leu2032Pro mutation identified in patient III-1 is a new missense mutation of the SPTB gene in the Chinese population that has never been reported in literature previously. The presence or absence of acute or chronic infections is a critical deciding factor for the treatment and clinical management of HS patient via blood transfusion. For patients with infections, hemoglobin concentration can be restored once the infection is controlled, thus obviating the need for proper infection control before blood transfusion.
Collapse
Affiliation(s)
- Shiyue Ma
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin City 541001, Guangxi Zhuang Autonomous Region, China
| | - Lingjian Tang
- Department of Rehabilitation Medicine, Affiliated Hospital of Guilin Medical University, Guilin City 541001, Guangxi Zhuang Autonomous Region, China
| | - Chaoli Wu
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin City 541001, Guangxi Zhuang Autonomous Region, China
| | - Hui Tang
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin City 541001, Guangxi Zhuang Autonomous Region, China
| | - Xue Pu
- Department of Laboratory Medicine, Affiliated Hospital of Guilin Medical University, Guilin City 541001, Guangxi Zhuang Autonomous Region, China
| | - Jinhong Niu
- Department of Medical Administration, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City 541002, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
20
|
Berzosa M, Pastor Y, Gamazo C, Irache JM. Development of a Bacterial Nanoparticle Vaccine Against Escherichia coli. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:357-365. [PMID: 34914057 DOI: 10.1007/978-1-0716-1884-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Currently, different subunit-based vaccine strategies against enterobacteria are being investigated. Among those, bacterial outer membrane vesicles (OMV) are promising candidates because of their immunogenic properties and safety. In order to develop an effective vaccine against this kind of pathogens, it is important to induce both systemic and mucosal immunity. For that reason, the oral route of administration would be an adequate option; although it still represents a challenge due to the particular and harsh conditions of the gut. To overcome these inconveniences, different strategies have been proposed, including the use of polymeric nanoparticles based on the copolymer between methyl vinyl ether and maleic anhydride (Gantrez AN). In the present work, a simple procedure for the preparation of heat-induced OMV (named as HT) obtained from Enterotoxigenic Escherichia coli (ETEC) loaded into these poly(anhydride) nanoparticles is described.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, Pamplona, Spain
| | - Yadira Pastor
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, Pamplona, Spain.
| | - Juan Manuel Irache
- Department of Technology and Pharmaceutical Chemistry, University of Navarra, Pamplona, Spain
| |
Collapse
|
21
|
Jansing J, Bortesi L. Knockout of Glycosyltransferases in Nicotiana benthamiana by Genome Editing to Improve Glycosylation of Plant-Produced Proteins. Methods Mol Biol 2022; 2480:241-284. [PMID: 35616867 DOI: 10.1007/978-1-0716-2241-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plants are excellent production hosts for the in vivo synthesis of complex glycosylated proteins such as antibodies. The plant N-glycosylation machinery is largely similar to that found in humans and other mammalian organisms, which is an advantage in comparison to microbial production systems in particular. However, there are some differences in the identity and chemical linkage of the sugars that plants and mammals use to build their N-glycans. These differences can affect important properties of glycosylated proteins produced recombinantly in plants. Here we describe the complete procedure of multiplex targeted gene knockout with CRISPR/Cas9 in Nicotiana benthamiana in order to eliminate the undesirable sugars α-1,3-fucose and β-1,2-xylose from the plant N-glycans. The workflow includes target gene identification, guide RNA design and testing, plant transformation, and the analysis of the regenerated transgenic plants by Sanger sequencing, immunoblot, and mass-spectrometric analysis of recombinant and endogenous proteins.
Collapse
Affiliation(s)
- Julia Jansing
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands.
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands
| |
Collapse
|
22
|
Kettner L, Braun C, Seitl I, Pross E, Fischer L. Production and characterization of a new diamine oxidase from Yarrowia lipolytica. J Biotechnol 2021; 340:39-46. [PMID: 34474093 DOI: 10.1016/j.jbiotec.2021.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
A putative diamine oxidase (DAO) from Yarrowia lipolytica PO1f (DAO-1) was homologously recombinantly integrated into the genome of Y. lipolytica PO1f using the CRISPR-Cas9 system for the subsequent DAO production in a bioreactor. Thereby, it was proven that the DAO-1 produced was indeed a functional DAO. The cultivation yielded 2343 ± 98 nkat/Lculture with a specific DAO activity of 1301 ± 54.2 nkat/gprotein, which was a 93-fold increase of specific DAO activity compared to the native Y. lipolytica PO1f DAO-1 production. The DAO-1 showed a broad substrate selectivity with tyramine, histamine, putrescine and cadaverine being the most favored substrates. It was most active at 40 °C, pH 7.2 in Tris-HCl buffer (50 mM) (with histamine as substrate), which is comparable to human and porcine DAOs. The affinity of DAO-1 towards histamine was lower compared to mammalian DAOs (Km = 2.3 ± 0.2 mM). Nevertheless, DAO-1 degraded around 75% of the histamine used in a bioconversion experiment with a food-relevant concentration of 150 mg/L. With its broad selectivity for the most relevant biogenic amines in foods, DAO-1 from Y. lipolytica PO1f is an interesting enzyme for application in the food industry for the degradation of biogenic amines.
Collapse
Affiliation(s)
- Lucas Kettner
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Carina Braun
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Ines Seitl
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Eva Pross
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Lutz Fischer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany.
| |
Collapse
|
23
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
24
|
Dudziak A, Engelhard L, Bourque C, Klink BU, Rombaut P, Kornakov N, Jänen K, Herzog F, Gatsogiannis C, Westermann S. Phospho-regulated Bim1/EB1 interactions trigger Dam1c ring assembly at the budding yeast outer kinetochore. EMBO J 2021; 40:e108004. [PMID: 34313341 PMCID: PMC8441410 DOI: 10.15252/embj.2021108004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa‐sized microtubule‐embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi‐orientation. We show that Dam1c and the general microtubule plus end‐associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c‐Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c‐Bim1 binding by relieving an intramolecular inhibition of the Dam1 C‐terminus. In addition, Bim1 recruits Bik1/CLIP‐170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end‐on attachments are formed during the process of attachment error correction.
Collapse
Affiliation(s)
- Alexander Dudziak
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lena Engelhard
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Cole Bourque
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Björn Udo Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Pascaline Rombaut
- Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Nikolay Kornakov
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Center of Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Badior KE, Casey JR. Large conformational dynamics in Band 3 protein: Significance for erythrocyte senescence signalling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183678. [PMID: 34175296 DOI: 10.1016/j.bbamem.2021.183678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Band 3 (Anion Exchanger 1, AE1), the predominant protein of erythrocyte membranes, facilitates Cl-/HCO3- exchange and anchors the plasma membrane to the cytoskeleton. The Band 3 crystal structure revealed the amino acid 812-830 region as intracellular, conflicting with protein chemical data that suggested extracellular disposition. Further, circulating senescent cell auto-antibody that cannot enter erythrocytes, binds two regions of Band 3: residues 538-554 and 812-830. To reconcile this discrepancy, we assessed localization of residues 812-830 with Band 3 expressed in HEK293 cells and human erythrocytes, using chemical labeling probes and an antibody against residues 812-830. Antibody and chemical probes revealed reorientation of 812-830 region between extracellular and intracellular. This dramatic conformational change is an intrinsic property of the Band 3 molecule, occurring when expressed in HEK293 cells and without the damage that occurs during erythrocyte circulation. Conditions used to crystallize Band 3 for structural determination did not alter conformational dynamics. Collectively, these data reveal large Band 3 conformational dynamics localized to a region previously identified as an erythrocyte senescence epitope. Surface exposure of the senescence epitope (812-830), limited by conformational dynamics, may act as the "molecular clock" in erythrocyte senescence.
Collapse
Affiliation(s)
- Katherine E Badior
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
26
|
Fermo E, Vercellati C, Marcello AP, Keskin EY, Perrotta S, Zaninoni A, Brancaleoni V, Zanella A, Giannotta JA, Barcellini W, Bianchi P. Targeted Next Generation Sequencing and Diagnosis of Congenital Hemolytic Anemias: A Three Years Experience Monocentric Study. Front Physiol 2021; 12:684569. [PMID: 34093240 PMCID: PMC8176228 DOI: 10.3389/fphys.2021.684569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) are heterogeneous and rare disorders caused by alterations in structure, membrane transport, metabolism, or red blood cell production. The pathophysiology of these diseases, in particular the rarest, is often poorly understood, and easy-to-apply tools for diagnosis, clinical management, and patient stratification are still lacking. We report the 3-years monocentric experience with a 43 genes targeted Next Generation Sequencing (t-NGS) panel in diagnosis of CHAs; 122 patients from 105 unrelated families were investigated and the results compared with conventional laboratory pathway. Patients were divided in two groups: 1) cases diagnosed with hematologic investigations to be confirmed at molecular level, and 2) patients with unexplained anemia after extensive hematologic investigation. The overall sensitivity of t-NGS was 74 and 35% for families of groups 1 and 2, respectively. Inside this cohort of patients we identified 26 new pathogenic variants confirmed by functional evidence. The implementation of laboratory work-up with t-NGS increased the number of diagnoses in cases with unexplained anemia; cytoskeleton defects are well detected by conventional tools, deserving t-NGS to atypical cases; the diagnosis of Gardos channelopathy, some enzyme deficiencies, familial siterosterolemia, X-linked defects in females and other rare and ultra-rare diseases definitely benefits of t-NGS approaches.
Collapse
Affiliation(s)
- Elisa Fermo
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Vercellati
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Paola Marcello
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ebru Yilmaz Keskin
- Department of Pediatric Hematology and Oncology, Suleyman Demirel University, Isparta, Turkey
| | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Anna Zaninoni
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Brancaleoni
- UOC Medicina Generale, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Juri A Giannotta
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
27
|
Satchwell TJ, Toye AM. Band 3, an essential red blood cell hub of activity. Haematologica 2021; 106:2792-2793. [PMID: 33979993 PMCID: PMC8561271 DOI: 10.3324/haematol.2021.278643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Timothy J Satchwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol. BS8 1TD. UK; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol. BS8 1TD. UK; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol. BS34 7QH
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol. BS8 1TD. UK; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol. BS8 1TD. UK; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol. BS34 7QH.
| |
Collapse
|
28
|
Interaction of silver nanoparticles with catechol O-methyltransferase: Spectroscopic and simulation analyses. Biochem Biophys Rep 2021; 26:101013. [PMID: 34027136 PMCID: PMC8131974 DOI: 10.1016/j.bbrep.2021.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β−structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme. A recombinant soluble human catechol O-methyltransferase was inhibited by silver nanoparticles. Inhibition by AgNPs was concentration and size dependent. The binding mechanism was through spontaneous static quenching, driven by positive ΔS, and negative ΔH and ΔG. Stern-Volmer analysis suggested binding of AgNPs with Trp143. In silico indicate relaxation of β-sheets and the interaction of AgNPs with 6 amino acids in the enzyme’s helical structures.
Collapse
|
29
|
Forensic Application of Monoclonal Anti-Human Glycophorin A Antibody in Samples from Decomposed Bodies to Establish Vitality of the Injuries. A Preliminary Experimental Study. Healthcare (Basel) 2021; 9:healthcare9050514. [PMID: 33946627 PMCID: PMC8145726 DOI: 10.3390/healthcare9050514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/04/2022] Open
Abstract
Glycophorins are an important group of red blood cell (RBC) transmembrane proteins. Monoclonal antibodies against GPA are employed in immunohistochemical staining during post-mortem examination: Through this method, it is possible to point out the RBC presence in tissues. This experimental study aims to investigate anti-GPA immunohistochemical staining in order to evaluate the vitality of the lesion from corpses in different decomposition state. Six cases were selected, analyzing autopsies’ documentation performed by the Institute of Legal Medicine of Rome in 2010–2018: four samples of fractured bones and three samples of soft tissues. For the control case, the fracture region of the femur was sampled. The results of the present study confirm the preliminary results of other studies, remarking the importance of the GPA immunohistochemical staining to highlight signs of survival. Moreover, this study suggests that the use of this technique should be routinely applied in cases of corpses with advanced putrefaction phenomena, even when the radiological investigation is performed, the macroscopic investigation is inconclusive, the H&E staining is not reliable. This experimental application demonstrated that the use of monoclonal antibody anti-human GPA on bone fractures and soft tissues could be important to verify whether the lesion is vital or not.
Collapse
|
30
|
Ansari S, Mousavi A, Safarnejad MR, Farrokhi N, Alavi SM, Schillberg S, Nölke G. Selection and characterization of two monoclonal antibodies specific for the Aspergillus flavus major antigenic cell wall protein Aflmp1. Fungal Biol 2021; 125:621-629. [PMID: 34281655 DOI: 10.1016/j.funbio.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Aspergillus flavus is a major fungal pathogen of plants and an opportunistic pathogen of humans. In addition to the direct impact of infection, it produces immunosuppressive and carcinogenic aflatoxins. The early detection of A. flavus is therefore necessary to diagnose and monitor fungal infection, to prevent aflatoxin contamination of food and feed, and for effective antifungal therapy. Aspergillus-specific monoclonal antibodies (mAbs) are promising as diagnostic and therapeutic reagents for the tracking and treatment of Aspergillus infections, respectively. However, A. flavus has a complex cell wall composition and dynamic morphology, hindering the discovery of mAbs with well-characterized targets. Here we describe the generation and detailed characterization of mAb5.52 (IgG2aκ) and mAb17.15 (IgG1κ), which bind specifically to the highly immunogenic cell wall antigen A. flavus mannoprotein 1 (Aflmp1). Both mAbs were generated using hybridoma technology following the immunization of mice with a recombinant truncated version of Aflmp1 (ExD, including the homologous CR4 domain) produced in bacteria. We show that mAb5.52 and mAb17.15 bind specifically to A. flavus and A. parasiticus cell wall fragments (CWFs), with no cross-reaction to CWFs from other fungal pathogens. Immunofluorescence microscopy revealed that both mAbs bind to the surface of Aspergillus hyphae and that mAb17.15 also binds to spores. The epitope for both mAbs is localized within the CR4 region of the Aflmp1 protein. These Aspergillus-specific mAbs may be useful for the early detection of fungal infection in food/feed crops, for serodiagnosis in patients with invasive aspergillosis caused by A. flavus infection and for the development of antibody-expressing disease-resistant crops.
Collapse
Affiliation(s)
- Saeede Ansari
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Amir Mousavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Safarnejad
- Department of Plant Viruses, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mehdi Alavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| |
Collapse
|
31
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
32
|
Protection Conferred by Drinking Water Administration of a Nanoparticle-Based Vaccine against Salmonella Enteritidis in Hens. Vaccines (Basel) 2021; 9:vaccines9030216. [PMID: 33802556 PMCID: PMC8001700 DOI: 10.3390/vaccines9030216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Salmonellosis remains a major medical and an unmet socioeconomic challenge. Worldwide, more than three million deaths per year are associated with Salmonella enterica serovar Enteritidis infections. Although commercially available vaccines for use in poultry exist, their efficacy is limited. We previously described a method for isolating a heat extract (HE) fraction of the cell surface of S. Enteritidis that contained major antigenic complexes immunogenic in hens naturally infected with the bacterium. One single dose of S. Enteritidis’ HE induced protection against lethal salmonellosis in mice. Furthermore, HE encapsulation in nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (PVM/MA), Gantrez AN, improved and prolonged the protection against the disease in mice. We formulated new preparations of Gantrez AN nanoparticles with HE S. Enteritidis and assessed their stability in drinking water and their efficacy in hens after experimental infection. The oral treatment of six-week-old hens with two doses of HE nanoparticles significantly reduced the Salmonella excretion in hens. Due to the effectiveness of the treatment in reducing bacterial excretion, we conclude that HE nanoencapsulation obtained from S. Enteritidis is a viable novel vaccination approach against salmonellosis in farms.
Collapse
|
33
|
Zhang L, Wang H, Li N, Hu P, Zhu Z, Wang W, Song Y, Wen Z, Yu X, Zhang S. Label-Free Mass Spectrometry-Based Plasma Proteomics Identified LY6D, DSC3, CDSN, SERPINB12, and SLURP1 as Novel Protein Biomarkers For Pulmonary Tuberculosis. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666191210105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary Tuberculosis
(PTB).
Background:
Tuberculosis is an ancient infectious disease that remains one of the major global health problems.
Until now, effective, convenient, and affordable methods for diagnosis of PTB were still lacking.
Objective:
This study focused on constructing a label-free LC-MS/MS-based comparative proteomics
between six tuberculosis patients and six healthy controls to identify Differentially Expressed Proteins
(DEPs) in plasma.
Methods:
To reduce the influences of high-abundant proteins, albumin and globulin were removed from
plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free
Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm
SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host
markers were investigated by General Discriminant Analysis (GDA), with Leave-One-Out Cross-
Validation (LOOCV).
Results:
A total of 572 proteins were identified and 549 proteins were quantified. The threshold for
DEPs was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis,
TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D,
DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation,
were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly
classified and original grouped cases correctly classified is greater than or equal to 91.7%.
Conclusion:
We successfully identified five candidate biomarkers for immunodiagnosis of PTB in
plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins
as potential biomarkers for PTB, and be worthy of further validation.
Collapse
Affiliation(s)
- Lu Zhang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Na Li
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Peng Hu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Wei Wang
- Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Zilu Wen
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoli Yu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Zhang
- Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
34
|
Engels B, Heinig U, McElroy C, Meusinger R, Grothe T, Stadler M, Jennewein S. Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate-type sesquiterpenoids. Appl Microbiol Biotechnol 2021; 105:211-224. [PMID: 33191459 PMCID: PMC7778616 DOI: 10.1007/s00253-020-11006-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 11/27/2022]
Abstract
Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering. KEY POINTS: • Protoilludene-type aryl esters are bioactive metabolites produced by Armillaria spp. • The pathway-committing step to these compounds is catalyzed by protoilludene synthase. • We characterized CYP-type enzymes in the cluster and identified novel intermediates.
Collapse
Affiliation(s)
- Benedikt Engels
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Jennewein Biotechnologie GmbH, Maarweg 32, Rheinbreitbach, Germany
| | - Uwe Heinig
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, P.O. Box 26, 7610001, Rehovot, Israel
| | - Christopher McElroy
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Reinhard Meusinger
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Torsten Grothe
- Mibelle Group Biochemistry, Bolimattstrasse 1, 5033, Buchs, Switzerland
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Stefan Jennewein
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
35
|
Paradkar S, Gambhire P. The Role of Cytoskeleton of a Red Blood Cell in Its Deformability. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Pastor Y, Ting I, Berzosa M, Irache JM, Gamazo C. Vaccine Based on Outer Membrane Vesicles Using Hydrogels as Vaccine Delivery System. Methods Mol Biol 2021; 2182:153-160. [PMID: 32894494 DOI: 10.1007/978-1-0716-0791-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple procedure for obtaining outer membrane vesicles from Salmonella enterica and the use of hydrogels as vaccine delivery system is described. A heat treatment in saline solution of whole bacteria rendered the release of outer membrane vesicles containing relevant antigenic components. The immunogenicity of these antigens when administered by the intranasal route may be improved after embedment into hydrogels to increase residence half-time and thus activate the mucosal immune system.
Collapse
Affiliation(s)
- Yadira Pastor
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Isaiah Ting
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Melibea Berzosa
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
37
|
Zemlianskykh NG. [The effect of cryoprotective agents on proteins of the erythrocyte membrane-cytoskeleton complex]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:456-463. [PMID: 33372903 DOI: 10.18097/pbmc20206606456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to evaluate of the effects of glycerol and DMSO, belonging to the endocellular type of cryoprotective agents (CPAs), as well as polyethylene glycol, dextran, sucrose, and mannitol, related to exocellular CPAs, on proteins of the membrane-cytoskeleton complex (MCC) of human erythrocytes at the stage preceding freezing. The assessment of protein modifications was performed by SDS-PAGE using different approaches when preparing samples for analysis. The use of β-mercaptoethanol in the solubilizing buffer showed no changes in the MCC polypeptide profile of erythrocytes preincubated with CPAs thus suggesting good biocompatibility of the studied substances. The use of the cross-linking reagent diamide for assessment of protein modifications did not reveal structural abnormalities that would result in significant changes in the localization of -SH groups and an increase in the production of high-molecular-weight polypeptide complexes identified by SDS-PAGE without β-mercaptoethanol. However, the recognized changes in the electrophoretic mobility of proteins in the area of band 5 in erythrocytes incubated with CPA in the presence of diamide suggest a reorganization of the structural state of actin protofilaments, which can be caused by alterations of actin monomers themselves or initiated by modifications of actin-binding proteins in the presence of CPAs. In addition, an increase in the amount of the protein fraction located between bands 5 and 6 in the MCC profiles of erythrocytes incubated with CPA and diamide was revealed. Despite the similarity of the reaction of erythrocyte proteins to different CPAs, the properties of cells depending on MCC, may differ due to modifications in the macromolecule structures, which are not associated with changes in the localization of the -SH-groups of proteins. The results obtained indicate that CPAs may have a significant impact on the erythrocyte MCC, and this requires further research.
Collapse
Affiliation(s)
- N G Zemlianskykh
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov, Ukraine
| |
Collapse
|
38
|
Nagdas SK, Wallace S, Eaford D, Baker R, Carr K, Raychoudhuri SS. Fibrinogen-related protein, FGL2, of hamster cauda epididymal fluid: Purification, kinetic analysis of its prothrombinase activity, and its role in segregation of nonviable spermatozoa. Mol Reprod Dev 2020; 87:1206-1218. [PMID: 33216420 DOI: 10.1002/mrd.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022]
Abstract
Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Shamar Wallace
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Don Eaford
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Rashad Baker
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Ky'ara Carr
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Samir S Raychoudhuri
- Department of Biology, Chemistry and Environmental Health Science, Benedict College, Columbia, South Carolina, USA
| |
Collapse
|
39
|
Liu L, Sun Y, Yue Y, Yang J, Chen L, Ashraf J, Wang L, Zhou S, Tong L. Composition and foam properties of whole wheat dough liquor as affected by xylanase and glucose oxidase. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Identification of MAMP-Responsive Plasma Membrane-Associated Proteins in Arabidopsis thaliana Following Challenge with Different LPS Chemotypes from Xanthomonas campestris. Pathogens 2020; 9:pathogens9100787. [PMID: 32992883 PMCID: PMC7650673 DOI: 10.3390/pathogens9100787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/02/2022] Open
Abstract
Lipopolysaccharides (LPS) are recognized as microbe-associated molecular patterns (MAMPs) responsible for eliciting defense-related responses and while the effects have been well-documented in mammals, there is a lack of knowledge regarding the mechanism of perception in plant systems and recognized structural moieties within the macromolecular lipoglycan structure. Thus, identification of the LPS plasma membrane (PM) receptor(s)/receptor complex in Arabidopsis thaliana through proteomics will contribute to a deeper understanding of induced defense responses. As such, structurally characterized LPS chemotypes from Xanthomonas campestris pv. campestris (Xcc) wild-type 8004 (prototypical smooth-type LPS) and mutant 8530 (truncated core with no O–chain) strains were utilized to pre-treat A. thaliana plants. The associated proteomic response/changes within the PM were compared over a 24 h period using mass spectrometry-based methodologies following three variants of LPS-immobilized affinity chromatography. This resulted in the identification of proteins from several functional categories, but importantly, those involved in perception and defense. The distinct structural features between wild-type and mutant LPS are likely responsible for the differential changes to the proteome profiles, and many of the significant proteins were identified in response to the wild-type Xcc LPS where it is suggested that the core oligosaccharide and O-chain participate in recognition by receptor-like kinases (RLKs) in a multiprotein complex and, notably, varied from that of the mutant chemotype.
Collapse
|
41
|
Dosunmu A, Uche E, Osikomaiya B, Ismail A, Akinbami A, Akanmu A. Red cell membrane protein abnormalities as defined by sds-page among patients with anemia in a West African region hospital practice. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:283-289. [PMID: 32874435 PMCID: PMC7442468 DOI: 10.22088/cjim.11.3.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: Erythrocytes require an ability to deform and withstand shear stress while negotiating microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic hemolysis. Methods: This was a cross-sectional study aimed at determining the prevalence of red cell membrane protein abnormalities as determined by sodium dodecyl sulphate polyacrilamide gel electrophoresis (SDS-PAGE) among patients with anemia attending the outpatient clinics of the hospital. Results: A total of 823 participants were recruited into the study with a mean age of 34±14 years. There were 410 (49.8%) participants with hematocrit ≥ 36% and 413 with hematocrit ≤ 35.9% of which 192 participants (23.3%) had abnormal red cell indices. Following SDS-PAGE, 21 (10.9%) of the 192 participants had deficient PAGE tracing. Abnormal spectrin band was observed in 17 (81%) of the 21 participants. The hematocrit was significantly lower while the reticulocyte count and red cell distribution width were higher in participants with red cell membrane abnormalities. Conclusion: One in ten patients with mild anemia and abnormal red cell indices in clinical practice may be having hereditary red cell membrane protein defect. Presence of raised reticulocyte count, family history of mild anemia, increased red cell distribution width and red cell morphology may be used to screen for membrane deficiency.
Collapse
Affiliation(s)
- Adedoyin Dosunmu
- Department of Hematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Ebele Uche
- Department of Hematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Bodunrin Osikomaiya
- Department of Hematology and Blood Transfusion, General Hospital, Gbagada, Lagos, Nigeria
| | - Ayobami Ismail
- Department of Hematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Akinsegun Akinbami
- Department of Hematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| | - Alani Akanmu
- Department of Hematology and Blood Transfusion, Lagos State University College of Medicine, Lagos, Nigeria
| |
Collapse
|
42
|
Alaksandr Ž, Sergey G, Maksim P, Sergey K, Niyaz S, Uladzimir P, Mikhail S. Efficient matrix-assisted refolding of the recombinant anti-staphylococcal truncated endolysin LysKCA and its structural and enzymatic description. Protein Expr Purif 2020; 174:105683. [PMID: 32534980 DOI: 10.1016/j.pep.2020.105683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/21/2023]
Abstract
The recombinant truncated endolysin LysK consisting of two catalytic domains, N-terminal CHAP and amidase-2 (LysKCA) was overexpressed in E. coli in the form of inclusion bodies (IBs). These IBs were dissolved in 6 M solution of urea followed by the refolding process. The refolding efficacy of the dilution and matrix-assisted renaturation method on SP Sepharose was compared at different purification stages of LysKCA. Solubilizate of IBs, DEAE Sepharose flowthrough, and SP Sepharose elution fractions were examined. The presence of negatively charged nucleic acids (NA) in the solution has shown a decrease in the recombinant LysKCA refolding yield (less than 11.5 ± 1.3% for both renaturation methods) due to their non-specific interaction with the positively charged endolysin. The renaturation efficiency of the enzyme purified from NA (SP elution fraction) was about 29.5 ± 6.7% and 28.2 ± 3.75% for dilution and matrix-assisted methods respectively. The later approach allows conducting one-step LysKCA refolding, purification and collection, and also noticeably cuts time and material expenses. The analysis of CD spectroscopy data of LysKCA, renatured on the resin matrix, revealed alpha helices and beta strands content similar to that of the modeled 3D structure. The theoretical 3D model with two predicted domains (CHAP and amidase-2) agrees well with the differential scanning calorimetry (DSC) results of the renatured LysKCA showing two well-resolved peaks corresponding to the two calorimetrically-revealed domains with the midpoint transition temperature (Tm) of 40.1 and 65.3°С. The enzyme so obtained exhibited in vitro anti-staphylococcal activity with 2.3 ± 0.45 × 103 U/mg and retained it for at least one year.
Collapse
Affiliation(s)
- Žydziecki Alaksandr
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus.
| | - Golenchenko Sergey
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Patapovich Maksim
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Kleymenov Sergey
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of Russian Academy of Science, Moscow, 119071, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Safarov Niyaz
- Laboratory of Biotechnology, Baku State University, Baku, AZ, 1148, Azerbaijan
| | - Prakulevich Uladzimir
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Sholukh Mikhail
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
43
|
Jahan M, Francis N, Wang B. Milk lactoferrin concentration of primiparous and multiparous sows during lactation. J Dairy Sci 2020; 103:7521-7530. [PMID: 32448579 DOI: 10.3168/jds.2020-18148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/18/2020] [Indexed: 01/21/2023]
Abstract
Lactoferrin (LF), a sialylated iron-binding glycoprotein, has numerous vital physiological functions including immunomodulation and protection against a large group of microorganisms, improving neurodevelopment, health, growth performance, and milk production. Lactoferrin occurs in human milk at a higher concentration compared with bovine milk, but little information is available on LF concentrations in porcine milk and the effects of sow parity on milk LF concentration. The objective of this study was to quantify the LF concentration in porcine milk and to compare that concentration between gilts and sows during lactation. We also investigated the effect of genetic background and litter size of the female pig on the LF concentration of porcine milk. The milk from 30 gilts and 35 sows was collected at 3 stages of lactation, namely colostrum, transition, and mature milk. Standard and experimental samples were analyzed by ultra-high performance liquid chromatography using a diode array UV detector. The following findings were reported: (1) porcine milk contained significant levels of LF with the highest concentration in colostrum, which decreased by ∼62% and ∼67% in transitional and mature milk, respectively; (2) mature gilt milk contained a 22% higher concentration of LF compared with sow milk, which was statistically significant; (3) breed line had an overall significant effect on the LF content of porcine milk; however, when the breed was considered, no significant difference was observed; and (4) LF concentration of porcine milk was not significantly influenced by the litter size. The presence of LF in a higher concentration in porcine milk suggests that LF is an important constituent of pig milk that might contribute to the optimum growth and development of piglets.
Collapse
Affiliation(s)
- M Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - N Francis
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - B Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
44
|
Swietalski P, Hetzel F, Seitl I, Fischer L. Secretion of a low and high molecular weight β-glycosidase by Yarrowia lipolytica. Microb Cell Fact 2020; 19:100. [PMID: 32393258 PMCID: PMC7216700 DOI: 10.1186/s12934-020-01358-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background The secretory production of recombinant proteins in yeast simplifies isolation and purification but also faces possible complications due to the complexity of the secretory pathway. Therefore, correct folding, maturation and intracellular transport of the recombinant proteins are important processing steps with a higher effort needed for complex and large proteins. The aim of this study was to elucidate the secretion potential of Yarrowia lipolytica for low and high molecular weight β-glycosidases in a comparative cultivation approach. Results A low sized β-glucosidase from Pyrococcus furiosus (CelB; 55 kDa) and a large sized β-galactosidase isolated from the metagenome (M1; 120 kDa) were integrated into the acid extracellular protease locus using the CRISPR–Cas9 system to investigate the size dependent secretion of heterologous proteins in Y. lipolytica PO1f. The recombinant strains were cultivated in the bioreactor for 78 h and the extra- and intracellular enzyme activities were determined. The secretion of CelB resulted in an extracellular volumetric activity of 187.5 µkatoNPGal/Lmedium, while a volumetric activity of 2.98 µkatoNPGal/Lmedium was measured during the M1 production. However, when the amount of functional intra- and extracellular enzyme was investigated, the high molecular weight M1 (85%) was secreted more efficiently than CelB (27%). Real-time PCR experiments showed a linear correlation between the transcript level and extracellular activity for CelB, while a disproportional high mRNA level was observed regarding M1. Interestingly, mass spectrometry data revealed the unexpected secretion of two endogenous intracellular glycolytic enzymes, which is reported for the first time for Y. lipolytica. Conclusion The results of this study provide deeper insights into the secretion potential of Y. lipolytica. A secretion limitation for the low-size CelB was observed, while the large size M1 enzyme was produced in lower amounts but was secreted efficiently. It was shown for the first time that Y. lipolytica is a promising host for the secretion of heterologous high molecular weight proteins (> 100 kDa), although the total secreted amount has to be increased further.
Collapse
Affiliation(s)
- Paul Swietalski
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Frank Hetzel
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
45
|
Nagaoka H, Kanoi BN, Ntege EH, Aoki M, Fukushima A, Tsuboi T, Takashima E. Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Sci Rep 2020; 10:6573. [PMID: 32313230 PMCID: PMC7171142 DOI: 10.1038/s41598-020-63611-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum merozoite invasion into erythrocytes is an essential step of the blood-stage cycle, survival of parasites, and malaria pathogenesis. P. falciparum merozoite Rh5 interacting protein (PfRipr) forms a complex with Rh5 and CyRPA in sequential molecular events leading to erythrocyte invasion. Recently we described PfRipr as a conserved protein that induces strain-transcending growth inhibitory antibodies in in vitro assays. However, being a large and complex protein of 1086 amino acids (aa) with 87 cysteine residues, PfRipr is difficult to express in conventional expression systems towards vaccine development. In this study we sought to identify the most potent region of PfRipr that could be developed to overcome difficulties related to protein expression, as well as to elucidate the invasion inhibitory mechanism of anti-PfRipr antibodies. Using the wheat germ cell-free system, Ecto- PfRipr and truncates of approximately 200 aa were expressed as soluble proteins. We demonstrate that antibodies against PfRipr truncate 5 (PfRipr_5: C720-D934), a region within the PfRipr C-terminal EGF-like domains, potently inhibit merozoite invasion. Furthermore, the antibodies strongly block PfRipr/Rh5 interaction, as well as that between PfRipr and its erythrocyte-surface receptor, SEMA7A. Taken together, PfRipr_5 is a potential candidate for further development as a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.,Department of Plastic and Reconstructive Surgery, University of the Ryukyus, School of Medicine and Hospital, Okinawa, Japan
| | - Masamitsu Aoki
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Akihisa Fukushima
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.
| |
Collapse
|
46
|
Žydziecki AV, Golenchenko SG, Prakulevich UA, Sholukh MV. The Screening of Refolding Conditions and Obtainment of the Recombinant Antistaphylococcal Endolysin LysKCA in Active Form from E. coli Inclusion Bodies. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Xue J, He Q, Xie XJ, Su AL, Cao SB. A clinical and experimental study of adult hereditary spherocytosis in the Chinese population. Kaohsiung J Med Sci 2020; 36:552-560. [PMID: 32133777 DOI: 10.1002/kjm2.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hereditary spherocytosis (HS) is often misdiagnosed due to lack of specific diagnostic methods. Our study summarized clinical characteristics and described the diagnostic workflow for mild and moderate HS in Chinese individuals, using data from 20 adults, 8 of whom presented a familial history for HS. We used scanning electron microscopy (SEM) to diagnose HS. We observed reduced eosin maleimide fluorescence activity (5.50 mean channel fluorescence (MCF) units) in the 10 cases of HS, which differed significantly when compared with 10 normal adults (15.50 units), iron deficiency anemia (15.50 MCF units), and megaloblastic anemia (12.00 MCF units) values (P < .05). Next generation sequencing results revealed that 9 out of 10 patients were found to have mutations in the spectrin alpha chain (SPTB), anchor protein (ANK1), and SLC4A1 genes. These mutations were not reported in the Human Gene Mutation Database (HGMD), 1000 human genome, ExAC, and dbSNP147 databases. Splenectomy proved to be beneficial in alleviating HS symptoms in 10 cases. It was found that for the diagnosis of HS, SEM and next generation gene sequencing method proved to be more ideal than red blood cell membrane protein analysis using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting.
Collapse
Affiliation(s)
- Jun Xue
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing He
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Jing Xie
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ai-Ling Su
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shi-Bin Cao
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Linkage of typically cytosolic peroxidases to erythrocyte membrane – A possible mechanism of protection in Hereditary Spherocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183172. [DOI: 10.1016/j.bbamem.2019.183172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022]
|
49
|
Combined statistical physics models and DFT theory to study the adsorption process of paprika dye On TiO2 for dye sensitized solar cells. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 2020. [DOI: 10.1016/j.jmrt.2019.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Kettner L, Seitl I, Fischer L. Evaluation of porcine diamine oxidase for the conversion of histamine in food-relevant amounts. J Food Sci 2020; 85:843-852. [PMID: 32090335 DOI: 10.1111/1750-3841.15069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
Histamine exists in a multitude of foods and displays an emerging role within food intolerances. Our aim was to identify the activity of porcine diamine oxidase (DAO) required for the in vitro degradation of histamine amounts that are found in typical meals containing histamine (75 mg, equaled 150 mg/L). Furthermore, we investigated an actual dietary supplement that is commercially available for histamine intolerant individuals for its histamine reduction capability. Kinetic investigations of porcine DAO showed a substrate inhibition by histamine concentrations greater than 56 mg/L (0.5 mM). The stability of free porcine DAO was tested in a fed state simulated intestinal fluid and exhibited a half-life period of around 19 min. A total of 50 nanokatal (nkat) free porcine DAO, which equaled the amount of enzyme isolated from around 100 g pig kidney, were necessary for the in vitro reduction of around 90% of the histamine. The dietary supplement that contains a pig kidney extract did not show DAO activity. Instead, the used histamine (0.75 mg) was apparently reduced due to the adsorption of histamine onto a capsule component by 18.9 ± 2.3% within 5 hr. Although the capsule preparation retained its overall structure and shape for at least 90 min in simulated gastric fluid, the apparent histamine reduction was significantly reduced to 12.1 ± 2.3% (P ≤ 0.05). In conclusion, an alternative to the pig kidney DAO or an improved capsule preparation is needed to ensure an adequate supplementation for histamine-intolerant humans. PRACTICAL APPLICATION: Histamine intolerance is an emerging issue in our society and the intolerance-related physiological symptoms are currently not reliably treatable due to a lack of scientific investigation. A commercially available dietary supplement for histamine intolerance does not fulfil the requirements for a satisfactory histamine reduction in intolerant humans. The activity of the histamine degrading enzyme diamine oxidase, required for a satisfactory histamine degradation, is by far higher than the theoretical amount apparently given in the dietary supplement. With this knowledge, it is obvious that improved food supplements must be developed to help histamine intolerant humans.
Collapse
Affiliation(s)
- Lucas Kettner
- Dept. of Biotechnology and Enzyme Science, Inst. of Food Science and Biotechnology, Univ. of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Dept. of Biotechnology and Enzyme Science, Inst. of Food Science and Biotechnology, Univ. of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Dept. of Biotechnology and Enzyme Science, Inst. of Food Science and Biotechnology, Univ. of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| |
Collapse
|