1
|
Vibrational couplings between protein and cofactor in bacterial phytochrome Agp1 revealed by 2D-IR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2206400119. [PMID: 35905324 PMCID: PMC9351469 DOI: 10.1073/pnas.2206400119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phytochromes are ubiquitous photoreceptor proteins that undergo a significant refolding of secondary structure in response to initial photoisomerization of the chromophoric group. This process is important for the signal transduction through the protein and thus its regulatory function in different organisms. Here, we employ two-dimensional infrared absorption (2D-IR) spectroscopy, an ultrafast spectroscopic technique that is sensitive to vibrational couplings, to study the photoreaction of bacterial phytochrome Agp1. By calculating difference spectra with respect to the photoactivation, we are able to isolate sharp difference cross-peaks that report on local changes in vibrational couplings between different sites of the chromophore and the protein. These results indicate inter alia that a dipole coupling between the chromophore and the so-called tongue region plays a role in stabilizing the protein in the light-activated state.
Collapse
|
2
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
3
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Protonation Equilibrium in the Active Site of the Photoactive Yellow Protein. Molecules 2021; 26:molecules26072025. [PMID: 33918211 PMCID: PMC8037372 DOI: 10.3390/molecules26072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The role and existence of low-barrier hydrogen bonds (LBHBs) in enzymatic and protein activity has been largely debated. An interesting case is that of the photoactive yellow protein (PYP). In this protein, two short HBs adjacent to the chromophore, p-coumaric acid (pCA), have been identified by X-ray and neutron diffraction experiments. However, there is a lack of agreement on the chemical nature of these H-bond interactions. Additionally, no consensus has been reached on the presence of LBHBs in the active site of the protein, despite various experimental and theoretical studies having been carried out to investigate this issue. In this work, we perform a computational study that combines classical and density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) simulations to shed light onto this controversy. Furthermore, we aim to deepen our understanding of the chemical nature and dynamics of the protons involved in the two short hydrogen bonds that, in the dark state of PYP, connect pCA with the two binding pocket residues (E46 and Y42). Our results support the existence of a strong LBHB between pCA and E46, with the H fully delocalized and shared between both the carboxylic oxygen of E46 and the phenolic oxygen of pCA. Additionally, our findings suggest that the pCA interaction with Y42 can be suitably described as a typical short ionic H-bond of moderate strength that is fully localized on the phenolic oxygen of Y42.
Collapse
|
5
|
Huix-Rotllant M, Schwinn K, Ferré N. Infrared spectroscopy from electrostatic embedding QM/MM: local normal mode analysis of infrared spectra of arabidopsis thaliana plant cryptochrome. Phys Chem Chem Phys 2021; 23:1666-1674. [PMID: 33415326 DOI: 10.1039/d0cp06070d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infrared (IR) spectroscopy is an undoubtedly valuable tool for analyzing vibrations, conformational changes, and chemical reactions of biological macromolecules. Currently, there is a lack of theoretical methods to create a model successfully and efficiently simulate and interpret the origin of the spectral signatures, which are often complex to analyze. Here, we develop a new method for IR vibrational spectroscopy based on analytic second derivatives of electrostatic embedding QM/MM energy, the computation of electric dipole moments with respect to nuclear perturbations and the localization of normal modes. In addition to the IR spectrum, the method can provide the origin of each peak from clearly identified molecular motions of constituent fragments. As a proof of concept, we analyze the IR spectra of flavin adenine dinucleotides in water and in Arabidopsis thaliana cryptochrome proteins for four redox forms, in addition to the difference IR spectra before and after illumination with blue light. We show that the main peaks in the difference spectrum are due to N-H hydrogen out-of-plane motions and hydrogen bendings.
Collapse
|
6
|
Konold PE, Arik E, Weißenborn J, Arents JC, Hellingwerf KJ, van Stokkum IHM, Kennis JTM, Groot ML. Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Nat Commun 2020; 11:4248. [PMID: 32843623 PMCID: PMC7447820 DOI: 10.1038/s41467-020-18065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/31/2020] [Indexed: 11/27/2022] Open
Abstract
Femtosecond time-resolved crystallography (TRC) on proteins enables resolving the spatial structure of short-lived photocycle intermediates. An open question is whether confinement and lower hydration of the proteins in the crystalline state affect the light-induced structural transformations. Here, we measured the full photocycle dynamics of a signal transduction protein often used as model system in TRC, Photoactive Yellow Protein (PYP), in the crystalline state and compared those to the dynamics in solution, utilizing electronic and vibrational transient absorption measurements from 100 fs over 12 decades in time. We find that the photocycle kinetics and structural dynamics of PYP in the crystalline form deviate from those in solution from the very first steps following photon absorption. This illustrates that ultrafast TRC results cannot be uncritically extrapolated to in vivo function, and that comparative spectroscopic experiments on proteins in crystalline and solution states can help identify structural intermediates under native conditions. Protein structural dynamics can be studied by time-resolved crystallography (TRC) and ultrafast transient spectroscopic methods. Here, the authors perform electronic and vibrational transient absorption measurements to characterise the full photocycle of Photoactive Yellow Protein (PYP) both in the crystalline and solution state and find that the photocycle kinetics and structural intermediates of PYP deviate in the crystalline state, which must be taken into consideration when planning TRC experiments.
Collapse
Affiliation(s)
- Patrick E Konold
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Enis Arik
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jos C Arents
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Imamoto Y, Sasayama H, Harigai M, Furutani Y, Kataoka M. Regulation of Photocycle Kinetics of Photoactive Yellow Protein by Modulating Flexibility of the β-Turn. J Phys Chem B 2020; 124:1452-1459. [PMID: 32017565 DOI: 10.1021/acs.jpcb.9b11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the significant flexibility of the β-turn in photoactive yellow protein (PYP) due to Gly115 was studied. G115A and G115P mutations were observed to accelerate the photocycle and shift the equilibrium between the late photocycle intermediate (pB) and its precursor (pR) toward pR. Thermodynamic analysis of dark-state recovery from pB demonstrated that the transition state (pB⧧) has a negative change in transition heat capacity, suggesting that an exposed hydrophobic surface of pB is buried in pB⧧. Fourier transform infrared spectroscopy showed that the structural ensemble of pB is populated by the compact structure in G115P. Taken together, the rigid structure induced by mutation of Gly115 facilitates its transition to pB⧧, which adopts a substantially more compact structure as opposed to the ensemble-averaged structure of pB. The photocycle kinetics of PYP may be fine-tuned by modulating the flexibility of the 115 loop to activate an appropriate number of transducer proteins.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Hiroaki Sasayama
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Miki Harigai
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science , National Institutes of Natural Sciences , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan.,Department of Structural Molecular Science , The Graduate University for Advanced Studies (SOKENDAI) , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan
| | - Mikio Kataoka
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| |
Collapse
|
8
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
9
|
Yonezawa K, Shimizu N, Kurihara K, Yamazaki Y, Kamikubo H, Kataoka M. Neutron crystallography of photoactive yellow protein reveals unusual protonation state of Arg52 in the crystal. Sci Rep 2017; 7:9361. [PMID: 28839266 PMCID: PMC5570954 DOI: 10.1038/s41598-017-09718-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Because of its high pKa, arginine (Arg) is believed to be protonated even in the hydrophobic environment of the protein interior. However, our neutron crystallographic structure of photoactive yellow protein, a light sensor, demonstrated that Arg52 adopts an electrically neutral form. We also showed that the hydrogen bond between the chromophore and Glu46 is a so-called low barrier hydrogen bond (LBHB). Because both the neutral Arg and LBHB are unusual in proteins, these observations remain controversial. To validate our findings, we carried out neutron crystallographic analysis of the E46Q mutant of PYP. The resultant structure revealed that the proportion of the cationic form is higher in E46Q than in WT, although the cationic and neutral forms of Arg52 coexist in E46Q. These observations were confirmed by the occupancy of the deuterium atom bound to the N η1 atom combined with an alternative conformation of the N(η2)D2 group comprising sp2 hybridisation. Based on these results, we propose that the formation of the LBHB decreases the proton affinity of Arg52, stabilizing the neutral form in the crystal.
Collapse
Affiliation(s)
- Kento Yonezawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazuo Kurihara
- National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Oaza- Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Yoichi Yamazaki
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan. .,Comprehensive Research Organization for Science and Society, Research Center for Neutron Science and Technology, 162-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
| |
Collapse
|
10
|
Mix LT, Hara M, Rathod R, Kumauchi M, Hoff WD, Larsen DS. Noncanonical Photocycle Initiation Dynamics of the Photoactive Yellow Protein (PYP) Domain of the PYP-Phytochrome-Related (Ppr) Photoreceptor. J Phys Chem Lett 2016; 7:5212-5218. [PMID: 27973895 DOI: 10.1021/acs.jpclett.6b02253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The photoactive yellow protein (PYP) from Halorhodospira halophila (Hhal) is a bacterial photoreceptor and model system for exploring functional protein dynamics. We report ultrafast spectroscopy experiments that probe photocycle initiation dynamics in the PYP domain from the multidomain PYP-phytochrome-related photoreceptor from Rhodospirillum centenum (Rcen). As with Hhal PYP, Rcen PYP exhibits similar excited-state dynamics; in contrast, Rcen PYP exhibits altered photoproduct ground-state dynamics in which the primary I0 intermediate as observed in Hhal PYP is absent. This property is attributed to a tighter, more sterically constrained binding pocket around the p-coumaric acid chromophore due to a change in the Rcen PYP protein structure that places Phe98 instead of Met100 in contact with the chromophore. Hence, the I0 state is not a necessary step for the initiation of productive PYP photocycles and the ubiquitously studied Hhal PYP may not be representative of the broader PYP family of photodynamics.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Rachana Rathod
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
11
|
Mix LT, Kirpich J, Kumauchi M, Ren J, Vengris M, Hoff WD, Larsen DS. Bifurcation in the Ultrafast Dynamics of the Photoactive Yellow Proteins from Leptospira biflexa and Halorhodospira halophila. Biochemistry 2016; 55:6138-6149. [DOI: 10.1021/acs.biochem.6b00547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L. Tyler Mix
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Julia Kirpich
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jie Ren
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Mikas Vengris
- Faculty
of Physics, Laser Research Centre, Vilnius University, Sauletekio
10, LT-10233 Vilnius, Lithuania
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S. Larsen
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Müller-Herrmann S, Scheibel T. Enzymatic Degradation of Films, Particles, and Nonwoven Meshes Made of a Recombinant Spider Silk Protein. ACS Biomater Sci Eng 2015; 1:247-259. [DOI: 10.1021/ab500147u] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne Müller-Herrmann
- Lehrstuhl
Biomaterialien, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl
Biomaterialien, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| |
Collapse
|
13
|
Wei L, Wang H, Chen X, Fang W, Wang H. A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys 2014; 16:25263-72. [DOI: 10.1039/c4cp03495c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A comprehensive picture of the overall photocycle was obtained to reveal a wide range of structural signals in the photoactive yellow protein.
Collapse
Affiliation(s)
- Lili Wei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Hongjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Haobin Wang
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces, USA
| |
Collapse
|
14
|
Liu J, Yabushita A, Taniguchi S, Chosrowjan H, Imamoto Y, Sueda K, Miyanaga N, Kobayashi T. Ultrafast Time-Resolved Pump–Probe Spectroscopy of PYP by a Sub-8 fs Pulse Laser at 400 nm. J Phys Chem B 2013; 117:4818-26. [DOI: 10.1021/jp4001016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Liu
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- State Key Laboratory of High
Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
| | - Seiji Taniguchi
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Haik Chosrowjan
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kitashirakawa-Oiwake,
Sakyo, Kyoto 606-8502 Japan
| | - Keiichi Sueda
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Noriaki Miyanaga
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| |
Collapse
|
15
|
Jung YO, Lee JH, Kim J, Schmidt M, Moffat K, Srajer V, Ihee H. Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat Chem 2013; 5:212-20. [PMID: 23422563 PMCID: PMC3579544 DOI: 10.1038/nchem.1565] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022]
Abstract
Trans-to-cis isomerization, the key reaction in photoactive proteins, usually cannot occur through the standard one-bond-flip mechanism. Owing to spatial constraints imposed by a protein environment, isomerization probably proceeds through a volume-conserving mechanism in which highly choreographed atomic motions are expected, the details of which have not yet been observed directly. Here we employ time-resolved X-ray crystallography to visualize structurally the isomerization of the p-coumaric acid chromophore in photoactive yellow protein with a time resolution of 100 ps and a spatial resolution of 1.6 Å. The structure of the earliest intermediate (I(T)) resembles a highly strained transition state in which the torsion angle is located halfway between the trans- and cis-isomers. The reaction trajectory of I(T) bifurcates into two structurally distinct cis intermediates via hula-twist and bicycle-pedal pathways. The bifurcating reaction pathways can be controlled by weakening the hydrogen bond between the chromophore and an adjacent residue through E46Q mutation, which switches off the bicycle-pedal pathway.
Collapse
Affiliation(s)
- Yang Ouk Jung
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Hellingwerf KJ, Hendriks J, Gensch T. On the Configurational and Conformational Changes in Photoactive Yellow Protein that Leads to Signal Generation in Ectothiorhodospira halophila. J Biol Phys 2013; 28:395-412. [PMID: 23345784 DOI: 10.1023/a:1020360505111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photoactive Yellow Protein (PYP), a phototaxis photoreceptor from Ectothiorhodospira halophila, is a small water-soluble protein that iscrystallisable and excellently photo-stable. It can be activated with light(λ(max)= 446 nm), to enter a series of transientintermediates that jointly form the photocycle of this photosensor protein.The most stable of these transient states is the signalling state forphototaxis, pB.The spatial structure of the ground state of PYP, pG and the spectralproperties of the photocycle intermediates have been very well resolved.Owing to its excellent chemical- and photochemical stability, also the spatialstructure of its photocycle intermediates has been characterised with X-raydiffraction and multinuclear NMR spectroscopy. Surprisingly, the resultsobtained showed that their structure is dependent on the molecular contextin which they are formed. Therefore, a large range of diffraction-,scattering- and spectroscopic techniques is now being employed to resolvein detail the dynamical changes of the structure of PYP while it progressesthrough its photocycle. This approach has led to considerable progress,although some techniques still result in mutually inconsistent conclusionsregarding aspects of the structure of particular intermediates.Recently, significant progress has also been made with simulations withmolecular dynamics analyses of the initial events that occur in PYP uponphoto activation. The great challenge in this field is to eventually obtainagreement between predicted dynamical alterations in PYP structure, asobtained with the MD approach and the actually measured dynamicalchanges in its structure as evolving during photocycle progression.
Collapse
|
17
|
Sindhikara DJ, Yoshida N, Kataoka M, Hirata F. Solvent penetration in photoactive yellow protein R52Q mutant: A theoretical study. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Usman A, Asahi T, Sugiyama T, Masuhara H, Tohnai N, Miyata M. Photochemical Reaction of p-hydroxycinnamic-thiophenyl Ester in the Microcrystalline State. J Phys Chem B 2010; 114:14233-40. [DOI: 10.1021/jp909850r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anwar Usman
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| | - Tsuyoshi Asahi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| | - Teruki Sugiyama
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| | - Mikiji Miyata
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan, Department of Applied Physics, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan, and Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka
| |
Collapse
|
19
|
Ghosh K, Sen T, Fröhlich R, Petsalakis ID, Theodorakopoulos G. trans-Pyridyl and Naphthyridyl Cinnamides as Alternatives for Urea in Complexation of Carboxylic Acid and Formation of Water-Templated Assemblies in the Solid State. J Phys Chem B 2009; 114:321-9. [DOI: 10.1021/jp907521j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149, Münster, and Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35 Greece
| | - Tanushree Sen
- Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149, Münster, and Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35 Greece
| | - Roland Fröhlich
- Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149, Münster, and Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35 Greece
| | - Ioannis D. Petsalakis
- Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149, Münster, and Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35 Greece
| | - Giannoula Theodorakopoulos
- Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149, Münster, and Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35 Greece
| |
Collapse
|
20
|
Losi A, Gensch T, van der Horst MA, Hellingwerf KJ, Braslavsky SE. Hydrogen-bond network probed by time-resolved optoacoustic spectroscopy: photoactive yellow protein and the effect of E46Q and E46A mutations. Phys Chem Chem Phys 2009; 7:2229-36. [PMID: 19791418 DOI: 10.1039/b419079c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enthalpy and structural volume changes (delta Hi and delta Vi) produced upon photoinduced formation and decay of the red-shifted intermediate (pR = I1) in the photoactive yellow protein (WT-PYP) from Halorhodospira halophila and the mutated E46Q-PYP and E46A-PYP, were determined by laser-induced optoacoustic spectroscopy (LIOAS) using the two-temperatures method, at pH 8.5. These mutations alter the hydrogen bond between the phenolate oxygen of the chromophore and the residue at position 46. Hydrogen bonding is still possible in E46Q-PYP via the delta-NH2 group of glutamine, whereas it is no longer possible with the methyl group of alanine in E46A-PYP. In all three proteins, pR decays within hundreds of ns to micros into the next intermediate, pR'. The delta H values for the formation of pR (delta H pR) and for its decay into pR'(delta H pR-->pR') are negligibly affected by the E46Q and the E46A substitution. In all three proteins the large delta H pR value drives the photocycle. Whereas delta V pR is a similar contraction of ca. 15 ml mol(-1) for E46Q-PYP and WT-PYP, attributed to strengthening the hydrogen bond network (between 4 and 5 hydrogen bonds) inside the protein chromophore cavity, an expansion is observed for E46A-PYP, indicating just an enlargement of the chromophore cavity upon chromophore isomerization. The results are discussed in the light of the recent time-resolved room temperature, crystallographic studies with WT-PYP and E46Q-PYP. Formation of pR' is somewhat slower for E46Q-PYP and much slower for E46A-PYP. The structural volume change for this transition, delta V pR-->pR', is relatively small and positive for WT-PYP, slightly larger for E46Q-PYP, and definitely larger for the hydrogen-bond lacking E46A-PYP. This indicates a larger entropic change for this transition in E46A-PYP, reflected in the large pre-exponential factor for the pR to pR' decay rate constant determined in the 5-30 degrees C temperature range. This decay also shows an activation entropy that compensates the larger activation energy in E46A-PYP, as compared to the values for WT-PYP and E46Q-PYP.
Collapse
Affiliation(s)
- Aba Losi
- Max-Planck-Institut für Bioanorganische Chemie (formerly Strahlenchemie), Postfach 101365, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
Low-barrier hydrogen bonds (LBHBs) have been proposed to play roles in protein functions, including enzymatic catalysis and proton transfer. Transient formation of LBHBs is expected to stabilize specific reaction intermediates. However, based on experimental results and theoretical considerations, arguments against the importance of LBHB in proteins have been raised. The discrepancy is caused by the absence of direct identification of the hydrogen atom position. Here, we show by high-resolution neutron crystallography of photoactive yellow protein (PYP) that a LBHB exists in a protein, even in the ground state. We identified approximately 87% (819/942) of the hydrogen positions in PYP and demonstrated that the hydrogen bond between the chromophore and E46 is a LBHB. This LBHB stabilizes an isolated electric charge buried in the hydrophobic environment of the protein interior. We propose that in the excited state the fast relaxation of the LBHB into a normal hydrogen bond is the trigger for photo-signal propagation to the protein moiety. These results give insights into the novel roles of LBHBs and the mechanism of the formation of LBHBs.
Collapse
|
22
|
Harigai M, Kataoka M, Imamoto Y. Interaction Between N-terminal Loop and-Scaffold of Photoactive Yellow Protein,. Photochem Photobiol 2008; 84:1031-7. [DOI: 10.1111/j.1751-1097.2008.00375.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Kamikubo H, Koyama T, Hayashi M, Shirai K, Yamazaki Y, Imamoto Y, Kataoka M. The Photoreaction of the Photoactive Yellow Protein Domain in the Light Sensor Histidine Kinase Ppr is Influenced by the C-terminal Domains. Photochem Photobiol 2008; 84:895-902. [DOI: 10.1111/j.1751-1097.2008.00322.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Imamoto Y, Harigai M, Morimoto T, Kataoka M. Low-temperature Spectroscopy of Met100Ala Mutant of Photoactive Yellow Protein. Photochem Photobiol 2008; 84:970-6. [DOI: 10.1111/j.1751-1097.2008.00336.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Matsuhira T, Yamamoto H, Okamura TA, Ueyama N. Manipulation of an intramolecular NH...O hydrogen bond by photoswitching between stable E/Z isomers of the cinnamate framework. Org Biomol Chem 2008; 6:1926-33. [PMID: 18480905 DOI: 10.1039/b719960k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel carboxylic acid derivatives were synthesized, which allowed switching of the intramolecular distance between amide group and carboxylic oxygen atoms using E to Z photoisomerization of the cinnamate framework. An intramolecular NH...O hydrogen bond was formed in the Z carboxylate compound not only in solution but also in the solid state. The pK(a) value of the carboxylic acid was lowered as a consequence of the E/Z photoisomerization.
Collapse
Affiliation(s)
- Takashi Matsuhira
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
26
|
Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys J 2008; 94:4020-30. [PMID: 18234812 DOI: 10.1529/biophysj.107.121376] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin is an ion-translocating member of the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization, leading to transmembrane translocation of a proton toward the extracellular side of the cytoplasmic membrane. Here we report a study on the photoisomerization dynamics of the retinal chromophore of proteorhodopsin, using femtosecond time-resolved spectroscopy, by probing in the visible- and in the midinfrared spectral regions. Experiments were performed both at pH 9.5 (a physiologically relevant pH value in which the primary proton acceptor of the protonated Schiff base, Asp(97), is deprotonated) and at pH 6.5 (with Asp(97) protonated). Simultaneous analysis of the data sets recorded in the two spectral regions and at both pH values reveals a multiexponential excited state decay, with time constants of approximately 0.2 ps, approximately 2 ps, and approximately 20 ps. From the difference spectra associated with these dynamics, we conclude that there are two chromophore-isomerization pathways that lead to the K-state: one with an effective rate of approximately (2 ps)(-1) and the other with a rate of approximately (20 ps)(-1). At high pH, both pathways are equally effective, with an estimated quantum yield for K-formation of approximately 0.7. At pH 6.5, the slower pathway is less productive, which results in an isomerization quantum yield of 0.5. We further observe an ultrafast response of residue Asp(227), which forms part of the counterion complex, corresponding to a strengthening of its hydrogen bond with the Schiff base on K-state formation; and a feature that develops on the 0.2 ps and 2 ps timescale and probably reflects a response of an amide II band in reaction to the isomerization process.
Collapse
|
27
|
Matsuhira T, Tsuchihashi K, Yamamoto H, Okamura TA, Ueyama N. Novel photosystem involving protonation and deprotonation processes modelled on a PYP photocycle. Org Biomol Chem 2008; 6:3118-26. [DOI: 10.1039/b807417h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Imamoto Y, Kataoka M. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 2007; 83:40-9. [PMID: 16939366 DOI: 10.1562/2006-02-28-ir-827] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | |
Collapse
|
29
|
Imamoto Y, Kataoka M, Liu RSH. Mechanistic Pathways for the Photoisomerization Reaction of the Anchored, Tethered Chromophore of the Photoactive Yellow Protein and its Mutants¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760584mpftpr2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kort R, Ravelli RB, Schotte F, Bourgeois D, Crielaard W, Hellingwerf KJ, Wulff M. Characterization of Photocycle Intermediates in Crystalline Photoactive Yellow Protein†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780131copiic2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Morishita T, Harigai M, Yamazaki Y, Kamikubo H, Kataoka M, Imamoto Y. Array of Aromatic Amino Acid Side Chains Located Near the Chromophore of Photoactive Yellow Protein†. Photochem Photobiol 2007; 83:280-5. [PMID: 16879039 DOI: 10.1562/2006-06-15-ra-929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.
Collapse
Affiliation(s)
- Tomokazu Morishita
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Groot ML, van Wilderen LJGW, Di Donato M. Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochem Photobiol Sci 2007; 6:501-7. [PMID: 17487299 DOI: 10.1039/b613023b] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this contribution we describe how femtosecond time-resolved infrared spectroscopy provides insight into the function and dynamics of pigment-protein complexes, and what the technical requirements are to perform such experiments. We further discuss a few examples of experiments performed on the photoactive yellow protein and photosynthetic complexes in more detail.
Collapse
Affiliation(s)
- Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Kamikubo H, Shimizu N, Harigai M, Yamazaki Y, Imamoto Y, Kataoka M. Characterization of the solution structure of the M intermediate of photoactive yellow protein using high-angle solution x-ray scattering. Biophys J 2007; 92:3633-42. [PMID: 17307829 PMCID: PMC1853148 DOI: 10.1529/biophysj.106.097287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.3 A(-1) < Q < 0.8 A(-1)). The intensities and positions of the peaks were systematically changed as a result of the N-terminal truncations. These observations and the agreement between the observed scattering profiles and the calculated profiles based on the crystal structure confirm that the high-angle scattering profiles were caused by intramolecular interference and that the structure of the chromophore-binding domain was not affected by the N-terminal truncations. The profiles of the PYP(M) intermediates of the N-terminally truncated PYP variants were significantly different from the profiles of the dark states of these proteins, indicating that substantial conformational rearrangements occur within the chromophore-binding domain during the formation of PYP(M). By use of molecular fluctuation analysis, structural models of the chromophore-binding region of PYP(M) were constructed to reproduce the observed profile of T23. The structure obtained by averaging 51 potential models revealed the displacement of the loop connecting beta4 and beta5, and the deformation of the alpha4 helix. High-angle x-ray scattering with molecular fluctuation simulation allows us to derive the structural properties of the transient state of a protein in solution.
Collapse
Affiliation(s)
- Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
34
|
van der Horst MA, Arents JC, Kort R, Hellingwerf KJ. Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein. Photochem Photobiol Sci 2007; 6:571-9. [PMID: 17487311 DOI: 10.1039/b701072a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor proteins studied to date the covalent linkage of the chromophore to the apoprotein is dispensable for light-induced catalytic activation. We analyzed the functional importance of the covalent linkage using an isosteric chromophore-protein variant in which the cysteine is replaced by a glycine residue and the chromophore by thiomethyl-p-coumaric acid (TMpCA). The model compound TMpCA is shown to weakly complex with the C69G protein. This non-covalent binding results in considerable tuning of both the pKa and the color of the chromophore. The photoactivity of this system, however, was strongly impaired, making PYP the first known photosensor protein in which the covalent linkage of the chromophore is of paramount importance for the functional activity of the protein in vitro. We also studied the influence of chromophore analogs on the color and photocycle of PYP, not only in WT, but especially in the E46Q mutant, to test if effects from both chromophore and protein modifications are additive. When the E46Q protein binds the sinapinic acid chromophore, the color of the protein is effectively changed from yellow to orange. The altered charge distribution in this protein also results in a changed pKa value for chromophore protonation, and a strongly impaired photocycle. Both findings extend our knowledge of the photochemistry of PYP for signal generation.
Collapse
Affiliation(s)
- Michael A van der Horst
- Laboratory for Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
van Wilderen LJGW, van der Horst MA, van Stokkum IHM, Hellingwerf KJ, van Grondelle R, Groot ML. Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein. Proc Natl Acad Sci U S A 2006; 103:15050-5. [PMID: 17015839 PMCID: PMC1940041 DOI: 10.1073/pnas.0603476103] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactive proteins such as PYP (photoactive yellow protein) are generally accepted as model systems for studying protein signal state formation. PYP is a blue-light sensor from the bacterium Halorhodospira halophila. The formation of PYP's signaling state is initiated by trans-cis isomerization of the p-coumaric acid chromophore upon the absorption of light. The quantum yield of signaling state formation is approximately 0.3. Using femtosecond visible pump/mid-IR probe spectroscopy, we investigated the structure of the very short-lived ground state intermediate (GSI) that results from an unsuccessful attempt to enter the photocycle. This intermediate and the first stable GSI on pathway into the photocycle, I0, both have a mid-IR difference spectrum that is characteristic of a cis isomer, but only the I0 intermediate has a chromophore with a broken hydrogen bond with the backbone N atom of Cys-69. We suggest, therefore, that breaking this hydrogen bond is decisive for a successful entry into the photocycle. The chromophore also engages in a hydrogen-bonding network by means of its phenolate group with residues Tyr-42 and Glu-46. We have investigated the role of this hydrogen bond by exchanging the H bond-donating residue Glu-46 with the weaker H bond-donating glutamine (i.e., Gln-46). We have observed that this mutant exhibits virtually identical kinetics and product yields as WT PYP, even though during the I0-to-I1 transition, on the 800-ps time scale, the hydrogen bond of the chromophore with Gln-46 is broken, whereas this hydrogen bond remains intact with Glu-46.
Collapse
Affiliation(s)
- L J G W van Wilderen
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Usman A, Masuhara H, Asahi T. trans−cis Photoisomerization of a Photoactive Yellow Protein Model Chromophore in Crystalline Phase. J Phys Chem B 2006; 110:20085-8. [PMID: 17034177 DOI: 10.1021/jp064984b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the photoinduced trans/cis isomerization of the protonated form of p-hydroxycinnamic thiophenyl ester, a model chromophore of the photoactive yellow protein (PYP), in crystalline phase, by both fluorescence and infrared spectroscopies. The conversion from trans to cis configuration is revealed by a shift of the fluorescence peak and by inspection of the infrared maker bands. The crystal packing apparently stabilizes the cis photoproduct, suggesting different environmental effects from the solvent molecules for this model chromophore in liquid solutions or from the amino acid residues for the PYP chromophore.
Collapse
|
37
|
Heyne K, Mohammed OF, Usman A, Dreyer J, Nibbering ETJ, Cusanovich MA. Structural evolution of the chromophore in the primary stages of trans/cis isomerization in photoactive yellow protein. J Am Chem Soc 2006; 127:18100-6. [PMID: 16366562 PMCID: PMC2580759 DOI: 10.1021/ja051210k] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structural changes induced by optical excitation of the chromophore in wild-type photoactive yellow protein (PYP) in liquid solution with a combined approach of polarization-sensitive ultrafast infrared spectroscopy and density functional theory calculations. We identify the nuC8-C9 marker modes for solution phase PYP in the P and I0 states, from which we derive that the first intermediate state I0 that appears with a 3 ps time constant can be characterized to have a cis geometry. This is the first unequivocal demonstration that the formation of I0 correlates with the conversion from the trans to the cis state. For the P and I0 states we compare the experimentally measured vibrational band patterns and anisotropies with calculations and find that for both trans and cis configurations the planarity of the chromophore has a strong influence. The C7=C8-(C9=O)-S moiety of the chromophore in the dark P state has a trans geometry with the C=O group slightly tilted out-of-plane, in accordance with the earlier reported structure obtained in an X-ray diffraction study of PYP crystals. In the case of I0, experiment and theory are only in agreement when the C7=C8-(C9=O)-S moiety has a planar configuration. We find that the carboxylic side group of Glu46 that is hydrogen-bonded to the chromophore phenolate oxygen does not alter its orientation on going from the electronic ground P state, via the electronic excited P state to the intermediate I0 state, providing conclusive experimental evidence that the primary stages of PYP photoisomerization involve flipping of the enone thioester linkage without significant relocation of the phenolate moiety.
Collapse
Affiliation(s)
- Karsten Heyne
- : Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Omar F. Mohammed
- : Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Anwar Usman
- : Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - J. Dreyer
- : Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Erik T. J. Nibbering
- : Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Michael A. Cusanovich
- :Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
38
|
Yeremenko S, van Stokkum IHM, Moffat K, Hellingwerf KJ. Influence of the crystalline state on photoinduced dynamics of photoactive yellow protein studied by ultraviolet-visible transient absorption spectroscopy. Biophys J 2006; 90:4224-35. [PMID: 16513787 PMCID: PMC1459521 DOI: 10.1529/biophysj.105.074765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved ultraviolet-visible spectroscopy was used to characterize the photocycle transitions in single crystals of wild-type and the E-46Q mutant of photoactive yellow protein (PYP) with microsecond time resolution. The results were compared with the results of similar measurements on aqueous solutions of these two variants of PYP, with and without the components present in the mother liquor of crystals. The experimental data were analyzed with global and target analysis. Distinct differences in the reaction path of a PYP molecule are observed between these conditions when it progresses through its photocycle. In the crystalline state i), much faster relaxation of the late blue-shifted photocycle intermediate back to the ground state is observed; ii), this intermediate in crystalline PYP absorbs at 380 nm, rather than at 350-360 nm in solution; and iii), for various intermediates of this photocycle the forward reaction through the photocycle directly competes with a branching reaction that leads directly to the ground state. Significantly, with these altered characteristics, the spectroscopic data on PYP are fully consistent with the structural data obtained for this photoreceptor protein with time-resolved x-ray diffraction analysis, particularly for wild-type PYP.
Collapse
Affiliation(s)
- Sergey Yeremenko
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Shimizu N, Imamoto Y, Harigai M, Kamikubo H, Yamazaki Y, Kataoka M. pH-dependent Equilibrium between Long Lived Near-UV Intermediates of Photoactive Yellow Protein. J Biol Chem 2006; 281:4318-25. [PMID: 16368695 DOI: 10.1074/jbc.m506403200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The long lived intermediate (signaling state) of photoactive yellow protein (PYP(M)), which is formed in the photocycle, was characterized at various pHs. PYP(M) at neutral pH was in equilibrium between two spectroscopically distinct states. Absorption maxima of the acidic form (PYP(M)(acid)) and alkaline form (PYP(M)(alkali)) were located at 367 and 356 nm, respectively. Equilibrium was represented by the Henderson-Hasselbalch equation, in which apparent pK(a) was 6.4. Content of alpha- and/or beta-structure of PYP(M)(acid) was significantly greater than PYP(M)(alkali) as demonstrated by the molar ellipticity at 222 nm. In addition, changes in amide I and II modes of beta-structure in the difference Fourier transform infrared spectra for formation of PYP(M)(acid) was smaller than that of PYP(M)(alkali). The vibrational mode at 1747 cm(-1) of protonated Glu-46 was found as a small band for PYP(M)(acid) but not for PYP(M)(alkali), suggesting that Glu-46 remains partially protonated in PYP(M)(acid), whereas it is fully deprotonated in PYP(M)(alkali). Small angle x-ray scattering measurements demonstrated that the radius of gyration of PYP(M)(acid) was 15.7 Angstroms, whereas for PYP(M)(alkali) it was 16.2 Angstroms. These results indicate that PYP(M)(acid) assumes a more ordered and compact structure than PYP(M)(alkali). Binding of citrate shifts this equilibrium toward PYP(M)(alkali). UV-visible absorption spectra and difference infrared spectra of the long lived intermediate formed from E46Q mutant was consistent with those of PYP(M)(acid), indicating that the mutation shifts this equilibrium toward PYP(M)(acid). Alterations in the nature of PYP(M) by pH, citrate, and mutation of Glu-46 are consistently explained by the shift of the equilibrium between PYP(M)(acid) and PYP(M)(alkali).
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Matsuhira T, Yamamoto H, Onoda A, Okamura TA, Ueyama N. Photoinduced switching of intramolecular hydrogen bond between amide NH and carboxyl oxygen. Org Biomol Chem 2006; 4:1338-42. [PMID: 16557322 DOI: 10.1039/b516049a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we synthesized two novel carboxylic acid and carboxylate compounds, both of which had an amide group linked with an azomethine moiety to introduce photoinduced switching of the intramolecular NH...O hydrogen bond. We suggest that the cis-carboxylate compound forms a stronger intramolecular NH...O hydrogen bond than the cis-carboxylic acid compound.
Collapse
Affiliation(s)
- Takashi Matsuhira
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
41
|
Rajagopal S, Anderson S, Srajer V, Schmidt M, Pahl R, Moffat K. A structural pathway for signaling in the E46Q mutant of photoactive yellow protein. Structure 2005; 13:55-63. [PMID: 15642261 DOI: 10.1016/j.str.2004.10.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 11/22/2022]
Abstract
In the bacterial photoreceptor photoactive yellow protein (PYP), absorption of blue light by its chromophore leads to a conformational change in the protein associated with differential signaling activity, as it executes a reversible photocycle. Time-resolved Laue crystallography allows structural snapshots (as short as 150 ps) of high crystallographic resolution (approximately 1.6 A) to be taken of a protein as it functions. Here, we analyze by singular value decomposition a comprehensive time-resolved crystallographic data set of the E46Q mutant of PYP throughout the photocycle spanning 10 ns-100 ms. We identify and refine the structures of five distinct intermediates and provide a plausible chemical kinetic mechanism for their inter conversion. A clear structural progression is visible in these intermediates, in which a signal generated at the chromophore propagates through a distinct structural pathway of conserved residues and results in structural changes near the N terminus, over 20 A distant from the chromophore.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
42
|
Imamoto Y, Harigai M, Kataoka M. Direct observation of the pH-dependent equilibrium between L-like and M intermediates of photoactive yellow protein. FEBS Lett 2005; 577:75-80. [PMID: 15527764 DOI: 10.1016/j.febslet.2004.09.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
Equilibrium between the photoproducts of photoactive yellow protein (PYP), present in a millisecond time scale, was studied. The near-UV intermediate of PYP (PYPM) was red-shifted by alkalization due to the deprotonation of the chromophore (pKa=10.2). In addition, a small amount of red-shifted intermediate coexisted with PYPM. Its spectral shape in the visible region agreed with that of PYPL, the precursor of PYPM. The fraction of PYPL-like product was maximal at pH 10. It decays with a rate constant identical to that of PYPM. These results indicate that PYPL-like product is in pH-dependent equilibrium with PYPM and deprotonated PYPM.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
43
|
Excited state dynamics of a PYP chromophore model system explored with ultrafast infrared spectroscopy. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Changenet-Barret P, Espagne A, Plaza P, Hellingwerf KJ, Martin MM. Investigations of the primary events in a bacterial photoreceptor for photomotility: photoactive yellow protein (PYP). NEW J CHEM 2005. [DOI: 10.1039/b418134d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Pan D, Philip A, Hoff WD, Mathies RA. Time-resolved resonance raman structural studies of the pB' intermediate in the photocycle of photoactive yellow protein. Biophys J 2004; 86:2374-82. [PMID: 15041675 PMCID: PMC1304086 DOI: 10.1016/s0006-3495(04)74294-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Time-resolved resonance Raman spectroscopy is used to obtain chromophore vibrational spectra of the pR, pB', and pB intermediates during the photocycle of photoactive yellow protein. In the pR spectrum, the C8-C9 stretching mode at 998 cm(-1) is approximately 60 cm(-1) lower than in the dark state, and the combination of C-O stretching and C7H=C8H bending at 1283 cm(-1) is insensitive to D2O substitution. These results indicate that pR has a deprotonated, cis chromophore structure and that the hydrogen bonding to the chromophore phenolate oxygen is preserved and strengthened in the early photoproduct. However, the intense C7H=C8H hydrogen out-of-plane (HOOP) mode at 979 cm(-1) suggests that the chromophore in pR is distorted at the vinyl and adjacent C8-C9 bonds. The formation of pB' involves chromophore protonation based on the protonation state marker at 1174 cm(-1) and on the sensitivity of the COH bending at 1148 cm(-1) as well as the combined C-OH stretching and C7H=C8H bending mode at 1252 cm(-1) to D2O substitution. The hydrogen out-of-plane Raman intensity at 985 cm(-1) significantly decreases in pB', suggesting that the pR-to-pB' transition is the stage where the stored photon energy is transferred from the distorted chromophore to the protein, producing a more relaxed pB' chromophore structure. The C=O stretching mode downshifts from 1660 to 1651 cm(-1) in the pB'-to-pB transition, indicating the reformation of a hydrogen bond to the carbonyl oxygen. Based on reported x-ray data, this suggests that the chromophore ring flips during the transition from pB' to pB. These results confirm the existence and importance of the pB' intermediate in photoactive yellow protein receptor activation.
Collapse
Affiliation(s)
- Duohai Pan
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
46
|
Kort R, Hellingwerf KJ, Ravelli RBG. Initial events in the photocycle of photoactive yellow protein. J Biol Chem 2004; 279:26417-24. [PMID: 15026418 DOI: 10.1074/jbc.m311961200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events.
Collapse
Affiliation(s)
- Remco Kort
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
47
|
Yoda M, Inoue Y, Sakurai M. Effect of Protein Environment on pKa Shifts in the Active Site of Photoactive Yellow Protein. J Phys Chem B 2003. [DOI: 10.1021/jp0364102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masaki Yoda
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan, and Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Inoue
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan, and Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan, and Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
48
|
Kort R, Ravelli RB, Schotte F, Bourgeois D, Crielaard W, Hellingwerf KJ, Wulff M. Characterization of photocycle intermediates in crystalline photoactive yellow protein. Photochem Photobiol 2003; 78:131-7. [PMID: 12945580 DOI: 10.1562/0031-8655(2003)078<0131:copiic>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photocycle in photoactive yellow protein (PYP) crystals was studied by single-crystal absorption spectroscopy with experimental setups for low-temperature and time-resolved measurements. Thin and flat PYP crystals, suitable for light absorption studies, were obtained using special crystallization conditions. Illumination of PYP crystals at 100 K led to the formation of a photostationary state, which includes at least one hypsochromic and one bathochromic photoproduct that resemble PYP(H) and PYP(B), respectively. The effect of temperature, light color and light pulse duration on the occupancy of these low-temperature photoproducts was determined and appeared similar to that observed in solution. At room temperature a blueshifted photocycle intermediate was identified that corresponds to the blueshifted state of PYP (pB). Kinetic studies show that the decay of this blueshifted intermediate is biphasic at -12 degrees C and 15-fold faster than that observed in solution at room temperature. These altered pB decay kinetics confirm a model that holds that the photocycle in crystals takes place in a shortcut version. In this version the key structural events of the photocycle, such as photoisomerization and reversible protonation of the chromophore, take place, but large conformational changes in the surrounding protein are limited by constraints imposed by the crystal lattice.
Collapse
Affiliation(s)
- Remco Kort
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Thompson MJ, Bashford D, Noodleman L, Getzoff ED. Photoisomerization and proton transfer in photoactive yellow protein. J Am Chem Soc 2003; 125:8186-94. [PMID: 12837088 DOI: 10.1021/ja0294461] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoactive yellow protein (PYP) is a bacterial photosensor containing a para-coumaryl thioester chromophore that absorbs blue light, initiating a photocycle involving a series of conformational changes. Here, we present computational studies to resolve uncertainties and controversies concerning the correspondence between atomic structures and spectroscopic measurements on early photocycle intermediates. The initial nanoseconds of the PYP photocycle are examined using time-dependent density functional theory (TDDFT) to calculate the energy profiles for chromophore photoisomerization and proton transfer, and to calculate excitation energies to identify photocycle intermediates. The calculated potential energy surface for photoisomerization matches key, experimentally determined, spectral parameters. The calculated excitation energy of the photocycle intermediate cryogenically trapped in a crystal structure by Genick et al. [Genick, U. K.; Soltis, S. M.; Kuhn, P.; Canestrelli, I. L.; Getzoff, E. D. Nature 1998, 392, 206-209] supports its assignment to the PYP(B) (I(0)) intermediate. Differences between the time-resolved room temperature (298 K) spectrum of the PYP(B) intermediate and its low temperature (77 K) absorbance are attributed to a predominantly deprotonated chromophore in the former and protonated chromophore in the latter. This contrasts with the widely held belief that chromophore protonation does not occur until after the PYP(L) (I(1) or pR) intermediate. The structure of the chromophore in the PYP(L) intermediate is determined computationally and shown to be deprotonated, in agreement with experiment. Calculations based on our PYP(B) and PYP(L) models lead to insights concerning the PYP(BL) intermediate, observed only at low temperature. The results suggest that the proton is more mobile between Glu46 and the chromophore than previously realized. The findings presented here provide an example of the insights that theoretical studies can contribute to a unified analysis of experimental structures and spectra.
Collapse
Affiliation(s)
- Michael J Thompson
- Department of Molecular Biology, MB4, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
50
|
Premvardhan LL, van der Horst MA, Hellingwerf KJ, van Grondelle R. Stark spectroscopy on photoactive yellow protein, E46Q, and a nonisomerizing derivative, probes photo-induced charge motion. Biophys J 2003; 84:3226-39. [PMID: 12719252 PMCID: PMC1302883 DOI: 10.1016/s0006-3495(03)70047-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The change in the electrostatic properties on excitation of the cofactor of wild-type photoactive yellow protein (WT-PYP) have been directly determined using Stark-effect spectroscopy. We find that, instantaneously on photon absorption, there is a large change in the permanent dipole moment, /Delta(-->)mu/, (26 Debye) and in the polarizability, (-)Deltaalpha, (1000 A(3)). We expect such a large degree of charge motion to have a significant impact on the photocycle that is associated with the important blue-light negative phototactic response of Halorhodospira halophila. Furthermore, changing E46 to Q in WT-PYP does not significantly alter its electrostatic properties, whereas, altering the chromophore to prevent it from undergoing trans-cis isomerization results in a significant diminution of /Delta(-->)mu/ and (-)Deltaalpha. We propose that the enormous charge motion that occurs on excitation of 4-hydroxycinnamyl thioester, the chromophore in WT-PYP, plays a crucial role in initiating the photocycle by translocation of the negative charge, localized on the phenolate oxygen in the ground state, across the chromophore. We hypothesize that this charge motion would consequently increase the flexibility of the thioester tail thereby decreasing the activation barrier for the rotation of this moiety in the excited state.
Collapse
Affiliation(s)
- L L Premvardhan
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, de Boelelaan, 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|