1
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Yuan AT, Willans MJ, Stillman MJ. Supermetalation of Cd-MT3 beyond the two-domain model. J Inorg Biochem 2023; 249:112392. [PMID: 37832463 DOI: 10.1016/j.jinorgbio.2023.112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The flexibility of mammalian metallothioneins (MTs) has contributed to the difficulty in obtaining structural information for this family of metalloproteins that bind divalent metals with its twenty cysteines. While the two-domain structure for Cd7MT is well-established as a Cd4S11 and Cd3S9, a third structure has been reported when 8 Cd(II) ions bind to MT1. Isoform 3 of the MT family, MT3, has been of interest to the research community since its isolation as a growth inhibitory factor isolated in brain tissue, and has since been noted as a prominent participant in the mediation of neurodegenerative diseases and regular brain development. The differences between MT3 and the other isoforms of MT include an additional hexapeptide insertion of acidic residues in the α domain as well as the introduction of two prolines in the β domain. It is unclear whether these changes impact the metalation properties of MT3. We report the formation of a Cd8MT3 species is characterized by electrospray ionization mass spectrometry and UV-visible absorption spectroscopy. We report that the spectroscopic properties of this supermetalated Cd8MT3 are similar to those of the supermetalated Cd8MT1, with a clear indication of changes in structure from "fully-metalated" Cd7MT3 to supermetalated Cd8MT3 from circular dichroism spectra and both 1D 113Cd and 2D 1H-113Cd HSQC NMR spectra. We conclude that the metalation properties are not impacted significantly due to the amino acid changes in MT3, and that the cysteinyl thiols are the key players in determining the capacity of metal-binding and the structure of metal-thiolate clusters.
Collapse
Affiliation(s)
- Amelia T Yuan
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada
| | - Martin J Stillman
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada.
| |
Collapse
|
3
|
Yuan AT, Stillman MJ. Metallothionein-3 and carbonic anhydrase metalation properties with Zn(II) and Cd(II) change as a result of protein-protein interactions. Metallomics 2023; 15:mfad056. [PMID: 37723614 DOI: 10.1093/mtomcs/mfad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Metallothioneins (MT) are regulators of the metals Zn(II) and Cu(I) and act as antioxidants in many organisms, including in humans. Isoform 3 (MT3) is expressed constitutively in central nervous tissue and has been shown to have additional biological functions, including the inhibition of neuronal growth, the regulation of apoptosis, and cytoskeleton modulation. To facilitate these functions, protein-protein interactions likely occur. These interactions may then impact the metalation status of the MT and the recipient metalloprotein. Using electrospray ionization mass spectrometry and circular dichroism spectroscopy, we report that the interaction between the zinc metalloenzyme, carbonic anhydrase (CA), and MT3, impacts the metalation profiles of both apo-MT3 and apo-CA with Cd(II) and Zn(II). We observe two phases in the metalation of the apo-CA, the first of which is associated with an increased binding affinity of apo-CA for Cd/Zn(II) and the second pathway is associated with apo-CA metalated without a change in binding affinity. The weak interactions that result in this change of binding affinity are not detectable as a protein complex in the ESI-mass spectral data or in the circular dichroism spectra. These unusual metalation properties of apo-CA in the presence of apo-MT3 are evidence of the effects of protein-protein interactions. With adjustment to take into account the interaction of both proteins, we report the complete Cd(II) and Zn(II) binding constants of MT3 under physiological conditions, as well as the pH dependence of these binding pathways.
Collapse
Affiliation(s)
- Amelia T Yuan
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Martin J Stillman
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
6
|
Yuan G, Curtolo F, Deng Y, Wu T, Tian F, Ma Q, Liu Y, Zuo J, Arantes GM, Zheng P. Highly Dynamic Polynuclear Metal Cluster Revealed in a Single Metallothionein Molecule. RESEARCH 2021; 2021:9756945. [PMID: 34368766 PMCID: PMC8299258 DOI: 10.34133/2021/9756945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
Human metallothionein (MT) is a small-size yet efficient metal-binding protein, playing an essential role in metal homeostasis and heavy metal detoxification. MT contains two domains, each forming a polynuclear metal cluster with an exquisite hexatomic ring structure. The apoprotein is intrinsically disordered, which may strongly influence the clusters and the metal-thiolate (M-S) bonds, leading to a highly dynamic structure. However, these features are challenging to identify due to the transient nature of these species. The individual signal from dynamic conformations with different states of the cluster and M-S bond will be averaged and blurred in classic ensemble measurement. To circumvent these problems, we combined a single-molecule approach and multiscale molecular simulations to investigate the rupture mechanism and chemical stability of the metal cluster by a single MT molecule, focusing on the Zn4S11 cluster in the α domain upon unfolding. Unusual multiple unfolding pathways and intermediates are observed for both domains, corresponding to different combinations of M-S bond rupture. None of the pathways is clearly preferred suggesting that unfolding proceeds from the distribution of protein conformational substates with similar M-S bond strengths. Simulations indicate that the metal cluster may rearrange, forming and breaking metal-thiolate bonds even when MT is folded independently of large protein backbone reconfiguration. Thus, a highly dynamic polynuclear metal cluster with multiple conformational states is revealed in MT, responsible for the binding promiscuity and diverse cellular functions of this metal-carrier protein.
Collapse
Affiliation(s)
- Guodong Yuan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Felipe Curtolo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qun Ma
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinglin Zuo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Metallothionein 3 Promotes Osteoblast Differentiation in C2C12 Cells via Reduction of Oxidative Stress. Int J Mol Sci 2021; 22:ijms22094312. [PMID: 33919218 PMCID: PMC8122383 DOI: 10.3390/ijms22094312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Metallothioneins (MTs) are intracellular cysteine-rich proteins, and their expressions are enhanced under stress conditions. MTs are recognized as having the ability to regulate redox balance in living organisms; however, their role in regulating osteoblast differentiation is still unclear. In this research, we found that the expression of MT3, one member of the MT protein family, was specifically upregulated in the differentiation process of C2C12 myoblasts treated with bone morphogenetic protein 4 (BMP4). Transfection with MT3-overexpressing plasmids in C2C12 cells enhanced their differentiation to osteoblasts, together with upregulating the protein expression of bone specific transcription factors runt-related gene 2 (Runx2), Osterix, and distal-less homeobox 5 (Dlx5). Additionally, MT3 knockdown performed the opposite. Further studies revealed that overexpression of MT3 decreased reactive oxygen species (ROS) production in C2C12 cells treated with BMP4, and MT3 silencing enhanced ROS production. Treating C2C12 cells with antioxidant N-acetylcysteine also promoted osteoblast differentiation, and upregulated Runx2/Osterix/Dlx5, while ROS generator antimycin A treatment performed the opposite. Finally, antimycin A treatment inhibited osteoblast differentiation and Runx2/Osterix/Dlx5 expression in MT3-overexpressing C2C12 cells. These findings identify the role of MT3 in osteoblast differentiation and indicate that MT3 may have interesting potential in the field of osteogenesis research.
Collapse
|
8
|
Pérez-Zúñiga C, Leiva-Presa À, Austin RN, Capdevila M, Palacios Ò. Pb(ii) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains. Metallomics 2020; 11:349-361. [PMID: 30516222 DOI: 10.1039/c8mt00294k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The toxicity of lead, one of the most ubiquitous toxic metals, is well known. Some of its pathological effects are related to its preference for the sulfhydryl groups of proteins. Metallothioneins (MT) are a particular family of metalloproteins characterized by their high Cys content that, among other functions, are linked to the detoxification of heavy metals. In mammals, 4 MT isoforms have been found. The MT3 isoform, also called "neuronal growth inhibitory factor", is mainly synthesized in the brain and contains several structural differences that may contribute to important functional differences between it and other MT isoforms. The abilities of recombinant MT3 and its individual αMT3 and βMT3 fragments to bind Pb(ii) have been investigated here, under different pH conditions, by means of spectroscopy, mass spectrometry and isothermal titration calorimetry. The results obtained show that the binding of Pb(ii) to the intact MT3 protein is relatively unaffected by pH, while the individual domains interact with Pb(ii) in a pH-sensitive manner. The mass spectrometry data reveal the evolution with time of the initially formed Pb-MT complexes. In the case of the full length protein, Pb(ii) remains bound for a long period of time. With the isolated fragments, the lead is eventually released. The Pb-species formed depend on the amount of Pb(ii) present in solution. The thermodynamic data recorded, as measured by ITC, for the replacement of Zn(ii) by Pb(ii) in reactions with Zn-MT3, Zn-αMT3 and Zn-βMT3 are all similar, and in all cases, the displacement of Zn(ii) by Pb(ii) is thermodynamically favorable. Zn-Replete and Pb-replete MT3 have distinctive circular dichroism spectra, suggestive of structural differences with different metallation status.
Collapse
Affiliation(s)
- Catalina Pérez-Zúñiga
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
9
|
Comes G, Fernandez-Gayol O, Molinero A, Giralt M, Capdevila M, Atrian S, Hidalgo J. Mouse metallothionein-1 and metallothionein-2 are not biologically interchangeable in an animal model of multiple sclerosis, EAE. Metallomics 2020; 11:327-337. [PMID: 30543238 DOI: 10.1039/c8mt00285a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mouse metallothionein-1 and 2 (MT1 and MT2) are often considered physiologically equivalent, because they are normally regulated coordinately by a wide range of stimuli, and it is assumed that in vivo they will be normally fully loaded with zinc(ii) (Zn7-MT1/2), although other metal ions, such as copper(i), may be eventually found as well. However, mouse MT2, in contrast to MT1, exhibits a preference for Zn(ii) coordination in comparison to that for Cu(i), which might underlie putatively different biological functions for these two mammalian isoforms. We have characterized the effects of exogenously administered mouse MT1 and MT2, and of transgenic Mt1 overexpression, in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), by active immunization with MOG35-55 peptide. Mice treated daily with MT2 showed a significant amelioration of the clinical course, with decreased peak and cumulative scores and delayed onset of EAE. In contrast, treatment with MT1 or its transgenic overexpression only caused a non-significant trend. MT2 treatment preserved better the myelin of the spinal cord, and the pattern of leukocyte infiltrates and gene expression are compatible with an inhibitory effect on neuroinflammation. Splenocytes from these animals in culture responded adequately to MOG35-55 peptide, but a bias for a Th2 profile seemed to be present in the MT2-treated mice. Interestingly, MT1 but not MT2 decreased the number of cytokines in the serum. The present results indicate that mouse MT1 and MT2 are not biologically interchangeable in the EAE model.
Collapse
Affiliation(s)
- Gemma Comes
- Animal Physiology Unit, C/Vall Moronta s/n, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
10
|
Calvo JS, Lopez VM, Meloni G. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters. Metallomics 2019; 10:1777-1791. [PMID: 30420986 DOI: 10.1039/c8mt00264a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian metallothioneins (MT-1 through MT-4) are a class of metal binding proteins containing two metal-thiolate clusters formed through the preferential coordination of d10 metals, Cu(i) and Zn(ii), by 20 conserved cysteine residues located in two protein domains. MT metalation (homometallic or heterometallic Zn(ii)/Cu(i) species) appears to be isoform specific and controlling zinc and copper concentrations to perform specific and distinct biological functions. Structural and functional relationships, and in vivo metalation studies, identified evolutionary features defining the metal-selectivity nature for MTs. Metallothionein-3 (MT-3) has been shown to possess the most pronounced Cu-thionein character forming Cu(i)-containing species more favorably than metallothionein-2 (MT-2), which possesses the strongest Zn-thionein character. In this work, we identify isoform-specific determinants which control metal binding selectivity bias in different MTs isoforms. By studying the reactivity of Zn7MT-2, Zn7MT-3 and Zn7MT-3 mutants towards Cu(ii) to form Cu(i)4Zn4MTs, we have identified isoform-specific key non-coordinating residues governing folding/outer sphere control of metal selectivity bias in MTs metal clusters. By mutating selected residues and motifs in MT-3 to the corresponding MT-2 amino acids, we dissected key roles in modulating cluster dynamic and metal exchange rates, in increasing the Cu(i)-affinity in MT-3 N-terminal β-domain and/or modulating the higher stability of the Zn(ii)-thiolate cluster in MT-2 β-domain. We thus engineered MT-3 variants in which the copper-thionein character is converted into a zinc-thionein. These results provide new insights into the molecular determinants governing metal selectivity in metal-thiolate clusters.
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | | | | |
Collapse
|
11
|
Carpenter MC, Shami Shah A, DeSilva S, Gleaton A, Su A, Goundie B, Croteau ML, Stevenson MJ, Wilcox DE, Austin RN. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein. Metallomics 2017; 8:605-17. [PMID: 26757944 DOI: 10.1039/c5mt00209e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.
Collapse
Affiliation(s)
- M C Carpenter
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - A Shami Shah
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - S DeSilva
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Gleaton
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Su
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - B Goundie
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - M L Croteau
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - M J Stevenson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - R N Austin
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA and Department of Chemistry, Barnard College, Columbia University, NY, NY 10027, USA.
| |
Collapse
|
12
|
Bousleiman J, Pinsky A, Ki S, Su A, Morozova I, Kalachikov S, Wiqas A, Silver R, Sever M, Austin RN. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3? Int J Mol Sci 2017; 18:ijms18061133. [PMID: 28587098 PMCID: PMC5485957 DOI: 10.3390/ijms18061133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.
Collapse
Affiliation(s)
- Jamie Bousleiman
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Alexa Pinsky
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Sohee Ki
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Angela Su
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amen Wiqas
- Department of Biology, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rae Silver
- Department of Psychology and Program in Neuroscience, Barnard College of Columbia University, New York, NY 10027, USA.
- Department of Psychology, Columbia University, New York, NY 10027, USA.
- Department of Pathology and Cell Biology Columbia Health Sciences, New York, NY 10027, USA.
| | - Mary Sever
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Mammalian Metallothionein-3: New Functional and Structural Insights. Int J Mol Sci 2017; 18:ijms18061117. [PMID: 28538697 PMCID: PMC5485941 DOI: 10.3390/ijms18061117] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Metallothionein-3 (MT-3), a member of the mammalian metallothionein (MT) family, is mainly expressed in the central nervous system (CNS). MT-3 possesses a unique neuronal growth inhibitory activity, and the levels of this intra- and extracellularly occurring metalloprotein are markedly diminished in the brain of patients affected by a number of metal-linked neurodegenerative disorders, including Alzheimer’s disease (AD). In these pathologies, the redox cycling of copper, accompanied by the production of reactive oxygen species (ROS), plays a key role in the neuronal toxicity. Although MT-3 shares the metal-thiolate clusters with the well-characterized MT-1 and MT-2, it shows distinct biological, structural and chemical properties. Owing to its anti-oxidant properties and modulator function not only for Zn, but also for Cu in the extra- and intracellular space, MT-3, but not MT-1/MT-2, protects neuronal cells from the toxicity of various Cu(II)-bound amyloids. In recent years, the roles of zinc dynamics and MT-3 function in neurodegeneration are slowly emerging. This short review focuses on the recent developments regarding the chemistry and biology of MT-3.
Collapse
|
14
|
Calvo J, Jung H, Meloni G. Copper metallothioneins. IUBMB Life 2017; 69:236-245. [PMID: 28296007 DOI: 10.1002/iub.1618] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/16/2017] [Indexed: 11/10/2022]
Abstract
Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017.
Collapse
Affiliation(s)
- Jenifer Calvo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Hunmin Jung
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
15
|
El Ghazi I, Martin BL, Armitage IM. Metallothionein-3 Is a Component of a Multiprotein Complex in the Mouse Brain. Exp Biol Med (Maywood) 2016; 231:1500-6. [PMID: 17018872 DOI: 10.1177/153537020623100908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallothlonein (MT)-3, originally called growth inhibitory factor (GIF), was initially identified through its ability to Inhibit the growth of neuronal cells in the presence of brain extract. MT-3 is the brain specific isoform of the MT family whose specific biological activity associates it with neurological disorders. Indeed, studies report that MT-3 is decreased by ~30% in brains of patients with Alzheimer disease (AD). Furthermore, many lines of evidence suggest that MT-3 engages in specific protein interactions. To address this, we conducted Immunoaffinity chromatography experiments using an immobilized anti-mouse MT-3 antibody. We identified five associated proteins from the pool of sixteen recovered using mass spectrometry and tandem mass spectrometry after in-gel trypsin digestion of bands from the affinity chromatography. The proteins identified were: heat shock protein 84 (HSP84), heat shock protein 70 (HSP70), dihydropyrimidinase-like protein-2 (DRP-2), creatine kinase (CK) and β-actin. Coimmunoprecipitation experiments, also conducted on whole mouse brain extract using the anti-mouse MT-3 antibody along with commercially available antibodies against HSP84 and CK, confirmed that these three proteins were in a single protein complex. Immunohistochemical experiments were then conducted on the perfused mouse brain that confirmed the in situ colocallzation of CK and MT-3 in the hippocampus region. These data provide new Insights into the involvement of MT-3 in a multiprotein complex, which will be used to understand the biological activity of MT-3 and its role in neurological disease.
Collapse
Affiliation(s)
- I El Ghazi
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
16
|
Glanzer S, Zangger K. Directly decoupled diffusion-ordered NMR spectroscopy for the analysis of compound mixtures. Chemistry 2014; 20:11171-5. [PMID: 25059845 PMCID: PMC4497316 DOI: 10.1002/chem.201402920] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 11/06/2022]
Abstract
For the analysis of compound mixtures by NMR spectroscopy, it is important to assign the different peaks to the individual constituents. Diffusion-ordered spectroscopy (DOSY) is often used for the separation of signals based on their self-diffusion coefficient. However, this method often fails in the case of signal overlap, which is a particular problem for (1)H-detected DOSY spectra. Herein, an approach that allows the acquisition of homonuclear broadband-decoupled DOSY spectra without the introduction of an additional decoupling dimension, by instant decoupling during acquisition, is presented. It was demonstrated on a mixture of six alcohols, and the investigation of the binding of a dodecapeptide to membrane mimetics.
Collapse
Affiliation(s)
- Simon Glanzer
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| |
Collapse
|
17
|
Abstract
Mammalian metallothioneins (MTs) comprise a Zn3Cys9 cluster in the β domain and a Zn4Cys11 cluster in the α domain. They play a crucial role in storing and donating Zn(2+) ions to target metalloproteins and have been implicated in several diseases, thus understanding how MTs release Zn(2+) is of widespread interest. In this work, we present a strategy to compute the free energy for releasing Zn(2+) from MTs using a combination of classical molecular dynamics (MD) simulations, quantum-mechanics/molecular-mechanics (QM/MM) minimizations, and continuum dielectric calculations. The methodology is shown to reproduce the experimental observations that (1) the Zn-binding sites do not have equal Zn(2+) affinity and (2) the isolated β domain is thermodynamically less stable and releases Zn(2+) faster with oxidizing agents than the isolated α domain. It was used to compute the free energies for Zn(2+) release from the metal cluster in the absence and presence of the protein matrix (protein architecture and coupled protein-water interactions) to yield the respective disulfide-bonded product. The results show the importance of the protein matrix as well as protein dynamics and coupled conformational changes in accounting for the differential Zn(2+)-releasing propensity of the two domains with oxidizing agents.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan , R.O.C
| | | | | | | |
Collapse
|
18
|
Artells E, Palacios O, Capdevila M, Atrian S. In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein. FEBS J 2014; 281:1659-78. [PMID: 24479872 DOI: 10.1111/febs.12731] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders caused by insoluble Cu-peptide aggregates, as it triggers a Zn-Cu swap that may counteract the deleterious presence of copper in neural tissues. The literature data on MT3 coordination come from studies either on apo-MT3 reconstitution or the reaction of Zn-MT3 with Cu(2+) , an ion that is hardly present inside cells. To ascertain the MT3 metal-binding features in a scenario closer to the reductive cell cytoplasm, a study of the recombinant Zn(2+) , Cd(2+) and Cu(+) complexes of MT3, βMT3, and αMT3, as well as the in vitro Zn(2+) -Cd(2+) and Zn(2+) -Cu(+) replacement processes, is presented here. We conclude that MT3 has a Cu-thionein character that is stronger than that of the MT1 and MT2 isoforms - also present in the mammalian brain - which is mainly contributed by its β domain. In contrast, the α domain retains a high capacity to bind Zn(2+) ions, and, consequently, the entire MT3 peptide shows a peculiar dual ability to handle both metal ions. The nature of the formed Cu(+) -MT3 complexes oscillates from heterometallic Cu6 Zn4 -MT3 to homometallic Cu10 -MT3 major species, in a narrow Cu concentration range. Therefore, the entire MT3 peptide shows a high capacity to bind Cu(+) , provided that this occurs in a nonoxidative milieux. This reflects a peculiar property of this MT isoform, which accurately senses different Cu contents in the environment in which it is synthesized.
Collapse
Affiliation(s)
- Ester Artells
- Departament de Química, Universitat Autònoma de Barcelona, Spain; Departament de Genètica, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Artells E, Palacios Ò, Capdevila M, Atrian S. Mammalian MT1 and MT2 metallothioneins differ in their metal binding abilities. Metallomics 2013; 5:1397-410. [DOI: 10.1039/c3mt00123g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
|
21
|
Armitage IM, Drakenberg T, Reilly B. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview. Met Ions Life Sci 2013; 11:117-44. [PMID: 23430773 PMCID: PMC5245840 DOI: 10.1007/978-94-007-5179-8_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our laboratories have actively published in this area for several years and the objective of this chapter is to present as comprehensive an overview as possible. Following a brief review of the basic principles associated with (113)Cd NMR methods, we will present the results from a thorough literature search for (113)Cd chemical shifts from metalloproteins. The updated (113)Cd chemical shift figure in this chapter will further illustrate the excellent correlation of the (113)Cd chemical shift with the nature of the coordinating ligands (N, O, S) and coordination number/geometry, reaffirming how this method can be used not only to identify the nature of the protein ligands in uncharacterized cases but also the dynamics at the metal binding site. Specific examples will be drawn from studies on alkaline phosphatase, Ca(2+) binding proteins, and metallothioneins.In the case of Escherichia coli alkaline phosphatase, a dimeric zinc metalloenzyme where a total of six metal ions (three per monomer) are involved directly or indirectly in providing the enzyme with maximal catalytic activity and structural stability, (113)Cd NMR, in conjunction with (13)C and (31)P NMR methods, were instrumental in separating out the function of each class of metal binding sites. Perhaps most importantly, these studies revealed the chemical basis for negative cooperativity that had been reported for this enzyme under metal deficient conditions. Also noteworthy was the fact that these NMR studies preceded the availability of the X-ray crystal structure.In the case of the calcium binding proteins, we will focus on two proteins: calbindin D(9k) and calmodulin. For calbindin D(9k) and its mutants, (113)Cd NMR has been useful both to follow actual changes in the metal binding sites and the cooperativity in the metal binding. Ligand binding to calmodulin has been studied extensively with (113)Cd NMR showing that the metal binding sites are not directly involved in the ligand binding. The (113)Cd chemical shifts are, however, exquisitely sensitive to minute changes in the metal ion environment.In the case of metallothionein, we will reflect upon how (113)Cd substitution and the establishment of specific Cd to Cys residue connectivity by proton-detected heteronuclear (1)H-(113)Cd multiple-quantum coherence methods (HMQC) was essential for the initial establishment of the 3D structure of metallothioneins, a protein family deficient in the regular secondary structural elements of α-helix and β-sheet and the first native protein identified with bound Cd. The (113)Cd NMR studies also enabled the characterization of the affinity of the individual sites for (113)Cd and, in competition experiments, for other divalent metal ions: Zn, Cu, and Hg.
Collapse
Affiliation(s)
- Ian M Armitage
- Department of Biochemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
22
|
A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein. Mol Biol Rep 2012; 40:983-97. [DOI: 10.1007/s11033-012-2140-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
23
|
Meloni G, Crameri A, Fritz G, Davies P, Brown DR, Kroneck PMH, Vašák M. The Catalytic Redox Activity of Prion Protein-CuII is Controlled by Metal Exchange with the ZnII-Thiolate Clusters of Zn7Metallothionein-3. Chembiochem 2012; 13:1261-5. [DOI: 10.1002/cbic.201200198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Indexed: 11/06/2022]
|
24
|
Zhang L, Wu J, Wang X, Liu B, Ma B. Isolation of metallothionein genes and in silico structural characterization of their proteins using molecular modeling from yak (Bos grunniens). Biochem Genet 2012; 50:585-99. [PMID: 22399135 DOI: 10.1007/s10528-012-9503-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022]
Abstract
Yak metallothioneins (BgMTs) are cysteine-rich metal-chelating proteins with highly conserved cysteine residues in their amino acid sequences. The 3D structures of the Cd(7)-BgMTs reconstructed by molecular modeling included two domains: the β-domain with M(3)(S(cys))(9) metal-thiolate clusters and the α-domain with M(4)(S(cys))(11) metal-thiolate clusters. An unusual variant was found at position 30 (Cys30→Ser30) in BgMT-III, which is usually conserved in the mammalian MT-I/-II (Cys29) and MT-III (Cys30). The variant residue of BgMT-III may play a key role in yak genetic evolution, metal-binding activity, dynamic conformation, and heavy metal metabolism. BgMT-III contained a Thr insertion at position 5 (T(5)), which may loosen the structure of the β-domain of BgMT-III, and a conserved C(6)PCP(9) motif, which may provide an interacting surface for protein-protein interactions. There is also an acidic hexapeptide insertion (E(55)GAEAE(60)) that could regulate the particular interdomain interactions and lead to the conformational change in the β-domain.
Collapse
Affiliation(s)
- Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China
| | | | | | | | | |
Collapse
|
25
|
Capdevila M, Bofill R, Palacios Ò, Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Tang XY, Yuan RX, Chen JX, Zhao W, Zheng AX, Yu M, Li HX, Ren ZG, Lang JP. Group 12 metal zwitterionic thiolate compounds: preparation and structural characterization. Dalton Trans 2012; 41:6162-72. [DOI: 10.1039/c2dt30313b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Freisinger E. Structural features specific to plant metallothioneins. J Biol Inorg Chem 2011; 16:1035-45. [PMID: 21688177 DOI: 10.1007/s00775-011-0801-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
Abstract
The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including Zn(II), Cd(II), and Cu(I). The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat E(c)-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal-thiolate cluster structures.
Collapse
Affiliation(s)
- Eva Freisinger
- Institute of Inorganic Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Vašák M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011; 16:1067-78. [PMID: 21647776 DOI: 10.1007/s00775-011-0799-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal-thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.
Collapse
Affiliation(s)
- Milan Vašák
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
29
|
Meloni G, Vašák M. Redox activity of α-synuclein-Cu is silenced by Zn₇-metallothionein-3. Free Radic Biol Med 2011; 50:1471-9. [PMID: 21320589 DOI: 10.1016/j.freeradbiomed.2011.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/25/2011] [Accepted: 02/06/2011] [Indexed: 11/26/2022]
Abstract
The aggregation of α-synuclein (α-Syn), the major component of intracellular Lewy body inclusions in dopaminergic neurons of the substantia nigra, plays a critical role in the etiology of Parkinson disease (PD). Long-term effects of redox-active transition metals (Cu, Fe) and oxidative chemical imbalance underlie the disease progression and neuronal death. In this work, we provide evidence that a brain metalloprotein, Zn₇-metallothionein-3 (Zn₇MT-3), possesses a dynamic role in controlling aberrant protein-copper interactions in PD. We examined the properties of the α-Syn-Cu(II) complex with regard to molecular oxygen, the biological reducing agent ascorbate, and the neurotransmitter dopamine. The results revealed that under aerobic conditions α-Syn-Cu(II) possesses catalytic oxidase activity. The observed metal-centered redox chemistry significantly promotes the production of hydroxyl radicals and α-Syn oxidation and oligomerization, processes considered critical for cellular toxicity. Moreover, we show that Zn₇MT-3, through Cu(II) removal from the α-Syn-Cu(II) complex, efficiently prevents its deleterious redox activity. We demonstrate that the Cu(II) reduction by thiolate ligands of Zn₇MT-3 and the formation of Cu(I)₄Zn₄MT-3, in which an unusual oxygen-stable Cu(I)₄-thiolate cluster is present, comprise the underlying molecular mechanism by which α-Syn and dopamine oxidation, α-Syn oligomerization, and ROS production are abolished. These studies provide new insights into the bioinorganic chemistry of PD.
Collapse
Affiliation(s)
- Gabriele Meloni
- Department of Biochemistry, University of Zurich, 8057 Zürich, Switzerland.
| | | |
Collapse
|
30
|
|
31
|
Faller P. Neuronal growth-inhibitory factor (metallothionein-3): reactivity and structure of metal-thiolate clusters*. FEBS J 2010; 277:2921-30. [DOI: 10.1111/j.1742-4658.2010.07717.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ding ZC, Ni FY, Huang ZX. Neuronal growth-inhibitory factor (metallothionein-3): structure-function relationships. FEBS J 2010; 277:2912-20. [DOI: 10.1111/j.1742-4658.2010.07716.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Blindauer CA, Leszczyszyn OI. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 2010; 27:720-41. [PMID: 20442962 DOI: 10.1039/b906685n] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metallothioneins have been the subject of intense study for five decades, and have greatly inspired the development of bio-analytical methodologies including multi-dimensional and multi-nuclear NMR.With further advancements in molecular biology, protein science, and instrumental techniques, recent years have seen a renaissance of research into metallothioneins. The current report focuses on in vitro studies of so-called class II metallothioneins from a variety of phyla, highlighting the diversity of metallothioneins in terms of structure, biological functions, and molecular functions such as metal ion specificity, thermodynamic stabilities, and kinetic reactivity. We are still far from being able to predict any of these properties, and further efforts will be required to generate the knowledge that will enable a better understanding of what governs the biological and chemical properties of these unusual and intriguing small proteins.
Collapse
|
34
|
Faller P. Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem 2010; 10:2837-45. [PMID: 19877000 DOI: 10.1002/cbic.200900321] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The metal ions copper, zinc and iron have been shown to be involved in Alzheimer's disease (AD). Cu, Zn and Fe ions are proposed to be implicated in two key steps of AD pathology: 1) aggregation of the peptide amyloid-beta (Abeta), and 2) production of reactive oxygen species (ROS) induced by Abeta. There is compelling evidence that Cu and Zn bind directly to Abeta in AD. This formation of Cu/Zn-Abeta complexes is thought to be aberrant as they have been detected only in AD, but not under healthy conditions. In this context, the understanding of how these metal ions interact with Abeta, their influence on structure and oligomerization become an important issue for AD. Moreover, the mechanism of ROS production by Cu-Abeta in relation to its aggregations state, as well as the metal-transfer reaction from and to Abeta are crucial in order to understand why Abeta oligomers are highly toxic and why Abeta seems to bind Cu and Zn only in AD.
Collapse
|
35
|
Torreggiani A, Tinti A. Raman spectroscopy a promising technique for investigations of metallothioneins. Metallomics 2010; 2:246-60. [DOI: 10.1039/b922526a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Kim HG, Hwang YP, Han EH, Choi CY, Yeo CY, Kim JY, Lee KY, Jeong HG. Metallothionein-III provides neuronal protection through activation of nuclear factor-kappaB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway. Toxicol Sci 2009; 112:435-49. [PMID: 19767621 DOI: 10.1093/toxsci/kfp230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metallothionein (MT)-III is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. The present study investigated the mechanisms of MT-III protection of neuronal cells from hypoxia or DNA damage-induced cell death. MT-III reduced the hydrogen peroxide- or DNA damage-induced effects on neuronal cells, including the cell death, the activation of caspase-3 and -9, and the release of mitochondrial cytochrome c to the cytoplasm in a dose-dependent manner. MT-III also increased the activation of Akt, the phosphorylation and degradation of IkappaB, the nuclear translocation/accumulation and the transcriptional activity of nuclear factor-kappaB (NF-kappaB) in neuronal cells in a dose-dependent manner. The MT-III-induced antiapoptotic effects and increase in NF-kappaB activity were blocked by specific inhibitors of TrkA, phosphatidylinositol-3 kinase (PI3K), Akt, or NF-kappaB, indicating that MT-III provides neuronal protection by activating NF-kappaB through the TrkA/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Pharmacy and Research Center for Proteineous Materials, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Meloni G, Polanski T, Braun O, Vasák M. Effects of Zn(2+), Ca(2+), and Mg(2+) on the structure of Zn(7)metallothionein-3: evidence for an additional zinc binding site. Biochemistry 2009; 48:5700-7. [PMID: 19425569 DOI: 10.1021/bi900366p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain, where it plays an important role in the homeostasis of the essential metal ions Cu(+) and Zn(2+). Like other mammalian metallothioneins (MT-1 and -2), the protein contains a M(II)(3)(CysS)(9) and a M(II)(4)(CysS)(11) cluster localized in two independent protein domains linked by a flexible hinge region. However, there is a substantially increased number of acidic residues in MT-3 (11 residues) compared with MT-2 (four residues) which may act as binding ligands for additional metal ions. In this study, the binding of Zn(2+), Ca(2+), and Mg(2+) to human Zn(7)MT-3 and its mutant lacking an acidic hexapeptide insert, Zn(7)MT-3(Delta55-60), was investigated and compared with the binding of Zn(7)MT-2. By using spectroscopic and spectrometric techniques, we demonstrate that one additional Zn(2+) binds with an apparent binding constant (K(app)) of approximately 100 microM to Zn(7)MT-3 and Zn(7)MT-3(Delta55-60), but not to Zn(7)MT-2. The changes in spectroscopic features of metal-thiolate clusters and gel filtration behavior reveal that the formation of Zn(8)MT-3 is immediate and is accompanied by a decrease in the Stokes radius (R(s)). The changes in the R(s) suggest a mutual approach of both protein domains. The fast binding of Zn(2+) is followed by a slow time-dependent protein dimerization. The binding of Zn(2+) to Zn(7)MT-3 is specific as in the presence of Ca(2+) and Mg(2+) only an alteration of the R(s) of Zn(7)MT-3 at substantially higher concentrations was observed. The significance of these findings for the biological role of MT-3 is discussed.
Collapse
Affiliation(s)
- Gabriele Meloni
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
38
|
Influence of NH-Sgamma bonding interactions on the structure and dynamics of metallothioneins. J Mol Model 2009; 16:387-94. [PMID: 19609577 DOI: 10.1007/s00894-009-0542-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Mammalian metallothioneins ([Formula: see text]) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd(3)-thiolate cluster containing beta-domain of mouse beta-MT-1 and rat beta-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of NH-Sgamma hydrogen bonds in beta-MT-2, features likely responsible for the increased stability of the Cd(3)-thiolate cluster and the enfolding protein domain. Alterations in the NH-Sgamma hydrogen-bonding network may provide a rationale for the differences in dynamic properties encountered in the beta-domains of MT-1, -2, and -3 isoforms, believed to be essential for their different biological function.
Collapse
|
39
|
Ding ZC, Teng XC, Zheng Q, Ni FY, Cai B, Wang Y, Zhou GM, Sun HZ, Tan XS, Huang ZX. Important roles of the conserved linker-KKS in human neuronal growth inhibitory factor. Biometals 2009; 22:817-26. [DOI: 10.1007/s10534-009-9228-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
|
40
|
Peroza EA, Schmucki R, Güntert P, Freisinger E, Zerbe O. The βE-Domain of Wheat Ec-1 Metallothionein: A Metal-Binding Domain with a Distinctive Structure. J Mol Biol 2009; 387:207-18. [DOI: 10.1016/j.jmb.2009.01.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
41
|
Vergani L. Metallothioneins in Aquatic Organisms: Fish, Crustaceans, Molluscs, and Echinoderms. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova I-16132 Genova Italy
| |
Collapse
|
42
|
Vašák M, Meloni G. Metallothionein-3, Zinc, and Copper in the Central Nervous System. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothionein-3 (MT-3), also known as the neuronal growth inhibitory factor, has been discovered by Uchida and coworkers in 1991 in their search for a cellular component responsible for antagonizing aberrant neuritic sprouting and increased survival of cultured neurons stimulated by Alzheimer's disease (AD) brain extract. Since this initial discovery further studies showed that MT-3 possesses peculiar structural and functional properties not shared by other members of the mammalian MT family. Several lines of evidence suggest that the metal-binding protein MT-3 plays a vital role in zinc and copper homeostasis in the brain. Although far from being understood, the unusual structural properties of MT-3 are responsible for its neuronal growth inhibitory activity, involvement in trafficking of zinc vesicles in the central nervous system, protection against copper-mediated toxicity in AD and in controlling abnormal metal-protein interactions in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Milan Vašák
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Gabriele Meloni
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
43
|
Bell SG, Vallee BL. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chembiochem 2009; 10:55-62. [DOI: 10.1002/cbic.200800511] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Ding ZC, Zheng Q, Cai B, Ni FY, Yu WH, Teng XC, Gao Y, Liu F, Chen D, Wang Y, Wu HM, Sun HZ, Zhang MJ, Tan XS, Huang ZX. Study on structure–property–reactivity–function relationship of human neuronal growth inhibitory factor (hGIF). J Inorg Biochem 2008; 102:1965-72. [DOI: 10.1016/j.jinorgbio.2008.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/10/2008] [Accepted: 07/17/2008] [Indexed: 11/16/2022]
|
45
|
Digilio G, Bracco C, Vergani L, Botta M, Osella D, Viarengo A. The cadmium binding domains in the metallothionein isoform Cd7-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy. J Biol Inorg Chem 2008; 14:167-78. [DOI: 10.1007/s00775-008-0435-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
46
|
Metal swap between Zn7-metallothionein-3 and amyloid-beta-Cu protects against amyloid-beta toxicity. Nat Chem Biol 2008; 4:366-72. [PMID: 18454142 DOI: 10.1038/nchembio.89] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/08/2008] [Indexed: 11/08/2022]
Abstract
Aberrant interactions of copper and zinc ions with the amyloid-beta peptide (Abeta) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Abeta and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Abeta are associated with copper binding. Metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD. This protein protects, by an unknown mechanism, cultured neurons from the toxicity of Abeta. Here, we show that a metal swap between Zn(7)MT-3 and soluble and aggregated Abeta(1-40)-Cu(II) abolishes the ROS production and the related cellular toxicity. In this process, copper is reduced by the protein thiolates forming Cu(I)(4)Zn(4)MT-3, in which an air-stable Cu(I)(4)-thiolate cluster and two disulfide bonds are present. The discovered protective effect of Zn(7)MT-3 from the copper-mediated Abeta(1-40) toxicity may lead to new therapeutic strategies for treating AD.
Collapse
|
47
|
Ni FY, Cai B, Ding ZC, Zheng F, Zhang MJ, Wu HM, Sun HZ, Huang ZX. Structural prediction of the beta-domain of metallothionein-3 by molecular dynamics simulation. Proteins 2007; 68:255-66. [PMID: 17427961 DOI: 10.1002/prot.21404] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The beta-domain of metallothionein-3 (MT3) has been reported to be crucial to the neuron growth inhibitory bioactivity. Little detailed three-dimensional structural information is available to present a reliable basis for elucidation on structure-property-function relationships of this unique protein by experimental techniques. So, molecular dynamics simulation is adopted to study the structure of beta-domain of MT3. In this article, a 3D structural model of beta-domain of MT3 was generated. The molecular simulations provide detailed protein structural information of MT3. As compared with MT2, we found a characteristic conformation formed in the fragment (residue 1-13) at the N-terminus of MT3 owing to the constraint induced by 5TCPCP9, in which Pro7 and Pro9 residues are on the same side of the protein, both facing outward and the two 5-member rings of prolines are arranged almost in parallel, while Thr5 is on the opposite side. Thr5 in MT3 is also found to make the first four residues relatively far from the fragment (residue 23-26) as compared with MT2. The simulated structure of beta-domain of MT3 is looser than that of MT2. The higher energy of MT3 than that of MT2 calculated supports these conclusions. Simulation on the four isomer arising from the cis- or trans-configuration of 6CPCP9 show that the trans-/trans-isomer is energetic favorable. The partially unfolding structure of beta-domain of MT3 is also simulated and the results show the influence of 6CPCP9 sequence on the correct folding of this domain. The correlations between the bioactivity of MT3 and the simulated structure as well as the folding of beta-domain of MT3 are discussed based on our simulation and previous results.
Collapse
Affiliation(s)
- Feng-Yun Ni
- Chemical Biology Lab, Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang H, Li H, Cai B, Huang ZX, Sun H. The effect of nitric oxide on metal release from metallothionein-3: gradual unfolding of the protein. J Biol Inorg Chem 2007; 13:411-9. [DOI: 10.1007/s00775-007-0331-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|
49
|
Kulon K, Woźniak D, Wegner K, Grzonka Z, Kozłowski H. Specific interactions of metal ions with Cys-Xaa-Cys unit inserted into the peptide sequence. J Inorg Biochem 2007; 101:1699-706. [PMID: 17532049 DOI: 10.1016/j.jinorgbio.2007.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/18/2022]
Abstract
In this work five peptides with Cys-Xaa-Cys motif were studied including Ac-Cys-Gly-Cys-NH(2), Ac-Cys-Pro-Cys-Pro-NH(2), their N-unprotected analogues and the N-terminal fragment of metallothionein-3, Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-Pro-NH(2). All these peptides were found to be very effective ligands for Ni(2+), Zn(2+) and Cd(2+) ions. Potentiometric and spectroscopic (UV-Vis, CD and MCD) studies have proved that sulfur atoms are critical donors for the metal ions coordination. The amide nitrogen may participate in the metal ion binding only in the case when Gly is adjacent to Cys residues. Ac-Cys-Gly-Cys-NH(2) may serve as a low molecular weight model for cluster A, which is a binding unit of nickel ion in acetyl coenzyme A synthase. This bifunctional enzyme from anaerobic microorganisms catalyzes the formation of acetyl coenzyme A from CO, a methyl group donated by the corrinoid-iron-sulfur protein and coenzyme A. Other peptides studied in this work were Ac-Cys-Pro-Cys-Pro-NH(2) and Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-NH(2) originating from metallothionein sequence. These motifs are characteristic for the sequence of cysteine rich metallothionein-3 (MT-3) called also neuronal growth inhibitory factor (GIF). Cys-Pro-Cys-Pro fragment of protein was demonstrated to be crucial for the inhibitory activity of the protein.
Collapse
Affiliation(s)
- Kinga Kulon
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | | | |
Collapse
|
50
|
Dolderer B, Echner H, Beck A, Hartmann HJ, Weser U, Luchinat C, Del Bianco C. Coordination of three and four Cu(I) to the alpha- and beta-domain of vertebrate Zn-metallothionein-1, respectively, induces significant structural changes. FEBS J 2007; 274:2349-62. [PMID: 17403038 DOI: 10.1111/j.1742-4658.2007.05770.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vertebrate metallothioneins are found to contain Zn(II) and variable amounts of Cu(I), in vivo, and are believed to be important for d10-metal control. To date, structural information is available for the Zn(II) and Cd(II) forms, but not for the Cu(I) or mixed metal forms. Cu(I) binding to metallothionein-1 has been investigated by circular dichroism, luminescence and 1H NMR using two synthetic fragments representing the alpha- and the beta-domain. The 1H NMR data and thus the structures of Zn4alpha metallothionein (MT)-1 and Zn3betaMT-1 were essentially the same as those already published for the corresponding domains of native Cd7MT-1. Cu(I) titration of the Zn(II)-reconstituted domains provided clear evidence of stable polypeptide folds of the three Cu(I)-containing alpha- and the four Cu(I)-containing beta-domains. The solution structures of these two species are grossly different from the structures of the starting Zn(II) complexes. Further addition of Cu(I) to the two single domains led to the loss of defined domain structures. Upon mixing of the separately prepared aqueous three and four Cu(I) loaded alpha- and beta-domains, no interaction was seen between the two species. There was neither any indication for a net transfer of Cu(I) between the two domains nor for the formation of one large single Cu(I) cluster involving both domains.
Collapse
Affiliation(s)
- Benedikt Dolderer
- Interfakultäres Institut für Biochemie, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|