1
|
Alsharabasy AM, Sankar M, Biggs M, Farràs P, Pandit A. Iron protoporphyrin IX-hyaluronan hydrogel-supported luminol chemiluminescence for the detection of nitric oxide in physiological solutions. Talanta 2024; 278:126522. [PMID: 38991408 DOI: 10.1016/j.talanta.2024.126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Due to its role as a free radical signal-transducing agent with a short lifespan, precise measurement of nitric oxide (●NO) levels presents significant challenges. Various analytical techniques offer distinct advantages and disadvantages for ●NO detection. This research aims to simplify the detection process by developing a hydrogel system using iron(III)-protoporphyrin IX (hemin)-loaded hyaluronan for the detection of ●NO in solution. Various hydrogel formulations were created, and the effects of their components on hydrogel-supported luminol chemiluminescence (CL) kinetics, radical scavenging, and physicochemical properties were analysed through factorial analysis. The candidate formulations were then evaluated using two ●NO donors. An increase in the degree of crosslinking in unloaded formulations enhanced interactions with the CL reaction components, hydrogen peroxide (H2O2) and luminol, thereby affecting light generation. However, hemin loading negated these effects, resulting in more prominent luminescence kinetics in formulations with lower crosslinking degrees. Similarly, ●NO influenced the kinetics differently, interacting with both the CL reaction and hydrogel components. Hemin-loaded formulations exhibited enhanced signal propagation when exposed to ●NO, followed by H2O2 and luminol, whereas reversing the order of addition inhibited this propagation. The magnitude of these luminescence changes depended on the type and concentration of the ●NO donor, demonstrating greater sensitivity to ●NO levels compared to amperometric sensing. These findings suggest that the studied hydrogel platform has potential for the facile and accurate detection of ●NO in solution, requiring minimal sample sizes.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Magesh Sankar
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Manus Biggs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland; School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
2
|
Tang M, Charbit AR, Johansson MW, Jarjour NN, Denlinger LC, Raymond WW, Peters MC, Dunican EM, Castro M, Sumino K, Erzurum SC, Comhair SA, Moore WC, Levy BD, Israel E, Phipatanakul W, Phillips BR, Mauger DT, Bleecker ER, Wenzel SE, Fajt ML, Woodruff PG, Hastie AT, Fahy JV. Utility of eosinophil peroxidase as a biomarker of eosinophilic inflammation in asthma. J Allergy Clin Immunol 2024; 154:580-591.e6. [PMID: 38663815 DOI: 10.1016/j.jaci.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE We sought to determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during 3 years of observation in 480 participants in the Severe Asthma Research Program 3. RESULTS Over 3 years, EPX levels in patients with asthma were higher than normal in 27% to 31% of serum samples and 36% to 53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts less than 150 cells/μL and 42% of participants with blood eosinophil counts between 150 and 299 cells/μL. Patients with persistently high sputum EPX values for 3 years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 patients with asthma who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSIONS Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.
Collapse
Affiliation(s)
- Monica Tang
- University of California San Francisco, San Francisco, Calif
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Mauger
- Pennsylvania State University College of Medicine, Hershey, Pa
| | | | | | | | | | | | - John V Fahy
- University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
3
|
Alsharabasy AM, Farràs P, Pandit A. Hemin as a Molecular Probe for Nitric Oxide Detection in Physiological Solutions: Experimental and Theoretical Assessment. Anal Chem 2024; 96:7763-7771. [PMID: 38699865 PMCID: PMC11099896 DOI: 10.1021/acs.analchem.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland H91 TK33
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland H91 W2TY
| |
Collapse
|
4
|
Camp OG, Bai D, Awonuga A, Goud P, Abu-Soud HM. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: The link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide 2022; 124:32-38. [PMID: 35513289 DOI: 10.1016/j.niox.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (H4B), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O2. It has previously been demonstrated that myeloperoxidase (MPO), which catalyzes formation of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride (Cl-), is enhanced in inflammatory diseases and could be a potent scavenger of NO. Using absorbance spectroscopy and gel filtration chromatography, we investigated the role of increasing concentrations of HOCl in mediating iNOS heme destruction and subsequent subunit dissociation and unfolding. The results showed that dimer iNOS dissociation between 15 and 100 μM HOCl was accompanied by loss of heme content and NO synthesis activity. The dissociated subunits-maintained cytochrome c and ferricyanide reductase activities. There was partial unfolding of the subunits at 300 μM HOCl and above, and the subunit unfolding transition was accompanied by loss of reductase activities. These events can be prevented when the enzyme is preincubated with melatonin prior to HOCl addition. Melatonin supplementation to patients experiencing low NO levels due to inflammatory diseases may be helpful to restore physiological NO functions.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pravin Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA; California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Ma Z, Holland AA, Szlamkowicz I, Anagnostopoulos V, Caldas Nogueira ML, Caranto JD, Davidson VL. The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase. J Biol Chem 2022; 298:101696. [PMID: 35150744 PMCID: PMC8913304 DOI: 10.1016/j.jbc.2022.101696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2−) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3−). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 μM and a kcat/Km of 2.3 × 105 M−1s−1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•−) generated by macrophages to defend against bacteria, as well as to produce NO2− to adapt to hypoxic conditions.
Collapse
Affiliation(s)
- Zhongxin Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 United States
| | - Ashley A Holland
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| | - Ilana Szlamkowicz
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| | - Vasileios Anagnostopoulos
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States
| | - Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 United States
| | - Jonathan D Caranto
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Room 255, Orlando, Florida 32816, United States.
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 United States.
| |
Collapse
|
6
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
7
|
Goud PT, Bai D, Abu-Soud HM. A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. Int J Biol Sci 2021; 17:62-72. [PMID: 33390833 PMCID: PMC7757048 DOI: 10.7150/ijbs.51811] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with "cytokine storms" could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.
Collapse
Affiliation(s)
- Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Jeelani R, Chatzicharalampous C, Kohan-Ghadr HR, Bai D, Morris RT, Sliskovic I, Awonuga A, Abu-Soud HM. Hypochlorous acid reversibly inhibits caspase-3: a potential regulator of apoptosis. Free Radic Res 2020; 54:43-56. [DOI: 10.1080/10715762.2019.1694675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - David Bai
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert T. Morris
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Inga Sliskovic
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Awoniyi Awonuga
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Microbiology, Immunology and Biochemistry and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
The inhibition of lactoperoxidase catalytic activity through mesna (2-mercaptoethane sodium sulfonate). J Inorg Biochem 2019; 203:110911. [PMID: 31734539 DOI: 10.1016/j.jinorgbio.2019.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 11/24/2022]
Abstract
Here, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (H2O2) and thiocyanate (SCN-) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN- binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity. At low concentrations, mesna accelerated the formation and decay of LPO compound II via its ability to serve as a one electron substrate for LPO compounds I and II. At higher concentrations, mesna also accelerated the formation of Compound II but it decays to LPO-Fe(III) directly or through the formation of an intermediate, Compound I*, that displays characteristic spectrum similar to that of LPO Compound I. Mesna inhibits LPO's halogenation activity (IC50 value of 9.08 μM) by switching the reaction from a 2e- to a 1e- pathway, allowing the enzyme to function with significant peroxidase activity (conversion of H2O2 to H2O without generation of HOSCN). Collectively, mesna interaction with LPO may serve as a potential mechanism for modulating its steady-state catalysis, impacting the regulation of local inflammatory and infectious events.
Collapse
|
10
|
Galijasevic S. The development of myeloperoxidase inhibitors. Bioorg Med Chem Lett 2018; 29:1-7. [PMID: 30466896 DOI: 10.1016/j.bmcl.2018.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Myeloperoxidase (MPO), an abundant hemoprotein present in neutrophils and monocytes, plays a significant role in immune surveillance and host defense mechanisms. However, increased MPO activity has been linked to a number of pathologies with compelling evidence in initiation and progression of inflammatory events. As a result, search for active compounds that can efficiently inhibit MPO activity and subsequently decrease inflammatory events has been focus of the current research. This perspective provides an overview of the development of MPO inhibitors, their mechanism of action and the review of molecules that were in clinical trials as promising MPO inhibitors.
Collapse
Affiliation(s)
- Semira Galijasevic
- University Sarajevo School of Science and Technology, Sarajevo Medical School, Bosnia and Herzegovina.
| |
Collapse
|
11
|
Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode. Methods Mol Biol 2018. [PMID: 29600447 DOI: 10.1007/978-1-4939-7695-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Precise information about the intracell nitric oxide (NO) concentration [NO] of a single cell are necessary in designing accurate experiments to further knowledge and develop treatment plans in certain disorders. The direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. In this work, we describe the direct, real-time, and quantitative intracellular [NO] measurement utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu.
Collapse
|
12
|
Oxidative Stress in Hemodialysis Patients: A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3081856. [PMID: 29138677 PMCID: PMC5613374 DOI: 10.1155/2017/3081856] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Hemodialysis (HD) patients are at high risk for all-cause mortality and cardiovascular events. In addition to traditional risk factors, excessive oxidative stress (OS) and chronic inflammation emerge as novel and major contributors to accelerated atherosclerosis and elevated mortality. OS is defined as the imbalance between antioxidant defense mechanisms and oxidant products, the latter overwhelming the former. OS appears in early stages of chronic kidney disease (CKD), advances along with worsening of renal failure, and is further exacerbated by the HD process per se. HD patients manifest excessive OS status due to retention of a plethora of toxins, subsidized under uremia, nutrition lacking antioxidants and turn-over of antioxidants, loss of antioxidants during renal replacement therapy, and leukocyte activation that leads to accumulation of oxidative products. Duration of dialysis therapy, iron infusion, anemia, presence of central venous catheter, and bioincompatible dialyzers are several factors triggering the development of OS. Antioxidant supplementation may take an overall protective role, even at early stages of CKD, to halt the deterioration of kidney function and antagonize systemic inflammation. Unfortunately, clinical studies have not yielded unequivocal positive outcomes when antioxidants have been administered to hemodialysis patients, likely due to their heterogeneous clinical conditions and underlying risk profile.
Collapse
|
13
|
Jeelani R, Jahanbakhsh S, Kohan-Ghadr HR, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM. Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Free Radic Biol Med 2017; 110:54-62. [PMID: 28552694 PMCID: PMC6859649 DOI: 10.1016/j.freeradbiomed.2017.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and macrophages, is thought to play a critical role in the pathogenesis of various disorders ranging from cardiovascular diseases to cancer. We show that mesna (2-mercaptoethanesulfonic acid sodium salt), a detoxifying agent, which inhibits side effects of oxazaphosphorine chemotherapy, functions as a potent inhibitor of MPO; modulating its catalytic activity and function. Using rapid kinetic methods, we examined the interactions of mesna with MPO compounds I and II and ferric forms in the presence and absence of chloride (Cl-), the preferred substrate of MPO. Our results suggest that low mesna concentrations dramatically influenced the build-up, duration, and decay of steady-state levels of Compound I and Compound II, which is the rate-limiting intermediate in the classic peroxidase cycle. Whereas, higher mesna concentrations facilitate the porphyrin-to-adjacent amino acid electron transfer allowing the formation of an unstable transient intermediate, Compound I*, that displays a characteristic spectrum similar to Compound I. In the absence of plasma level of chloride, mesna not only accelerated the formation and decay of Compound II but also reduced its stability in a dose depend manner. Mesna competes with Cl-, inhibiting MPO's chlorinating activity with an IC50 of 5µM, and switches the reaction from a 2e- to a 1e- pathway allowing the enzyme to function only with catalase-like activity. A kinetic model which shows the dual regulation through which mesna interacts with MPO and regulates its downstream inflammatory pathways is presented further validating the repurposing of mesna as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Seyedehameneh Jahanbakhsh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Mili Thakur
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sana Khan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sarah R Aldhaheri
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Zhe Yang
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Peter Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, United States
| | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Karmanos Cancer Institute, Detroit, MI, 48201, United States
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| |
Collapse
|
14
|
Wang Z, DiDonato JA, Buffa J, Comhair SA, Aronica MA, Dweik RA, Lee NA, Lee JJ, Thomassen MJ, Kavuru M, Erzurum SC, Hazen SL. Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 2016; 291:22118-22135. [PMID: 27587397 DOI: 10.1074/jbc.m116.750034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 12/21/2022] Open
Abstract
The biochemical mechanisms through which eosinophils contribute to asthma pathogenesis are unclear. Here we show eosinophil peroxidase (EPO), an abundant granule protein released by activated eosinophils, contributes to characteristic asthma-related phenotypes through oxidative posttranslational modification (PTM) of proteins in asthmatic airways through a process called carbamylation. Using a combination of studies we now show EPO uses plasma levels of the pseudohalide thiocyanate (SCN-) as substrate to catalyze protein carbamylation, as monitored by PTM of protein lysine residues into Nϵ-carbamyllysine (homocitrulline), and contributes to the pathophysiological sequelae of eosinophil activation. Studies using EPO-deficient mice confirm EPO serves as a major enzymatic source for protein carbamylation during eosinophilic inflammatory models, including aeroallergen challenge. Clinical studies similarly revealed significant enrichment in carbamylation of airway proteins recovered from atopic asthmatics versus healthy controls in response to segmental allergen challenge. Protein-bound homocitrulline is shown to be co-localized with EPO within human asthmatic airways. Moreover, pathophysiologically relevant levels of carbamylated protein either incubated with cultured human airway epithelial cells in vitro, or provided as an aerosolized exposure in non-sensitized mice, induced multiple asthma-associated phenotypes including induction of mucin, Th2 cytokines, IFNγ, TGFβ, and epithelial cell apoptosis. Studies with scavenger receptor-A1 null mice reveal reduced IL-13 generation following exposure to aerosolized carbamylated protein, but no changes in other asthma-related phenotypes. In summary, EPO-mediated protein carbamylation is promoted during allergen-induced asthma exacerbation, and can both modulate immune responses and trigger a cascade of many of the inflammatory signals present in asthma.
Collapse
Affiliation(s)
- Zeneng Wang
- From the Departments of Cellular and Molecular Medicine
| | | | | | | | | | | | - Nancy A Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - James J Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - Mary Jane Thomassen
- the Division of Pulmonary, Critical Care & Sleep Medicine, East Carolina University, Greenville, North Carolina 27834, and
| | - Mani Kavuru
- the Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania 19107
| | | | - Stanley L Hazen
- From the Departments of Cellular and Molecular Medicine, Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
15
|
Shaeib F, Khan SN, Ali I, Najafi T, Maitra D, Abdulhamid I, Saed GM, Pennathur S, Abu-Soud HM. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid. PLoS One 2015; 10:e0120737. [PMID: 25835505 PMCID: PMC4383586 DOI: 10.1371/journal.pone.0120737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022] Open
Abstract
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
Collapse
Affiliation(s)
- Faten Shaeib
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sana N. Khan
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Iyad Ali
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Genetics, Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Tohid Najafi
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abu-Soud HM, Maitra D, Shaeib F, Khan SN, Byun J, Abdulhamid I, Yang Z, Saed GM, Diamond MP, Andreana PR, Pennathur S. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. J Inorg Biochem 2014; 140:245-54. [PMID: 25193127 PMCID: PMC4449957 DOI: 10.1016/j.jinorgbio.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-β or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation.
Collapse
Affiliation(s)
- Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and School of Green Chemistry and Engineering, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Rees MD, Maiocchi SL, Kettle AJ, Thomas SR. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate. Free Radic Biol Med 2014; 72:91-103. [PMID: 24704973 DOI: 10.1016/j.freeradbiomed.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.
Collapse
Affiliation(s)
- Martin D Rees
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rural Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sophie L Maiocchi
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, 8140 Christchurch, New Zealand
| | - Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Baseri M, Heidari R, Mahaki B, Hajizadeh Y, Momenizadeh A, Sadeghi M. Myeloperoxidase levels predicts angiographic severity of coronary artery disease in patients with chronic stable angina. Adv Biomed Res 2014; 3:139. [PMID: 25161986 PMCID: PMC4139978 DOI: 10.4103/2277-9175.135155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO) has an important role in the both processes of inflammation and oxidative stress. It plays proatherogenic role via low-density lipoprotein oxidation, functional inactivation of the high-density lipoprotein and endothelial dysfunction, and seems to be involved in the atherogenesis of coronary arteries. This study designed to evaluate the association between the plasma MPO levels and angiographic severity of coronary artery disease (CAD) in patients with the stable CAD. MATERIALS AND METHODS Sixty-eight patients who had documented CAD with angiography and 66 subjects who had normal angiography were selected as case and the control groups for this study, respectively. Gensini scoring system was used for evaluation of severity of coronary artery stenosis. Plasma MPO and C-reactiveprotein (CRP) levels of both case and control groups were determined. RESULTS Plasma MPO levels and CRP levels were significantly higher in CAD patients (P < 0.001), and plasma levels of MPO and CRP were correlated with Genssini scores. CONCLUSIONS Our findings indicated that the plasma MPO levels increase in patients with stable CAD and hence that, it can be used as adiagnostic factor to predict the coronary artery atherosclerosis severity in stable CAD patients; However, it needs further widespread investigations to achieve an accurate cut point.
Collapse
Affiliation(s)
- Mehdi Baseri
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Heidari
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Mahaki
- Department of Biostatistics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaghoub Hajizadeh
- Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Momenizadeh
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Awonuga AO, Belotte J, Abuanzeh S, Fletcher NM, Diamond MP, Saed GM. Advances in the Pathogenesis of Adhesion Development: The Role of Oxidative Stress. Reprod Sci 2014; 21:823-836. [PMID: 24520085 DOI: 10.1177/1933719114522550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past several years, there has been increasing recognition that pathogenesis of adhesion development includes significant contributions of hypoxia induced at the site of surgery, the resulting oxidative stress, and the subsequent free radical production. Mitochondrial dysfunction generated by surgically induced tissue hypoxia and inflammation can lead to the production of reactive oxygen and nitrogen species as well as antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase which when optimal have the potential to abrogate mitochondrial dysfunction and oxidative stress, preventing the cascade of events leading to the development of adhesions in injured peritoneum. There is a significant cross talk between the several processes leading to whether or not adhesions would eventually develop. Several of these processes present avenues for the development of measures that can help in abrogating adhesion formation or reformation after intraabdominal surgery.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jimmy Belotte
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suleiman Abuanzeh
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA Department of Physiology, Program for Reproductive Sciences, Wayne State University, School of Medicine, Detroit, MI, USA Karmanos Cancer Institute, Molecular Biology and Genetics Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
20
|
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 2013; 63:90-8. [PMID: 23624305 PMCID: PMC3863623 DOI: 10.1016/j.freeradbiomed.2013.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme that generates hypochlorous acid (HOCl) from chloride (Cl(-)) and hydrogen peroxide (H₂O₂). It is implicated in the pathology of several chronic inflammatory conditions such as cardiovascular and pulmonary diseases and cancer. Recently we have shown that HOCl can destroy the heme prosthetic group of hemoproteins. Here, we investigated whether the HOCl formed during steady-state catalysis is able to destroy the MPO heme moiety and thereby function as a major source of free iron. UV-visible spectra and H₂O₂-specific electrode measurements recorded during steady-state HOCl synthesis by MPO showed that the degree of MPO heme destruction increased after multiple additions of H₂O₂ (10 µM), precluding the enzyme from functioning at maximum activity (80-90% inhibition). MPO heme destruction occurred only in the presence of Cl(-). Stopped-flow measurements revealed that the HOCl-mediated MPO heme destruction was complex and occurred through transient ferric species whose formation and decay kinetics indicated it participates in heme destruction along with subsequent free iron release. MPO heme depletion was confirmed by the buildup of free iron utilizing the ferrozine assay. Hypochlorous acid, once generated, first equilibrates in the solution as a whole before binding to the heme iron and initiating heme destruction. Eliminating HOCl from the MPO milieu by scavenging HOCl, destabilizing the MPO-Compound I-Cl complex that could be formed during catalysis, and/or inhibiting MPO catalytic activity partially or completely protects MPO from HOCl insults. Collectively, this study elucidates the bidirectional relationship between MPO and HOCl, which highlights the potential role of MPO as a source of free iron.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - Rasha M. Abdulridha
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Fax: 313 577 8554. (H. M. Abu-Soud)
| |
Collapse
|
21
|
Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Melatonin prevents hypochlorous acid-induced alterations in microtubule and chromosomal structure in metaphase-II mouse oocytes. J Pineal Res 2012; 53:122-8. [PMID: 22304486 DOI: 10.1111/j.1600-079x.2012.00977.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase, using chloride and hydrogen peroxide as substrates. Here we demonstrate that HOCl alters metaphase-II mouse oocyte microtubules and chromosomal (CH) alignment which can be prevented by melatonin. Metaphase-II mouse oocytes, obtained commercially, were grouped as: control, melatonin (150, 200nmol/mL), HOCl (10, 20, 50, and 100nmol/mL), and HOCl (50nmol/mL) pretreated with 150 and 200 nmol/mL of melatonin. Microtubule and CH alignment was studied utilizing an indirect immunofluorescence technique and scored by two observers. Pearson chi-square test and Fisher's exact test were used to compare outcomes between controls and treated groups and also among each group. Poor scores for the spindle and chromosomes increased significantly at 50nmol/mL of HOCl (P<0.001). Oocytes treated with melatonin only at 150 and 200 nmol/mL showed no changes; significant differences (P<0.001) were observed when oocytes exposed to 50nmol/mL of HOCl were compared to oocytes pretreated with 200 nmol/mL melatonin. Fifty percent of the oocytes demonstrated good scores, both in microtubule and CH alterations, when pretreated with melatonin at 150 nmol/mL compared to 0% in the HOCl-only group. HOCl alters the metaphase-II mouse oocyte spindle and CH alignment in a dose-dependant manner, which might be a potential cause of poor oocyte quality (e.g., in patients with endometriosis). Melatonin prevented the HOCl-mediated spindle and CH damage, and therefore, may be an attractive therapeutic option to prevent oocyte damage in endometriosis or inflammatory diseases where HOCl levels are known to be elevated.
Collapse
Affiliation(s)
- Jashoman Banerjee
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
22
|
Souza CEA, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One 2011; 6:e27641. [PMID: 22132121 PMCID: PMC3222650 DOI: 10.1371/journal.pone.0027641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 12/02/2022] Open
Abstract
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H2O2) in the airways through its ability to oxidize thiocyanate (SCN−) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 µM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O2, Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN−. On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.
Collapse
Affiliation(s)
- Carlos Eduardo A. Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
von Leitner EC, Klinke A, Atzler D, Slocum JL, Lund N, Kielstein JT, Maas R, Schmidt-Haupt R, Pekarova M, Hellwinkel O, Tsikas D, D'Alecy LG, Lau D, Willems S, Kubala L, Ehmke H, Meinertz T, Blankenberg S, Schwedhelm E, Gadegbeku CA, Böger RH, Baldus S, Sydow K. Pathogenic cycle between the endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine and the leukocyte-derived hemoprotein myeloperoxidase. Circulation 2011; 124:2735-45. [PMID: 22082678 DOI: 10.1161/circulationaha.111.060541] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) and the leukocyte-derived hemoprotein myeloperoxidase (MPO) are associated with cardiovascular diseases. Activation of monocytes and polymorphonuclear neutrophils (PMNs) with concomitant release of MPO is regulated in a nitric oxide-dependent fashion. The aim of the study was to investigate a potential 2-way interaction between ADMA and MPO. METHODS AND RESULTS Ex vivo, ADMA uptake by isolated human PMNs, the principal source of MPO in humans, significantly impaired nitric oxide synthase activity determined by gas chromatography-mass spectrometry. In humans, short-term ADMA infusion (0.0125 mg · kg(-1) · min(-1)) significantly increased MPO plasma concentrations. Functionally, PMN exposure to ADMA enhanced leukocyte adhesion to endothelial cells, augmented NADPH oxidase activity, and stimulated PMN degranulation, resulting in release of MPO. In vivo, a 28-day ADMA infusion (250 μmol · kg(-1) · d(-1)) in C57Bl/6 mice significantly increased plasma MPO concentrations, whereas this ADMA effect on MPO was attenuated by human dimethylarginine dimethylaminohydrolase1 (hDDAH1) overexpression. Moreover, the MPO-derived reactive molecule hypochlorous acid impaired recombinant hDDAH1 activity in vitro. In MPO(-/-) mice, the lipopolysaccharide-induced increase in systemic ADMA concentrations was abrogated. CONCLUSIONS ADMA profoundly impairs nitric oxide synthesis of PMNs, resulting in increased PMN adhesion to endothelial cells, superoxide generation, and release of MPO. In addition, MPO impairs DDAH1 activity. Our data reveal an ADMA-induced cycle of PMN activation, enhanced MPO release, and subsequent impairment of DDAH1 activity. These findings not only highlight so far unrecognized cytokine-like properties of ADMA but also identify MPO as a regulatory switch for ADMA bioavailability under inflammatory conditions.
Collapse
|
24
|
Ozturk E, Balat O, Pehlivan S, Ugur MG, Sever T. Genetic variation of myeloperoxidase gene contributes to preeclampsia: a preliminary association study in Turkish population. Hypertens Pregnancy 2011; 30:377-83. [PMID: 21827295 DOI: 10.3109/10641955.2010.525278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine MPO gene polymorphisms of women with preeclampsia in Turkish population. METHODS Sixty-one preeclamptic and 61 normotensive women without history of preeclampsia in earlier pregnancies were enrolled in this prospective controlled study. MPO mutations were characterized by PCR-RFLP method. RESULTS We demonstrated a significant difference in patients with preeclampsia in terms of genotype frequency. Heterozygous carriers of -463A among preeclamptic pregnancies were significantly frequent, whereas rare A/A homozygotes failed to differ from controls. CONCLUSION The -463G/A polymorphism of leukocyte MPO could be an intriguing susceptibility factor that modulates an individual's risk of preeclampsia in Turkish population.
Collapse
Affiliation(s)
- Ebru Ozturk
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Ghosh S, Erzurum SC. Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta Gen Subj 2011; 1810:1008-16. [PMID: 21718755 DOI: 10.1016/j.bbagen.2011.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory disease is typically characterized by bronchoconstriction and airway hyper-reactivity. SCOPE OF REVIEW A wealth of studies applying chemistry, molecular and cell biology to animal model systems and human asthma over the last decade has revealed that asthma is associated with increased synthesis of the gaseous molecule nitric oxide (NO). MAJOR CONCLUSION The high NO levels in the oxidative environment of the asthmatic airway lead to greater formation of reactive nitrogen species (RNS) and subsequent oxidation and nitration of proteins, which adversely affect protein functions that are biologically relevant to chronic inflammation. In contrast to the high levels of NO and nitrated products, there are lower levels of beneficial S-nitrosothiols (RSNO), which mediate bronchodilation, due to greater enzymatic catabolism of RSNO in the asthmatic airways. GENERAL SIGNIFICANCE This review discusses the rapidly accruing data linking metabolic products of NO as critical determinants in the chronic inflammation and airway reactivity of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
26
|
Owen TM, Rohde JU. Reaction of an oxoiron(IV) complex with nitrogen monoxide: oxygen atom or oxide(•1-) ion transfer? Inorg Chem 2011; 50:5283-9. [PMID: 21526756 DOI: 10.1021/ic2007205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(•1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.
Collapse
Affiliation(s)
- Travis M Owen
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
27
|
Clinical significance of a myeloperoxidase gene polymorphism and inducible nitric oxide synthase expression in cirrhotic patients with hepatopulmonary syndrome. ACTA ACUST UNITED AC 2010; 30:437-42. [DOI: 10.1007/s11596-010-0445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Indexed: 10/19/2022]
|
28
|
Chu H, Wang M, Wang M, Gu D, Wu D, Zhang Z, Tang J, Zhang Z. The MPO -463G>A polymorphism and cancer risk: a meta-analysis based on 43 case-control studies. Mutagenesis 2010; 25:389-95. [PMID: 20418356 DOI: 10.1093/mutage/geq018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myeloperoxidase (MPO) is an endogenous oxidant enzyme that generates reactive oxygen species and plays an important role in the aetiology of cancer. The MPO -463G>A polymorphism influences MPO transcription and has been implicated in cancer risk. However, results from published studies on the association between the MPO -463G>A polymorphism and risk of cancer are conflicting. To derive a more precise estimation of association between the MPO -463G>A polymorphism and risk of cancer, we performed a meta-analysis based on 43 case-control studies, including a total of 14 171 cancer cases and 17 319 controls. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Overall, individuals with the -463A allele had a 0.93-fold lower cancer risk in a dominant model (OR = 0.93, 95% CI = 0.87-1.00). In the stratified analyses, we observed a similar association in European populations (heterozygote comparison: OR = 0.90, 95% CI = 0.82-0.99) and hospital-based studies (dominant model: OR = 0.88, 95% CI = 0.79-0.99). When stratified by cancer type, however, no significant association was found. The results suggested that the MPO -463A allele does not contribute to the development of cancer. Additional well-designed large studies are required to validate these findings in different populations.
Collapse
Affiliation(s)
- Haiyan Chu
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Comhair SAA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2010; 12:93-124. [PMID: 19634987 PMCID: PMC2824520 DOI: 10.1089/ars.2008.2425] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance in reducing and oxidizing (redox) systems favoring a more oxidative environment is present in asthma and linked to the pathophysiology of the defining symptoms and signs including airflow limitation, hyper-reactivity, and airway remodeling. High levels of hydrogen peroxide, nitric oxide ((*)NO), and 15-F(2t)-isoprostane in exhaled breath, and excessive oxidative protein products in lung epithelial lining fluid, peripheral blood, and urine provide abundant evidence for pathologic oxidizing processes in asthma. Parallel studies document loss of reducing potential by nonenzymatic and enzymatic antioxidants. The essential first line antioxidant enzymes superoxide dismutases (SOD) and catalase are reduced in asthma as compared to healthy individuals, with lowest levels in those patients with the most severe asthma. Loss of SOD and catalase activity is related to oxidative modifications of the enzymes, while other antioxidant gene polymorphisms are linked to susceptibility to develop asthma. Monitoring of exhaled (*)NO has entered clinical practice because it is useful to optimize asthma care, and a wide array of other biochemical oxidative and nitrative biomarkers are currently being evaluated for asthma monitoring and phenotyping. Novel therapeutic strategies that target correction of redox abnormalities show promise for the treatment of asthma.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Pathobiology, Lerner Research Institute, and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
30
|
Myeloperoxidase serves as a redox switch that regulates apoptosis in epithelial ovarian cancer. Gynecol Oncol 2009; 116:276-81. [PMID: 19962178 DOI: 10.1016/j.ygyno.2009.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Resistance to apoptosis is a key feature of cancer cells and is believed to be regulated by nitrosonium ion (NO(+))-induced S-nitrosylation of key enzymes. Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), is utilized by MPO to generated NO(+). We sought to investigate the expression of myeloperoxidase (MPO) and iNOS in epithelial ovarian cancer (EOC) and determine their effect on S-nitrosylation of caspase-3 and its activity as well as apoptosis. METHODS MPO and iNOS expression were determined using immunofluorescence in SKOV-3 and MDAH-2774 and EOC tissue sections. S-nitrosylation of caspase-3 and its activity, levels of MPO and iNOS, as well as apoptosis, were evaluated in the EOC cells before and after silencing MPO or iNOS genes with specific siRNA probes utilizing real-time RT-PCR, ELISA, and TUNEL assays. RESULTS MPO and iNOS are expressed in EOC cell lines and in over 60% of invasive EOC cases with no expression in normal ovarian epithelium. Indeed, silencing of MPO or iNOS gene expression resulted in decreased S-nitrosylation of caspase-3, increased caspase-3 activity, and increased apoptosis but with a more significant effect when silencing MPO. CONCLUSION MPO and iNOS are colocalized to the same cells in EOC but not in the normal ovarian epithelium. Silencing of either MPO or iNOS significantly induced apoptosis, highlighting their role as a redox switch that regulates apoptosis in EOC. Understanding the mechanisms by which MPO functions as a redox switch in regulating apoptosis in EOC may lead to future diagnostic tools and therapeutic interventions.
Collapse
|
31
|
Galijasevic S, Maitra D, Lu T, Sliskovic I, Abdulhamid I, Abu-Soud HM. Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Free Radic Biol Med 2009; 47:431-9. [PMID: 19464362 PMCID: PMC3416043 DOI: 10.1016/j.freeradbiomed.2009.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/28/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
Myeloperoxidase (MPO) is a hemoprotein involved in the leukocyte-mediated defense mechanism and uses hydrogen peroxide (H2O2) and chloride (Cl(-)) to produce hypochlorous acid. In human saliva and in hypochloremic alkalosis syndrome occurring in breast-fed infants, the MPO-H2O2 system functions in a lower Cl(-) concentration (10-70 mM) compared to plasma levels (100 mM) as part of the antibacterial defense system. The impact of low Cl(-) concentration and exposure to high peroxynitrite (ONOO(-)) synthesized from cigarette smoke or oxidative stress on MPO function is still unexplored. Rapid mixing of ONOO(-) and MPO caused immediate formation of a transient intermediate MPO Compound II, which then decayed to MPO-Fe(III). Double mixing of MPO with ONOO(-) followed by H2O2 caused immediate formation of Compound II, followed by MPO heme depletion, a process that occurred independent of ONOO(-) concentration. Peroxynitrite/H2O2-mediated MPO heme depletion was confirmed by HPLC analysis, and in-gel heme staining showing 60-70% less heme content compared to the control. A nonreducing denaturing SDS-PAGE showed no fragmentation or degradation of protein. Myeloperoxidase heme loss was completely prevented by preincubation of MPO with saturating amounts of Cl(-). Chloride binding to the active site of MPO constrains ONOO(-) binding by filling the space directly above the heme moiety or by causing a protein conformational change that constricts the distal heme pocket, thus preventing ONOO(-) from binding to MPO heme iron. Peroxynitrite interaction with MPO may serve as a novel mechanism for modulating MPO catalytic activity, influencing the regulation of local inflammatory and infectious events in vivo.
Collapse
Affiliation(s)
- Semira Galijasevic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dhiman Maitra
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tun Lu
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Inga Sliskovic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Address correspondence to: Husam Abu-Soud, Ph.D., Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel. 313 577-6178; Fax. 313 577-8554;
| |
Collapse
|
32
|
Saed GM, Jiang Z, Diamond MP, Abu-Soud HM. The role of myeloperoxidase in the pathogenesis of postoperative adhesions. Wound Repair Regen 2009; 17:531-9. [DOI: 10.1111/j.1524-475x.2009.00500.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
De Marinis E, Casella L, Ciaccio C, Coletta M, Visca P, Ascenzi P. Catalytic peroxidation of nitrogen monoxide and peroxynitrite by globins. IUBMB Life 2009; 61:62-73. [DOI: 10.1002/iub.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Zoeller RT, Crofton KM. Mode of Action: Developmental Thyroid Hormone Insufficiency—Neurological Abnormalities Resulting From Exposure to Propylthiouracil. Crit Rev Toxicol 2008; 35:771-81. [PMID: 16417044 DOI: 10.1080/10408440591007313] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because thyroid hormone is essential for normal brain development before and after birth, environmental chemicals that interfere with thyroid hormone signaling can adversely affect brain development. Adverse consequences of thyroid hormone insufficiency depend both on severity and developmental timing, indicating that environmental antithyroid factors may produce different effects at different developmental windows of exposure. Mechanistic studies can provide important insight into the potential impact of chemicals on human thyroid function, but relevance to humans must be systematically evaluated. This kind of analysis depends on data sets that include information about animals and humans. The drug 6-n-propyl-2-thiouracil (PTU) is used in animals to experimentally manipulate serum thyroid hormone levels, and in humans to treat patients, including pregnant women, with Graves' disease. A systematic analysis of the mode of action (MOA) of PTU in rats and in humans discloses similar modes of action. While the analysis predicts that PTU doses that produce thyroid hormone insufficiency in humans would adversely affect the developing brain, careful monitoring of PTU administration in pregnant and lactating humans keeps infant serum thyroid hormone levels within the normal range.
Collapse
Affiliation(s)
- R Thomas Zoeller
- University of Massachusetts-Amherst, Department of Biology, Morrill Science Center, 01003, USA.
| | | |
Collapse
|
35
|
H2O2 and NO scavenging by Mycobacterium leprae truncated hemoglobin O. Biochem Biophys Res Commun 2008; 373:197-201. [DOI: 10.1016/j.bbrc.2008.05.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
|
36
|
Lu T, Galijasevic S, Abdulhamid I, Abu-Soud HM. Analysis of the mechanism by which melatonin inhibits human eosinophil peroxidase. Br J Pharmacol 2008; 154:1308-17. [PMID: 18516076 PMCID: PMC2483384 DOI: 10.1038/bjp.2008.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/20/2008] [Accepted: 03/19/2008] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Eosinophil peroxidase (EPO) catalyses the formation of oxidants implicated in the pathogenesis of various respiratory diseases including allergy and asthma. Mechanisms for inhibiting EPO, once released, are poorly understood. The aim of this work is to determine the mechanisms by which melatonin, a hormone produced in the brain by the pineal gland, inhibits the catalytic activity of EPO. EXPERIMENTAL APPROACH We utilized H2O2-selective electrode and direct rapid kinetic measurements to determine the pathways by which melatonin inhibits human EPO. KEY RESULTS In the presence of plasma levels of bromide (Br-), melatonin inactivates EPO at two different points in the classic peroxidase cycle. First, it binds to EPO and forms an inactive complex, melatonin-EPO-Br, which restricts access of H2O2 to the catalytic site of the oxidation enzyme. Second, melatonin competes with Br- and switches the reaction from a two electron (2e-) to a one electron (1e-) pathway allowing the enzyme to function with catalase-like activity. Melatonin is a bulky molecule and binds to the entrance of the EPO haem pocket (regulatory sites). Furthermore, Br- seems to enhance the affinity of this binding. In the absence of Br-, melatonin accelerated formation of EPO Compound II and its decay by serving as a 1e- substrate for EPO Compounds I and II. CONCLUSIONS AND IMPLICATIONS The interplay between EPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new mechanism for melatonin to control EPO and its downstream inflammatory pathways.
Collapse
Affiliation(s)
- T Lu
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
| | - S Galijasevic
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
| | - I Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine Detroit, MI, USA
| | - H M Abu-Soud
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
37
|
Galijasevic S, Abdulhamid I, Abu-Soud HM. Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radic Biol Med 2008; 44:1570-7. [PMID: 18279680 PMCID: PMC2861567 DOI: 10.1016/j.freeradbiomed.2008.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 01/04/2023]
Abstract
Myeloperoxidase (MPO) binds H2O2 in the absence and presence of chloride (Cl-) and catalyzes the formation of potent oxidants through 1e(-) and 2e(-) oxidation pathways. These potent oxidants have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Thus, inhibition of MPO and its by-products may have a wide application in biological systems. Using direct rapid kinetic measurements and H2O2-selective electrodes, we show that tryptophan (Trp), an essential amino acid, is linked kinetically to the inhibition of MPO catalysis under physiological conditions. Trp inactivated MPO in the absence and presence of plasma levels of Cl(-), to various degrees, through binding to MPO, forming the inactive complexes Trp-MPO and Trp-MPO-Cl, and accelerating formation of MPO Compound II, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO Compound II without any sign of Compound I accumulation. This behavior indicates that Trp binding modulates the formation of MPO intermediates and their decay rates. Importantly, Trp is a poor substrate for MPO Compound II and has no role in destabilizing complex formation. Thus, the overall MPO catalytic activity will be limited by: (1) the dissociation of Trp from Trp-MPO and Trp-MPO-Cl complexes, (2) the affinity of MPO Compound I toward Cl(-) versus Trp, and (3) the slow conversion of MPO Compound II to MPO-Fe(III). Importantly, Trp-dependent inhibition of MPO occurred at a wide range of concentrations that span various physiological and supplemental ranges.
Collapse
Affiliation(s)
- Semira Galijasevic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
38
|
Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med 2008; 44:1295-304. [PMID: 18177745 PMCID: PMC3416041 DOI: 10.1016/j.freeradbiomed.2007.11.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/07/2007] [Accepted: 11/13/2007] [Indexed: 12/14/2022]
Abstract
Aging of the unfertilized oocyte inevitably occurs following ovulation, limiting its fertilizable life span. However, the mechanisms that regulate oocyte aging are still unclear. We hypothesize that reactive oxygen species such as superoxide (O2-), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) are likely candidates that may initiate these changes in the oocyte. In order to test this hypothesis, we investigated direct effects of O2- [hypoxanthine/xanthine oxidase system generating 0.12 (n=42) and 0.25 (n=45) microM O2-/min], H2O2 (20 or 100 microM, n=60), and HOCl, (1, 10, and 100 microM, n=50) on freshly ovulated or relatively old mouse oocytes, while their sibling oocytes were fixed immediately or cultured under physiological conditions (n=96). The aging process was assessed by the zona pellucida dissolution time (ZPDT), ooplasm microtubule dynamics (OMD), and cortical granule (CG) status. The ZPDT increased 2-fold in relatively old, compared to young, untreated oocytes (P<0.0001). Exposure to O2- increased it even further (P<0.0001). Similarly, more O2- exposed oocytes exhibited increased OMD and major CG loss, with fewer having normal OMD and intact CG compared to untreated controls. Interestingly, young oocytes resisted "aging," when exposed to 20 microM H2O2, while the same enhanced the aging phenomena in relatively old oocytes (P<0.05). Exposure to even very low levels of HOCl induced the aging phenomena in young and relatively old oocytes, and higher concentrations of HOCl compromised oocyte viability. Overall, O2-, H2O2, and HOCl each augment oocyte aging, more so in relatively old oocytes, suggesting compromised antioxidant capacity in aging oocytes.
Collapse
Affiliation(s)
- Anuradha P Goud
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
39
|
Meotti FC, Senthilmohan R, Harwood DT, Missau FC, Pizzolatti MG, Kettle AJ. Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids. Free Radic Biol Med 2008; 44:109-20. [PMID: 17963707 DOI: 10.1016/j.freeradbiomed.2007.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/31/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Flavonoids are increasingly being ingested by the general population as chemotherapeutic and anti-inflammatory agents. They are potentially toxic because of their conversion to free radicals and reactive quinones by peroxidases. Little detailed information is available on how flavonoids interact with myeloperoxidase, which is the predominant peroxidase present at sites of inflammation. This enzyme uses hydrogen peroxide to oxidize chloride to hypochlorous acid, as well as to produce an array of reactive free radicals from organic substrates. We investigated how the flavonoid myricitrin is oxidized by myeloperoxidase and how it affects the activities of this enzyme. Myricitrin was readily oxidized by myeloperoxidase in the presence of hydrogen peroxide. Its main oxidation product was a dimer that underwent further oxidation. In the presence of glutathione, myricitrin was oxidized to a hydroquinone that was conjugated to glutathione. When myeloperoxidase oxidized myricitrin and related flavonoids it became irreversibly inactivated. The number of hydroxyl groups in the B ring of the flavonoids and the presence of a free hydroxyl m-phenol group in the A ring were important for the inhibitory effects. Less enzyme inactivation occurred in the presence of chloride. Neutrophils also oxidized myricitrin to dimers in a reaction that was partially dependent on myeloperoxidase. Myricitrin did not affect the production of hypochlorous acid by neutrophils. We conclude that myricitrin will be oxidized by neutrophils at sites of inflammation to produce reactive free radicals and quinones. It is unlikely to affect hypochlorous acid production by neutrophils.
Collapse
Affiliation(s)
- Flavia Carla Meotti
- Free Radical Research Group, University of Otago Christchurch, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
40
|
Riggs LM, Franck T, Moore JN, Krunkosky TM, Hurley DJ, Peroni JF, de la Rebière G, Serteyn DA. Neutrophil myeloperoxidase measurements in plasma, laminar tissue, and skin of horses given black walnut extract. Am J Vet Res 2007; 68:81-6. [PMID: 17199423 DOI: 10.2460/ajvr.68.1.81] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare measurements of myeloperoxidase (MPO) in plasma, laminar tissues, and skin obtained from control horses and horses given black walnut heartwood extract (BWHE). ANIMALS 22 healthy 5- to 15-year-old horses. PROCEDURES Horses were randomly assigned to 4 groups as follows: a control group given water (n = 5) and 3 experimental groups given BWHE (17) via nasogastric intubation. Experimental groups consisted of 5, 6, and 6 horses that received BWHE and were euthanatized at 1.5, 3, and 12 hours after intubation, respectively. Control horses were euthanatized at 12 hours after intubation. Plasma samples were obtained hourly for all horses. Laminar tissue and skin from the middle region of the neck were harvested at the time of euthanasia. Plasma and tissue MPO concentrations were determined via an ELISA; tissue MPO activity was measured by use of specific immunologic extraction followed by enzymatic detection. RESULTS Tissues and plasma of horses receiving BWHE contained significantly higher concentrations of MPO beginning at hour 3. Laminar tissue and skin from horses in experimental groups contained significantly higher MPO activity than tissues from control horses. Concentrations and activities of MPO in skin and laminar tissues were similar over time. CONCLUSIONS AND CLINICAL RELEVANCE In horses, BWHE administration causes increases in MPO concentration and activity in laminar tissue and skin and the time of increased MPO concentration correlates with emigration of WBCs from the vasculature. These findings support the hypothesis that activation of peripheral WBCs is an early step in the pathogenesis of acute laminitis.
Collapse
Affiliation(s)
- Laura M Riggs
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu W, Zheng S, Dweik RA, Erzurum SC. Role of epithelial nitric oxide in airway viral infection. Free Radic Biol Med 2006; 41:19-28. [PMID: 16781449 PMCID: PMC7127628 DOI: 10.1016/j.freeradbiomed.2006.01.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 12/13/2022]
Abstract
The airway mucosal epithelium is the first site of virus contact with the host, and the main site of infection and inflammation. Nitric oxide (NO) produced by the airway epithelium is vital to antiviral inflammatory and immune defense in the lung. Multiple mechanisms function coordinately to support high-level basal NO synthesis in healthy airway epithelium and further induction of NO synthesis in the infected airway of normal hosts. Hosts deficient in NO synthesis, such as those patients with cystic fibrosis, have impaired antiviral defense and may benefit from therapies to augment NO levels in the airways.
Collapse
Key Words
- balf, bronchoalveolar lavage fluid
- cf, cystic fibrosis
- cgmp, guanosine 3′,5′-cyclic monophosphate
- cmv, cytomegalovirus
- dsrna, double-stranded rna
- epo, eosinophil peroxidase
- gas, γ-activated site
- gsh, reduced glutathione
- hiv, human immunodeficiency virus
- hocl, hypochlorous acid
- hpivs, human parainfluenza viruses
- hrsv, human respiratory syncytial virus
- h2o2, hydrogen peroxide
- irf, interferon regulatory factor
- lpo, lactoperoidase
- mpo, myeloperoxidase
- no3−, nitrate
- no, nitric oxide
- nos, nitric oxide synthases
- no2−, nitrite
- onoo−, peroxynitrite
- pkr, dsrna-activated protein kinase
- poly(ic), polyinosinic-polycytidylic acid
- ros, reactive oxygen species
- o2−, superoxide
- gsno, s-nitrosoglutathione
- ssrna, single-stranded rna
- stat, signal transducer and activator of transcription
- antiviral host defense
- nitric oxide
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., NC 20, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
42
|
Wang J, Slungaard A. Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 2005; 445:256-60. [PMID: 16297853 DOI: 10.1016/j.abb.2005.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 10/04/2005] [Accepted: 10/10/2005] [Indexed: 11/28/2022]
Abstract
Three unusual substrates-bromide (Br(-)), nitrite (NO(2)(-)), and thiocyanate (SCN(-))-compete for oxidation by eosinophil peroxidase (EPO) in physiologic fluids in the presence of H(2)O(2) to yield, respectively, hypobromous acid (HOBr), nitrogen dioxide (NO(2)()), or hypothiocyanous acid (HOSCN). These oxidant products have strikingly different reactivities: HOBr and NO(2)() are potent, widely reactive, membrane-lytic oxidants whereas HOSCN is a weak, SH-specific oxidant that penetrates into cells and imposes an intracellular oxidant stress that can activate kinase pathways and transcription factors that profoundly influence gene expression in host cells. All three oxidants are lethal for pathogens. SCN(-) is the strongly preferred substrate for the EPO/H(2)O(2). Specific biomarkers document that EPO-dependent oxidants are generated at sites of inflammation, but direct evidence that these oxidants cause disease is confined to the observation that an EPO knockout mouse line has dramatically less pathologic damage than do wild type animals in a murine model of ulcerative colitis.
Collapse
Affiliation(s)
- Jianguo Wang
- University of Minnesota, Department of Medicine, Section of Hematology, Oncology and Transplantation and The Vascular Biology Center, Minneapolis, MN, USA
| | | |
Collapse
|
43
|
Abstract
Myeloperoxidase (MPO) is a leukocyte-derived enzyme that catalyzes the formation of a number of reactive oxidant species. In addition to being an integral component of the innate immune response, evidence has emerged that MPO-derived oxidants contribute to tissue damage during inflammation. MPO-catalyzed reactions have been attributed to potentially proatherogenic biological activities throughout the evolution of cardiovascular disease, including during initiation, propagation, and acute complication phases of the atherosclerotic process. As a result, MPO and its downstream inflammatory pathways represent attractive targets for both prognostication and therapeutic intervention in the prophylaxis of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Department of Cardiovascular Medicine and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
44
|
Tahboub YR, Galijasevic S, Diamond MP, Abu-Soud HM. Thiocyanate modulates the catalytic activity of mammalian peroxidases. J Biol Chem 2005; 280:26129-36. [PMID: 15894800 DOI: 10.1074/jbc.m503027200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.
Collapse
Affiliation(s)
- Yahya R Tahboub
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
45
|
Walter R, Schroecksnadel K, Fuchs D. Letter regarding article by Vita et al, "serum myeloperoxidase levels independently predict endothelial dysfunction in humans". Circulation 2005; 111:e167-8; author reply e167-8. [PMID: 15795359 DOI: 10.1161/01.cir.0000159251.34353.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Ford PC, Laverman LE. Reaction mechanisms relevant to the formation of iron and ruthenium nitric oxide complexes. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2004.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Lakshmi VM, Nauseef WM, Zenser TV. Myeloperoxidase Potentiates Nitric Oxide-mediated Nitrosation. J Biol Chem 2005; 280:1746-53. [PMID: 15531583 DOI: 10.1074/jbc.m411263200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.
Collapse
Affiliation(s)
- Vijaya M Lakshmi
- Veterans Administration Medical Center, St. Louis, Missouri 63125, USA
| | | | | |
Collapse
|
48
|
Reynaert NL, Ckless K, Wouters EFM, van der Vliet A, Janssen-Heininger YMW. Nitric oxide and redox signaling in allergic airway inflammation. Antioxid Redox Signal 2005; 7:129-43. [PMID: 15650402 DOI: 10.1089/ars.2005.7.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases of the respiratory tract, as exemplified in this review by asthma, are associated with increased amounts of nitric oxide (NO) in the expired breath. Asthma is furthermore characterized by increased production of reactive oxygen species that scavenge NO to form more reactive nitrogen species as demonstrated by the enhanced presence of nitrated proteins in the lungs of these patients. This increased oxidative metabolism leaves less bioavailable NO and coincides with lower amounts of S-nitrosothiols. In this review, we speculate on mechanisms responsible for the increased amounts of NO in inflammatory airway disease and discuss the apparent paradox of higher levels of NO as opposed to decreased amounts of S-nitrosothiols. We will furthermore give an overview of the regulation of NO production and biochemical events by which NO transduces signals into cellular responses, with a particular focus on modulation of inflammation by NO. Lastly, difficulties in studying NO signaling and possible therapeutic uses for NO will be highlighted.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
49
|
Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn MS, Keaney JF, Hazen SL. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 2004; 110:1134-9. [PMID: 15326065 PMCID: PMC2718053 DOI: 10.1161/01.cir.0000140262.20831.8f] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND In vitro and animal studies demonstrate that myeloperoxidase catalytically consumes nitric oxide as a substrate, limiting its bioavailability and function. We therefore hypothesized that circulating levels of myeloperoxidase would predict risk of endothelial dysfunction in human subjects. METHODS AND RESULTS Serum myeloperoxidase was measured by enzyme-linked immunoassay, and brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were determined by ultrasound in a hospital-based population of 298 subjects participating in an ongoing study of the clinical correlates of endothelial dysfunction (age, 51+/-16; 61% men, 51% with cardiovascular disease). A strong inverse relation between brachial artery flow-mediated dilation and increasing quartile of serum myeloperoxidase level was observed (11.0+/-6.0%, 9.4+/-5.3%, 8.6+/-5.8%, and 6.4+/-4.5% for quartiles 1 through 4, respectively; P<0.001 for trend). Using the median as a cut point to define endothelial dysfunction, increasing quartile of myeloperoxidase predicted endothelial dysfunction after adjustment for classic cardiovascular disease risk factors, C-reactive protein levels, prevalence of cardiovascular disease, and ongoing treatment with cardiovascular medications (OR, 6.4; 95% CI, 2.6 to 16; P=0.001 for highest versus lowest quartile). CONCLUSIONS Serum myeloperoxidase levels serve as a strong and independent predictor of endothelial dysfunction in human subjects. Myeloperoxidase-mediated endothelial dysfunction may be an important mechanistic link between oxidation, inflammation, and cardiovascular disease.
Collapse
Affiliation(s)
- Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Galijasevic S, Saed GM, Diamond MP, Abu-Soud HM. High dissociation rate constant of ferrous-dioxy complex linked to the catalase-like activity in lactoperoxidase. J Biol Chem 2004; 279:39465-70. [PMID: 15258136 DOI: 10.1074/jbc.m406003200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme reduction of ferric lactoperoxidase (LPO) into its ferrous form initially leads to the accumulation of the unstable form of LPO-Fe(II), which spontaneously converts to a more stable species, the two of which can be identified by Soret peaks at 440 and 434 nm, respectively. Our data demonstrate that both LPO-Fe(II) species are capable of binding O(2) at a similar rate to generate the ferrous-dioxy complex. Its formation with respect to O(2) was first order and monophasic and with rate constants of k(on) = 3.8 x 10(4) m(-1) s(-1) and k(off) = 11.2 s(-1). The dissociation rate constant for the formation of LPO-Fe(II)-O(2) is relatively high, in contrast to hemoprotein model compounds. This high dissociation rate can be attributed to a combination of effects that include the positive trans effect of the proximal ligand, the heme pocket environment, and the geometry of the Fe-O(2) linkage. Our results have also shown that the decay of the LPO-Fe(II)-O(2) complex occurs by two sequential O(2)-independent steps. The first step involves formation of a short-lived intermediate that can be characterized by its Soret absorption peak at 416 nm and may be attributed to the weakening of the Fe(II)-O(2) linkage with a rate constant of 0.5 s(-1). The second step is spontaneous conversion of this intermediate to generate the native enzyme and presumably superoxide as end products with a rate constant of 0.03 s(-1). A comprehensive kinetic model that links LPO-Fe(II)-O(2) complex formation to the LPO catalase-like activity, combined with the classic catalytic cycle, is presented here.
Collapse
Affiliation(s)
- Semira Galijasevic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|