1
|
|
2
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
3
|
Tumhom S, Nimpiboon P, Wangkanont K, Pongsawasdi P. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Sci Rep 2021; 11:6740. [PMID: 33762620 PMCID: PMC7990933 DOI: 10.1038/s41598-021-85769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
Amylomaltase (AM) catalyzes transglycosylation of starch to form linear or cyclic oligosaccharides with potential applications in biotechnology and industry. In the present work, a novel AM from the mesophilic bacterium Streptococcus agalactiae (SaAM), with 18–49% sequence identity to previously reported AMs, was characterized. Cyclization and disproportionation activities were observed with the optimum temperature of 30 °C and 40 °C, respectively. Structural determination of SaAM, the first crystal structure of small AMs from the mesophiles, revealed a glycosyl-enzyme intermediate derived from acarbose and a second acarbose molecule attacking the intermediate. This pre-transglycosylation conformation has never been before observed in AMs. Structural analysis suggests that thermostability in AMs might be mainly caused by an increase in salt bridges since SaAM has a lower number of salt bridges compared with AMs from the thermophiles. Increase in thermostability by mutation was performed. C446 was substituted with A/S/P. C446A showed higher activities and higher kcat/Km values for starch in comparison to the WT enzyme. C446S exhibited a 5 °C increase in optimum temperature and the threefold increase in half-life time at 45 °C, most likely resulting from H-bonding interactions. For all enzymes, the main large-ring cyclodextrin (LR-CD) products were CD24-CD26 with CD22 as the smallest. C446S produced more CD35-CD42, especially at a longer incubation time.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Lessen HJ, Majumdar A, Fleming KG. Backbone Hydrogen Bond Energies in Membrane Proteins Are Insensitive to Large Changes in Local Water Concentration. J Am Chem Soc 2020; 142:6227-6235. [PMID: 32134659 PMCID: PMC7610216 DOI: 10.1021/jacs.0c00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A hallmark feature of biological lipid bilayer structure is a depth-dependent polarity gradient largely resulting from the change in water concentration over the angstrom length scale. This gradient is particularly steep as it crosses the membrane interfacial regions where the water concentration drops at least a million-fold along the direction of the bilayer normal. Although local water content is often assumed to be a major determinant of membrane protein stability, the effect of the water-induced polarity gradient upon backbone hydrogen bond strength has not been systematically investigated. We addressed this question by measuring the free energy change for a number of backbone hydrogen bonds in the transmembrane protein OmpW. These values were obtained at 33 backbone amides from hydrogen/deuterium fractionation factors by nuclear magnetic resonance spectroscopy. We surprisingly found that OmpW backbone hydrogen bond energies do not vary over a wide range of water concentrations that are characteristic of the solvation environment in the bilayer interfacial region. We validated the interpretation of our results by determining the hydrodynamic and solvation properties of our OmpW-micelle complex using analytical ultracentrifugation and molecular dynamics simulations. The magnitudes of the backbone hydrogen bond free energy changes in our study are comparable to those observed in water-soluble proteins, the H-segment of the leader peptidase helix used in the von Heijne and White biological scale experiments, and several interfacial peptides. Our results agree with those reported for the transmembrane α-helical portion of the amyloid precursor protein after the latter values were adjusted for kinetic isotope effects. Overall, our work suggests that backbone hydrogen bonds provide modest thermodynamic stability to membrane protein structures and that many amides are unaffected by dehydration within the bilayer.
Collapse
Affiliation(s)
- Henry J Lessen
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- The Johns Hopkins University Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Moghaddam SZ, Thormann E. Hofmeister effect on thermo-responsive poly(propylene oxide) in H2O and D2O. RSC Adv 2016. [DOI: 10.1039/c6ra02703b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Hofmeister effect of NaSCN, NaCl and NaF on poly(propylene oxide) solutions in H2O and D2O.
Collapse
Affiliation(s)
| | - Esben Thormann
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
7
|
Nick Pace C, Scholtz JM, Grimsley GR. Forces stabilizing proteins. FEBS Lett 2014; 588:2177-84. [PMID: 24846139 DOI: 10.1016/j.febslet.2014.05.006] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. (1) Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a -CH2- group on folding contributes 1.1±0.5 kcal/mol to protein stability. (2) The burial of non-polar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. (3) Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1±0.8 kcal/mol to protein stability. (4) The contribution of hydrogen bonds to protein stability is strongly context dependent. (5) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (6) Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. (7) Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability.
Collapse
Affiliation(s)
- C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, United States.
| | - J Martin Scholtz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, United States
| | - Gerald R Grimsley
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, United States
| |
Collapse
|
8
|
Cao Z, Bowie JU. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins. Protein Sci 2014; 23:566-75. [PMID: 24501090 DOI: 10.1002/pro.2435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/09/2022]
Abstract
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as -7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by -4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, California
| | | |
Collapse
|
9
|
Zangi R. Side-chain-side-chain interactions and stability of the helical state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012723. [PMID: 24580273 DOI: 10.1103/physreve.89.012723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.
Collapse
Affiliation(s)
- Ronen Zangi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
10
|
Emenike BU, Liu AT, Naveo EP, Roberts JD. Substituent Effects on Energetics of Peptide-Carboxylate Hydrogen Bonds as Studied by 1H NMR Spectroscopy: Implications for Enzyme Catalysis. J Org Chem 2013; 78:11765-71. [DOI: 10.1021/jo401762m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bright U. Emenike
- Gates and Crellin Laboratories
of Chemistry, California Institute of Technology, Pasadena, California 91125
| | - Albert Tianxiang Liu
- Gates and Crellin Laboratories
of Chemistry, California Institute of Technology, Pasadena, California 91125
| | - Elsy P. Naveo
- Gates and Crellin Laboratories
of Chemistry, California Institute of Technology, Pasadena, California 91125
| | - John D. Roberts
- Gates and Crellin Laboratories
of Chemistry, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
11
|
WANG ZHIXIANG, DUAN YONG. DIRECT INTERACTION ENERGY: A COMPUTATIONAL QUANTITY FOR PARAMETERIZATION OF CONDENSED-PHASE FORCE FIELDS AND ITS APPLICATION TO HYDROGEN BONDING. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using N-Methylacetamide (NMA) dimer and NMA–water as model complexes, the solvent effect on the protein inter- N – H ⋯ O =C and intra- N – H ⋯ OH 2, and C = O ⋯ H 2 O hydrogen bonding have been studied by the polarizable continuum model (PCM) ab initio calculations in the four media (vacuum, ether, nitromethane and water). In contrast to the empirical approaches, we suggested using the direction interaction energies (DE) to consider the solvent polarization, which can be derived from PCM ab initio calculations. The DEs of the model compounds in solvents are larger than their in vacuo binding energies, which reflect the solvent polarization effect. As the solvents become increasingly polar, the binding free energies decrease while DEs increase. The increasing DE is consistent with the increasing hydrogen bond length. Considering the protein environment, the DEs of NMA-NMA dimer in ether, 9.14 and 9.41 kcal/mol for NMADI and NMADII, are recommended for the intra N – H ⋯ O =C hydrogen bonding. The DEs of NMA–water complex in water, -5.47 (NMAWI) and -5.41 kcal/mol (NMAWI'), -8.44 (NMAWII) and -8.68 kcal/mol (NMAWII'), respectively, are suggested for the inter- N – H ⋯ OH 2 and C – O ⋯ H 2 O hydrogen bonding of proteins. Using the same approach, we have also computed the DE of water dimer in liquid water. The computed DE of water dimer (-5.63 kcal/mol) is larger than the in vacuo water dimerization energy (-5.14 kcal/mol) and in reasonable agreement with the dimerization energies (ranging from –6.0 to 6.8 kcal/mol) of polarization-included empirical water models.
Collapse
Affiliation(s)
- ZHI-XIANG WANG
- UC Davis Genome Center and Department of Applied Science, University of California, Davis, CA 95616, USA
| | - YONG DUAN
- UC Davis Genome Center and Department of Applied Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
Lau WL, Degrado WF, Roder H. The effects of pK(a) tuning on the thermodynamics and kinetics of folding: design of a solvent-shielded carboxylate pair at the a-position of a coiled-coil. Biophys J 2011; 99:2299-308. [PMID: 20923665 DOI: 10.1016/j.bpj.2010.07.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022] Open
Abstract
The tuning of the pK(a) of ionizable residues plays a critical role in various protein functions, such as ligand-binding, catalysis, and allostery. Proteins harness the free energy of folding to position ionizable groups in highly specific environments that strongly affect their pK(a) values. To investigate the interplay among protein folding kinetics, thermodynamics, and pK(a) modulation, we introduced a pair of Asp residues at neighboring interior positions of a coiled-coil. A single Asp residue was replaced for an Asn side chain at the a-position of the coiled-coil from GCN4, which was also crosslinked at the C-terminus via a flexible disulfide bond. The thermodynamic and kinetic stability of the system was measured by circular dichroism and stopped-flow fluorescence as a function of pH and concentration of guanidine HCl. Both sets of data are consistent with a two-state equilibrium between fully folded and unfolded forms. Distinct pK(a) values of 6.3 and 5.35 are assigned to the first and second protonation of the Asp pair; together they represent an energetic difference of 5 kcal/mol relative to the protonation of two Asp residues with unperturbed pK(a) values. Analysis of the rate data as a function of pH and denaturant concentration allowed calculation of the kinetic constants for the conformational transitions of the peptide with the Asp residues in the doubly protonated, singly protonated, and unprotonated forms. The doubly and singly protonated forms fold rapidly, and a ϕ-value analysis shows that their contribution to folding occurs subsequent to the transition state ensemble for folding. By contrast, the doubly charged state shows a reduced rate of folding and a ϕ-value near 0.5 indicative of a repulsive interaction, and possibly also heterogeneity in the transition state ensemble.
Collapse
Affiliation(s)
- Wai Leung Lau
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
13
|
Enciso M, Rey A. A refined hydrogen bond potential for flexible protein models. J Chem Phys 2010; 132:235102. [DOI: 10.1063/1.3436723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Cho Y, Sagle LB, Iimura S, Zhang Y, Kherb J, Chilkoti A, Scholtz JM, Cremer PS. Hydrogen Bonding of β-Turn Structure Is Stabilized in D2O. J Am Chem Soc 2009; 131:15188-93. [DOI: 10.1021/ja9040785] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Younhee Cho
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Laura B. Sagle
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Satoshi Iimura
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Yanjie Zhang
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Jaibir Kherb
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Ashutosh Chilkoti
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - J. Martin Scholtz
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Paul S. Cremer
- Department of Chemistry, Texas A&M University, 3255 TAMU, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| |
Collapse
|
15
|
Folding and wrapping soluble proteins exploring the molecular basis of cooperativity and aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009. [PMID: 19186252 DOI: 10.1016/s0079-6603(08)00602-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
16
|
Baxa MC, Freed KF, Sosnick TR. Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol 2008; 381:1362-81. [PMID: 18625237 PMCID: PMC2742318 DOI: 10.1016/j.jmb.2008.06.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 11/22/2022]
Abstract
The B-domain of protein A is a small three-helix bundle that has been the subject of considerable experimental and theoretical investigation. Nevertheless, a unified view of the structure of the transition-state ensemble (TSE) is still lacking. To characterize the TSE of this surprisingly challenging protein, we apply a combination of psi analysis (which probes the role of specific side-chain to side-chain contacts) and kinetic H/D amide isotope effects (which measures hydrogen-bond content), building upon previous studies using mutational phi analysis (which probes the energetic influence of side-chain substitutions). The second helix is folded in the TSE, while helix formation appears just at the carboxy and amino termini of the first and third helices, respectively. The experimental data suggest a homogenous yet plastic TS with a native-like topology. This study generalizes our earlier conclusion, based on two larger alpha/beta proteins, that the TSEs of most small proteins achieve approximately 70% of their native state's relative contact order. This high percentage limits the degree of possible TS heterogeneity and requires a reevaluation of the structural content of the TSE of other proteins, especially when they are characterized as small or polarized.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Physics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
- Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| | - Karl F. Freed
- James Franck Institute and Department of Chemistry, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| | - Tobin R. Sosnick
- Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| |
Collapse
|
17
|
Vijay D, Sastry GN. Exploring the size dependence of cyclic and acyclic pi-systems on cation-pi binding. Phys Chem Chem Phys 2007; 10:582-90. [PMID: 18183319 DOI: 10.1039/b713703f] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MP2(FULL)/6-311++G** calculations are performed on the cation-pi complexes of Li+ and Mg2+ with the pi-face of linear (ethylene, butadiene, hexatriene, and octatetraene) and cyclic (benzene, naphthalene, anthracene, phenanthrene and naphthacene) unsaturated hydrocarbons. The interaction energy is found to increase systematically as the size of the pi-system increases. The higher interaction energy is in good correlation with the extent of charge transfer. The increase in the interaction energy is more dramatic in the case of acyclic systems. The computations reveal that larger pi-systems tend to have higher complexation energy with the metal ions, which will have important implications in our understanding of the structural and functional aspects of metal binding.
Collapse
Affiliation(s)
- Dolly Vijay
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, -500 007
| | | |
Collapse
|
18
|
Sato S, Raleigh DP. Kinetic isotope effects reveal the presence of significant secondary structure in the transition state for the folding of the N-terminal domain of L9. J Mol Biol 2007; 370:349-55. [PMID: 17512540 DOI: 10.1016/j.jmb.2007.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9.
Collapse
Affiliation(s)
- Satoshi Sato
- Okayama Research Park Incubation Center, 5303 Haga Okayama 701-1223, Japan.
| | | |
Collapse
|
19
|
Affiliation(s)
- Zhengshuang Shi
- Department of Chemistry, New York University, 100 Washington Place, New York, New York 10003-5180, USA
| | | | | | | |
Collapse
|
20
|
Trinh XH, Trovato A, Seno F, Banavar JR, Maritan A. Geometrical model for the native-state folds of proteins. Biophys Chem 2004; 115:289-94. [PMID: 15752620 DOI: 10.1016/j.bpc.2004.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/02/2004] [Accepted: 12/10/2004] [Indexed: 11/16/2022]
Abstract
We recently introduced a physical model [T.X. Hoang, A. Trovato, F. Seno, J.R. Banavar, A. Maritan, Geometry and symmetry pre-sculpt the free energy landscape of proteins. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 7960-7964, J.R. Banavar, T.X. Hoang, A. Maritan, F. Seno, A. Trovato, A unified perspective on proteins-a physics approach. Phys. Rev., E 70 (2004) 041905] for proteins which incorporates, in an approximate manner, several key features such as the inherent anisotropy of a chain molecule, the geometrical and energetic constraints placed by the hydrogen bonds and sterics, and the role played by hydrophobicity. Within this framework, marginally compact conformations resembling the native state folds of proteins emerge as broad competing minima in the free energy landscape even for a homopolymer. Here we show how the introduction of sequence heterogeneity using a simple scheme of just two types of amino acids, hydrophobic (H) and polar (P), and sequence design allows a selected putative native fold to become the free energy minimum at low temperature. The folding transition exhibits thermodynamic cooperativity, if one neglects the degeneracy between two different low energy conformations sharing the same fold topology.
Collapse
Affiliation(s)
- X Hoang Trinh
- Institute of Physics and Electronics, VAST, 10 Dao, Tan, Hanoi, Vietnam
| | | | | | | | | |
Collapse
|
21
|
Campos LA, Cuesta-López S, López-Llano J, Falo F, Sancho J. A double-deletion method to quantifying incremental binding energies in proteins from experiment: example of a destabilizing hydrogen bonding pair. Biophys J 2004; 88:1311-21. [PMID: 15556980 PMCID: PMC1305133 DOI: 10.1529/biophysj.104.050203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contribution of a specific hydrogen bond in apoflavodoxin to protein stability is investigated by combining theory, experiment and simulation. Although hydrogen bonds are major determinants of protein structure and function, their contribution to protein stability is still unclear and widely debated. The best method so far devised to estimate the contribution of side-chain interactions to protein stability is double mutant cycle analysis, but the interaction energies so derived are not identical to incremental binding energies (the energies quantifying net contributions of two interacting groups to protein stability). Here we introduce double-deletion analysis of 'isolated' residue pairs as a means to precisely quantify incremental binding. The method is exemplified by studying a surface-exposed hydrogen bond in a model protein (Asp96/Asn128 in apoflavodoxin). Combined substitution of these residues by alanines slightly destabilizes the protein due to a decrease in hydrophobic surface burial. Subtraction of this effect, however, clearly indicates that the hydrogen-bonded groups in fact destabilize the native conformation. In addition, molecular dynamics simulations and classic double mutant cycle analysis explain quantitatively that, due to frustration, the hydrogen bond must form in the native structure because when the two groups get approximated upon folding their binding becomes favorable. We would like to remark that 1), this is the first time the contribution of a specific hydrogen bond to protein stability has been measured by experiment; and 2), more hydrogen bonds need to be analyzed to draw general conclusions on protein hydrogen bond energetics. To that end, the double-deletion method should be of help.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
22
|
Banavar JR, Hoang TX, Maritan A, Seno F, Trovato A. Unified perspective on proteins: a physics approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:041905. [PMID: 15600433 DOI: 10.1103/physreve.70.041905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Indexed: 05/24/2023]
Abstract
We study a physical system which, while devoid of the complexity one usually associates with proteins, nevertheless displays a remarkable array of proteinlike properties. The constructive hypothesis that this striking resemblance is not accidental not only leads to a unified framework for understanding protein folding, amyloid formation, and protein interactions but also has implications for natural selection.
Collapse
Affiliation(s)
- Jayanth R Banavar
- Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
23
|
Hoang TX, Trovato A, Seno F, Banavar JR, Maritan A. Geometry and symmetry presculpt the free-energy landscape of proteins. Proc Natl Acad Sci U S A 2004; 101:7960-4. [PMID: 15148372 PMCID: PMC419539 DOI: 10.1073/pnas.0402525101] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Indexed: 11/18/2022] Open
Abstract
We present a simple physical model that demonstrates that the native-state folds of proteins can emerge on the basis of considerations of geometry and symmetry. We show that the inherent anisotropy of a chain molecule, the geometrical and energetic constraints placed by the hydrogen bonds and sterics, and hydrophobicity are sufficient to yield a free-energy landscape with broad minima even for a homopolymer. These minima correspond to marginally compact structures comprising the menu of folds that proteins choose from to house their native states in. Our results provide a general framework for understanding the common characteristics of globular proteins.
Collapse
Affiliation(s)
- Trinh Xuan Hoang
- Institute of Physics, National Centre for Natural Science and Technology, 46 Nguyen Van Ngoc, Hanoi, Vietnam
| | | | | | | | | |
Collapse
|
24
|
Bae E, Phillips GN. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 2004; 279:28202-8. [PMID: 15100224 DOI: 10.1074/jbc.m401865200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66-74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
25
|
Zhong Z, Snowden TS, Best MD, Anslyn EV. Rate of Enolate Formation Is Not Very Sensitive to the Hydrogen Bonding Ability of Donors to Carboxyl Oxygen Lone Pair Acceptors; A Ramification of the Principle of Non-Perfect Synchronization for General-Base-Catalyzed Enolate Formation. J Am Chem Soc 2004; 126:3488-95. [PMID: 15025476 DOI: 10.1021/ja0306011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two series of structures (1 and 2) possessing intramolecular hydrogen bonds to the lone-pair electrons of carbonyl oxygens have been examined to reveal the influence of the pK(a) of the hydrogen-bond donor on the rate of general-base-catalyzed enolate formation. The geometry of the hydrogen bonds is well accepted to be appropriate for intramolecular hydrogen-bond formation. Yet, as revealed by Brønsted plots, both series show very little dependence of the rate of enolate formation on the hydrogen-bond donor ability. The intramolecular hydrogen bonds give rate enhancements only on the order of 10-100-fold, and corrected Brønsted alpha-values are slightly below 0.1. The results can be understood by interpreting them in light of the Principle of Non-Perfect Synchronization. The results are consistent with the proton transfer occurring through an asynchronous transition state with the developing negative charge localized on carbon. We postulate that catalysts of enolate formation will be most effective if the binding groups are focused on stabilizing negative charge that is forming on the enolate carbon rather than on the enolate oxygen.
Collapse
Affiliation(s)
- Zhenlin Zhong
- Department of Chemistry and Biochemistry, 1 University Station, A5300, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
26
|
|
27
|
Acharya P, Acharya S, Cheruku P, Amirkhanov NV, Földesi A, Chattopadhyaya J. Cross-modulation of the pKa of nucleobases in a single-stranded hexameric-RNA due to tandem electrostatic nearest-neighbor interactions. J Am Chem Soc 2003; 125:9948-61. [PMID: 12914458 DOI: 10.1021/ja034651h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pH titration studies (pH 6.7-12.1) in a series of dimeric, trimeric, tetrameric, pentameric, and hexameric oligo-RNA molecules [GpA (2a), GpC (3a), GpApC (5), GpA(1)pA(2)pC (6), GpA(1)pA(2)pA(3)pC (7), GpA(1)pA(2)pA(3)pA(4)pC (8)] have shown that the pK(a) of N(1)-H of 9-guaninyl could be measured not only from its own deltaH8G, but also from the aromatic marker protons of other constituent nucleobases. The relative chemical shift differences [Deltadelta((N)(-)(D))] between the protons in various nucleotide residues in the oligo-RNAs at the neutral (N) and deprotonated (D) states of the guanine moiety show that the generation of the 5'-(9-guanylate ion) in oligo-RNAs 2-8 reduces the stability of the stacked helical RNA conformation owing to the destabilizing anion(G(-))-pi/dipole(Im(delta)(-)) interaction. This destabilizing effect in the deprotonated RNA is, however, opposed by the electrostatically attractive atom-pisigma (major) as well as the anion(G(-))-pi/dipole(Py(delta)(+)) (minor) interactions. Our studies have demonstrated that the electrostatically repulsive anion(G(-))-pi/dipole(Im(delta)(-)) interaction propagates from the first to the third nucleobase quite strongly in the oligo-RNAs 6-8, causing destacking of the helix, and then its effect is gradually reduced, although it is clearly NMR detectable along the RNA chain. Thus, such specific generation of a charge at a single nucleobase moiety allows us to explore the relative strength of stacking within a single-stranded helix. The pK(a) of 5'-Gp residue from its own deltaH8G in the hexameric RNA 8 is found to be 9.76 +/- 0.01; it, however, varies from 9.65 +/- 0.01 to 10.5 +/- 0.07 along the RNA chain as measured from the other marker protons (H2, H8, H5, and H6) of 9-adeninyl and 1-cytosinyl residues. This nucleobase-dependent modulation of pK(a)s (DeltapK(a) +/- 0.9) of 9-guaninyl obtained from other nucleobases in the hexameric RNA 8 represents a difference of ca. 5.1 kJ mol(-)(1), which has been attributed to the variable strength of electrostatic interactions between the electron densities of the involved atoms in the offset stacked nucleobases as well as with that of the phosphates. The chemical implication of this variable pK(a) for guanin-9-yl deprotonation as obtained from all other marker protons of each nucleotide residue within a ssRNA molecule is that it enables us to experimentally understand the variation of the electronic microenvironment around each constituent nucleobase along the RNA chain in a stepwise manner with very high accuracy without having to make any assumption. This means that the pseudoaromaticity of neighboring 9-adeninyl and next-neighbor nucleobases within a polyanionic sugar-phosphate backbone of a ssRNA can vary from one case to another due to cross-modulation of an electronically coupled pi system by a neighboring nucleobase. This modulation may depend on the sequence context, spatial proximity of the negatively charged phosphates, as well as whether the offset stacking is ON or OFF. The net outcome of this electrostatic interaction between the neighbors is creation of new sequence-dependent hybrid nucleobases in an oligo- or polynucleotide whose properties are unlike the monomeric counterpart, which may have considerable biological implications.
Collapse
Affiliation(s)
- P Acharya
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Criswell AR, Bae E, Stec B, Konisky J, Phillips GN. Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 2003; 330:1087-99. [PMID: 12860130 DOI: 10.1016/s0022-2836(03)00655-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structures of adenylate kinases from the thermophile Methanococcus thermolithotrophicus and the mesophile Methanococcus voltae have been solved to resolutions of 2.8A and 2.5A, respectively. The structures of the enzymes are similar to that of the adenylate kinase from archaeal Sulfolobus acidocaldarius in many respects such as the extended central beta-sheets, the short LID domain, and the trimeric state. The analysis of unligated and AMP-bound subunits of M.voltae suggests that movements of two mobile domains are not independent of each other. The methanococcal structures are examined with respect to their lack of the "invariant" Lys residue within the phosphate-binding loop, and two Arg residues in the LID domain are proposed as substituting residues based on their conservation among archaeal adenylate kinases and mobility within the structures. Since S.acidocaldarius adenylate kinase has the invariant Lys residue as well as the two Arg residues, its phosphate-binding loop is examined and compared with those of other adenylate kinases. On the basis of the comparison and other available biochemical data, the unusual conformation of the Lys residue in S.acidocaldarius adenylate kinase is explained. Despite possessing 78% sequence identity, the methanococcal enzymes exhibit significantly different thermal stabilities. To study the determinants of thermostability, several structural features including salt-links, hydrogen bonds, packing density, surface to volume ratio and buried surface area are compared between the enzymes. From their difference in apolar buried surface area, hydrophobic interaction is proposed to be a basis for the disparate thermostabilities, and the corresponding free energy difference is also estimated. Results of previous mutational studies are interpreted in terms of the crystal structures, and support the importance of hydrophobic interactions in thermostability.
Collapse
Affiliation(s)
- Angela R Criswell
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
29
|
Fernández A, Kardos J, Goto Y. Protein folding: could hydrophobic collapse be coupled with hydrogen-bond formation? FEBS Lett 2003; 536:187-92. [PMID: 12586361 DOI: 10.1016/s0014-5793(03)00056-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A judicious examination of an exhaustive PDB sample of soluble globular proteins of moderate size (N<102) reveals a commensurable relationship between hydrophobic surface burial and number of backbone hydrogen bonds. An analysis of 50,000 conformations along the longest all-atom MD trajectory allows us to infer that not only the hydrophobic collapse is concurrent with the formation of backbone amide-carbonyl hydrogen bonds, they are also dynamically coupled processes. In statistical terms, hydrophobic clustering of the side chains is inevitably conducive to backbone burial and the latter process becomes thermodynamically too costly and kinetically unfeasible without amide-carbonyl hydrogen-bond formation. Furthermore, the desolvation of most hydrogen bonds is exhaustive along the pathway, implying that such bonds guide the collapse process.
Collapse
Affiliation(s)
- Ariel Fernández
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
30
|
Abstract
As proteins fold, a progressive structuring, immobilization and eventual exclusion of water surrounding backbone hydrogen bonds takes place. This process turns hydrogen bonds into major determinants of the folding pathway and compensates for the penalty of desolvation of the backbone polar groups. Taken as an average over all hydrogen bonds in a native fold, this extent of protection is found to be nearly ubiquitous. It is dynamically crucial, determining a constraint in the long-time limit behavior of coarse-grained ab initio simulations. Furthermore, an examination of one of the longest available (1micros) all-atom simulations with explicit solvent reveals that this average extent of protection is a constant of motion for the folding trajectory. We propose how such a stabilization is best achieved by clustering five hydrophobes around the backbone hydrogen bonds, an arrangement that yields the optimal stabilization. Our results support and clarify the view that hydrophobic surface burial should be commensurate with hydrogen-bond formation and enable us to define a basic desolvation motif inherent to structure and folding dynamics.
Collapse
Affiliation(s)
- Ariel Fernández
- Institute for Biophysical Dynamics, The University of Chicago, 920E 58th Street Chicago, IL 60637, USA
| | | | | |
Collapse
|