1
|
Brand SE, Scharlau M, Geren L, Hendrix M, Parson C, Elmendorf T, Neel E, Pianalto K, Silva-Nash J, Durham B, Millett F. Accelerated Evolution of Cytochrome c in Higher Primates, and Regulation of the Reaction between Cytochrome c and Cytochrome Oxidase by Phosphorylation. Cells 2022; 11:cells11244014. [PMID: 36552779 PMCID: PMC9777161 DOI: 10.3390/cells11244014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome c (Cc) underwent accelerated evolution from the stem of the anthropoid primates to humans. Of the 11 amino acid changes that occurred from horse Cc to human Cc, five were at Cc residues near the binding site of the Cc:CcO complex. Single-point mutants of horse and human Cc were made at each of these positions. The Cc:CcO dissociation constant KD of the horse mutants decreased in the order: T89E > native horse Cc > V11I Cc > Q12M > D50A > A83V > native human. The largest effect was observed for the mutants at residue 50, where the horse Cc D50A mutant decreased KD from 28.4 to 11.8 μM, and the human Cc A50D increased KD from 4.7 to 15.7 μM. To investigate the role of Cc phosphorylation in regulating the reaction with CcO, phosphomimetic human Cc mutants were prepared. The Cc T28E, S47E, and Y48E mutants increased the dissociation rate constant kd, decreased the formation rate constant kf, and increased the equilibrium dissociation constant KD of the Cc:CcO complex. These studies indicate that phosphorylation of these residues plays an important role in regulating mitochondrial electron transport and membrane potential ΔΨ.
Collapse
Affiliation(s)
| | - Martha Scharlau
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lois Geren
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marissa Hendrix
- Independent Researcher, P.O. Box 603, Dardanelle, AR 72834, USA
| | - Clayre Parson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tyler Elmendorf
- School of Medicine, University of Kansas Medical Center, 2060 W 39th Ave, Kansas City, KS 66103, USA
| | - Earl Neel
- Tulsa Bone and Joint Associates, Tulsa, OK 74146, USA
| | - Kaila Pianalto
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Bill Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Francis Millett
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence:
| |
Collapse
|
2
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Scharlau M, Geren L, Zhen EY, Ma L, Rajagukguk R, Ferguson-Miller S, Durham B, Millett F. Definition of the Interaction Domain and Electron Transfer Route between Cytochrome c and Cytochrome Oxidase. Biochemistry 2019; 58:4125-4135. [PMID: 31532642 DOI: 10.1021/acs.biochem.9b00646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reaction between cytochrome c (Cc) and cytochrome c oxidase (CcO) was studied using horse cytochrome c derivatives labeled with ruthenium trisbipyridine at Cys 39 (Ru-39-Cc). Flash photolysis of a 1:1 complex between Ru-39-Cc and bovine CcO at a low ionic strength resulted in the electron transfer from photoreduced heme c to CuA with an intracomplex rate constant of k3 = 6 × 104 s-1. The K13A, K72A, K86A, and K87A Ru-39-Cc mutants had nearly the same k3 value but bound much more weakly to bovine CcO than wild-type Ru-39-Cc, indicating that lysines 13, 72, 86, and 87 were involved in electrostatic binding to CcO, but were not involved in the electron transfer pathway. The Rhodobacter sphaeroides (Rs) W143F mutant (bovine W104) caused a 450-fold decrease in k3 but did not affect the binding strength with CcO or the redox potential of CuA. These results are consistent with a computational model for Cc-CcO (Roberts and Pique ( 1999 ) J. Biol. Chem. 274 , 38051 - 38060 ) with the following electron transfer pathway: heme c → CcO-W104 → CcO-M207 → CuA. A crystal structure for the Cc-CcO complex with the proposed electron transfer pathway heme c → Cc-C14 → Cc-K13 → CcO-Y105 → CcO-M207 → CuA ( S. Shimada ( 2017 ) EMBO J. 36 , 291 - 300 ) is not consistent with the kinetic results because the K13A mutation had no effect on k3. Addition of 40% ethylene glycol (as present during the crystal preparation) decreased k3 significantly, indicating that it affected the conformation of the complex. This may explain the discrepancy between the current results and the crystallographic structure.
Collapse
Affiliation(s)
- Martha Scharlau
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Lois Geren
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Eugene Y Zhen
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Ling Ma
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Ray Rajagukguk
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Bill Durham
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Francis Millett
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
4
|
Kopcova K, Blascakova L, Kozar T, Jancura D, Fabian M. Response of Heme Symmetry to the Redox State of Bovine Cytochrome c Oxidase. Biochemistry 2018; 57:4105-4113. [PMID: 29901388 DOI: 10.1021/acs.biochem.8b00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Second-derivative absorption spectroscopy was employed to monitor the response of effective symmetry of cytochromes a and a3 to the redox and ligation states of bovine cytochrome c oxidase (CcO). The Soret band π → π* electronic transitions were used to display the changes in symmetry of these chromophores induced by the reduction of CcO inhibited by the exogenous ligands and during catalytic turnover. The second derivative of the difference absorption spectra revealed only a single Soret band for the oxidized cytochromes a and a3 and cyanide-ligated oxidized cytochrome a3. In contrast, two absorption bands were resolved in ferrous cytochrome a and ferrous cytochrome a3 ligated with cyanide. A transition from one-band spectrum to two-band spectrum indicates the lowering of symmetry of these hemes due to the alteration of their immediate surroundings. It is suggested that the changes in polarity occurring in the vicinity of these cofactors are main reason for the split of the Soret band of both ferrous cytochrome a and cyanide-bound ferrous cytochrome a3.
Collapse
Affiliation(s)
- Katarina Kopcova
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Ludmila Blascakova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic.,Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| |
Collapse
|
5
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
|
7
|
Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Saen-Oon S, Lucas MF, Guallar V. Electron transfer in proteins: theory, applications and future perspectives. Phys Chem Chem Phys 2013; 15:15271-85. [DOI: 10.1039/c3cp50484k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
|
10
|
Durham B, Millett F. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:567-74. [PMID: 21939635 DOI: 10.1016/j.bbabio.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.
Collapse
Affiliation(s)
- Bill Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| | | |
Collapse
|
11
|
Dell'acqua S, Moura I, Moura JJG, Pauleta SR. The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 2011; 16:1241-54. [PMID: 21739254 DOI: 10.1007/s00775-011-0812-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/20/2011] [Indexed: 11/25/2022]
Abstract
Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes.
Collapse
Affiliation(s)
- Simone Dell'acqua
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
12
|
A theoretical investigation of the functional role of the axial methionine ligand of the Cu(A) site in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1314-27. [PMID: 21745457 DOI: 10.1016/j.bbabio.2011.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/29/2011] [Accepted: 06/22/2011] [Indexed: 11/20/2022]
Abstract
The functional roles of the amino acid residues of the Cu(A) site in bovine cytochrome c oxidase (CcO) were investigated by utilizing hybrid quantum mechanics (QM)/molecular mechanics (MM) calculations. The energy levels of the molecular orbitals (MOs) involving Cu d(zx) orbitals unexpectedly increased, as compared with those found previously with a simplified model system lacking the axial Met residue (i.e., Cu(2)S(2)N(2)). This elevation of MO energies stemmed from the formation of the anti-bonding orbitals, which are generated by hybridization between the d(zx) orbitals of Cu ions and the p-orbitals of the S and O atoms of the axial ligands. To clarify the roles of the axial Met ligand, the inner-sphere reorganization energies of the Cu(A) site were computed, with the Met residue assigned to either the QM or MM region. The reorganization energy slightly increased when the Met residue was excluded from the QM region. The existing experimental data and the present structural modeling study also suggested that the axial Met residue moderately increased the redox potential of the Cu(A) site. Thus, the role of the Met may be to regulate the electron transfer rate through the fine modulation of the electronic structure of the Cu(A) "platform", created by two Cys/His residues coordinated to the Cu ions. This regulation would provide the optimum redox potential/reorganization energy of the Cu(A) site, and thereby facilitate the subsequent cooperative reactions, such as the proton pump and the enzymatic activity, of CcO. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
13
|
Lucas MF, Rousseau DL, Guallar V. Electron transfer pathways in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1305-13. [PMID: 21419097 DOI: 10.1016/j.bbabio.2011.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Mixed quantum mechanical/molecular mechanics calculations were used to explore the electron pathway of the terminal electron transfer enzyme, cytochrome c oxidase. This enzyme catalyzes the reduction of molecular oxygen to water in a multiple step process. Density functional calculations on the three redox centers allowed for the characterization of the electron transfer mechanism, following the sequence Cu(A)→heme a→heme a(3). This process is largely affected by the presence of positive charges, confirming the possibility of a proton coupled electron transfer. An extensive mapping of all residues involved in the electron transfer, between the Cu(A) center (donor) and the O(2) reduction site heme a(3)-Cu(B) (receptor), was obtained by selectively activating/deactivating different quantum regions. The method employed, called QM/MM e-pathway, allowed the identification of key residues along the possible electron transfer paths, consistent with experimental data. In particular, the role of arginines 481 and 482 appears crucial in the Cu(A)→heme a and in the heme a→heme a(3) electron transfer processes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- M Fátima Lucas
- Barcelona Supercomputing Center, Jordi Girona, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Savelieff MG, Lu Y. CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 2010; 15:461-83. [DOI: 10.1007/s00775-010-0625-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
15
|
The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres. Biochem J 2009; 422:237-46. [DOI: 10.1042/bj20082220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The steady-state behaviour of isolated mammalian cytochrome c oxidase was examined by increasing the rate of reduction of cytochrome c. Under these conditions the enzyme's 605 (haem a), 655 (haem a3/CuB) and 830 (CuA) nm spectral features behaved as if they were at near equilibrium with cytochrome c (550 nm). This has implications for non-invasive tissue measurements using visible (550, 605 and 655 nm) and near-IR (830 nm) light. The oxidized species represented by the 655 nm band is bleached by the presence of oxygen intermediates P and F (where P is characterized by an absorbance spectrum at 607 nm relative to the oxidized enzyme and F is characterized by an absorbance spectrum at 580 nm relative to the oxidized enzyme) or by reduction of haem a3 or CuB. However, at these ambient oxygen levels (far above the enzyme Km), the populations of reduced haem a3 and the oxygen intermediates were very low (<10%). We therefore interpret 655 nm changes as reduction of the otherwise spectrally invisible CuB centre. We present a model where small anti-cooperative redox interactions occur between haem a–CuA–CuB (steady-state potential ranges: CuA, 212–258 mV; haem a, 254–281 mV; CuB, 227–272 mV). Contrary to static equilibrium measurements, in the catalytic steady state there are no high potential redox centres (>300 mV). We find that the overall reaction is correctly described by the classical model in which the Michaelis intermediate is a ferrocytochrome c–enzyme complex. However, the oxidation of ferrocytochrome c in this complex is not the sole rate-determining step. Turnover is instead dependent upon electron transfer from haem a to haem a3, but the haem a potential closely matches cytochrome c at all times.
Collapse
|
16
|
Xie X, Gorelsky SI, Sarangi R, Garner DK, Hwang HJ, Hodgson KO, Hedman B, Lu Y, Solomon EI. Perturbations to the geometric and electronic structure of the CuA site: factors that influence delocalization and their contributions to electron transfer. J Am Chem Soc 2008; 130:5194-205. [PMID: 18348522 DOI: 10.1021/ja7102668] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a combination of electronic spectroscopies and DFT calculations, the effect of pH perturbation on the geometric and electronic structure of the CuA site has been defined. Descriptions are developed for high pH (pH = 7) and low pH (pH = 4) forms of CuA azurin and its H120A mutant which address the discrepancies concerning the extent of delocalization indicated by multifrequency EPR and ENDOR data (J. Am. Chem. Soc. 2005, 127, 7274; Biophys. J. 2002, 82, 2758). Our resonance Raman and MCD spectra demonstrate that the low pH and H120A mutant forms are essentially identical and are the perturbed forms of the completely delocalized high pH CuA site. However, in going from high pH to low pH, a seven-line hyperfine coupling pattern associated with complete delocalization of the electron (S = 1/2) over two Cu coppers (I(Cu) = 3/2) changes into a four-line pattern reflecting apparent localization. DFT calculations show that the unpaired electron is delocalized in the low pH form and reveal that its four-line hyperfine pattern results from the large EPR spectral effects of approximately 1% 4s orbital contribution of one Cu to the ground-state spin wave function upon protonative loss of its His ligand. The contribution of the Cu-Cu interaction to electron delocalization in this low symmetry protein site is evaluated, and the possible functional significance of the pH-dependent transition in regulating proton-coupled electron transfer in cytochrome c oxidase is discussed.
Collapse
Affiliation(s)
- Xiangjin Xie
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wikström M, Verkhovsky MI. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1200-14. [PMID: 17689487 DOI: 10.1016/j.bbabio.2007.06.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
18
|
Jancura D, Berka V, Antalik M, Bagelova J, Gennis RB, Palmer G, Fabian M. Spectral and kinetic equivalence of oxidized cytochrome C oxidase as isolated and "activated" by reoxidation. J Biol Chem 2006; 281:30319-25. [PMID: 16905536 DOI: 10.1074/jbc.m605955200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectral and kinetic characteristics of two oxidized states of bovine heart cytochrome c oxidase (CcO) have been compared. The first is the oxidized state of enzyme isolated in the fast form (O) and the second is the form that is obtained immediately after oxidation of fully reduced CcO with O2 (OH). No observable differences were found between O and OH states in: (i) the rate of anaerobic reduction of heme a3 for both the detergent-solubilized enzyme and for enzyme embedded in its natural membraneous environment, (ii) the one-electron distribution between heme a3 and CuB in the course of the full anaerobic reduction, (iii) the optical and (iv) EPR spectra. Within experimental error of these characteristics both forms are identical. Based on these observations it is concluded that the reduction potentials and the ligation states of heme a3 and CuB are the same for CcO in the O and OH states.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biophysics, Safarik University, Jesenna 5, 04154 Kosice, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
19
|
Jancura D, Antalik M, Berka V, Palmer G, Fabian M. Filling the catalytic site of cytochrome c oxidase with electrons. Reduced CuB facilitates internal electron transfer to heme a3. J Biol Chem 2006; 281:20003-10. [PMID: 16704969 DOI: 10.1074/jbc.m602066200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the reductive phase of its catalytic cycle, cytochrome c oxidase receives electrons from external electron donors. Two electrons have to be transferred into the catalytic center, composed of heme a(3) and Cu(B), before reaction with oxygen takes place. In addition, this phase of catalysis appears to be involved in proton translocation. Here, we report for the first time the kinetics of electron transfer to both heme a(3) and Cu(B) during the transition from the oxidized to the fully reduced state. The state of reduction of both heme a(3) and Cu(B) was monitored by a combination of EPR spectroscopy, the rapid freeze procedure, and the stopped-flow method. The kinetics of cytochrome c oxidase reduction by hexaamineruthenium under anaerobic conditions revealed that the rate-limiting step is the initial electron transfer to the catalytic site that proceeds with apparently identical rates to both heme a(3) and Cu(B). After Cu(B) is reduced, electron transfer to oxidized heme a(3) is enhanced relative to the rate of entry of the first electron.
Collapse
Affiliation(s)
- Daniel Jancura
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
20
|
Brändén G, Pawate AS, Gennis RB, Brzezinski P. Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci U S A 2006; 103:317-22. [PMID: 16407159 PMCID: PMC1326165 DOI: 10.1073/pnas.0507734103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain and couples energetically the reduction of oxygen to water to proton pumping across the membrane. The results from previous studies showed that proton pumping can be uncoupled from the O2-reduction reaction by replacement of one single residue, Asn-139 by Asp (N139D), located approximately 30 A from the catalytic site, in the D-proton pathway. The uncoupling was correlated with an increase in the pK(a) of an internal proton donor, Glu-286, from approximately 9.4 to >11. Here, we show that replacement of the acidic residue, Asp-132 by Asn in the N139D CcO (D132N/N139D double-mutant CcO) results in restoration of the Glu-286 pK(a) to the original value and recoupling of the proton pump during steady-state turnover. Furthermore, a kinetic investigation of the specific reaction steps in the D132N/N139D double-mutant CcO showed that proton pumping is sustained even if proton uptake from solution, through the D-pathway, is slowed. However, during single-turnover oxidation of the fully reduced CcO the P --> F transition, which does not involve electron transfer to the catalytic site, was not coupled to proton pumping. The results provide insights into the mechanism of proton pumping by CcO and the structural elements involved in this process.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 2005; 105:2647-94. [PMID: 15941225 DOI: 10.1021/cr030707e] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Mattila K, Haltia T. How does nitrous oxide reductase interact with its electron donors?-A docking study. Proteins 2005; 59:708-22. [PMID: 15822112 DOI: 10.1002/prot.20437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron transfer reactions are crucial for respiration and denitrification. In this article, we analyze the interaction of nitrous oxide reductase with its electron donors cytochrome c550 and pseudoazurin. Our docking protocol comprises generation of candidate complexes followed by a selection step based on the distance of the donor and acceptor groups in each partner protein. Finally, the structures of the candidate complexes were optimized using a force field calculation, together with a second distance filtering step. The prediction power of this protocol was studied using the crystal structure of the cytochrome c2/photosynthetic reaction center of Rhodobacter sphaeroides as a reference. The results suggest that both cytochrome c550 and pseudoazurin bind at the same hydrophobic surface patch residing near the CuA center of nitrous oxide reductase. The central, well-conserved interaction surface of the donors is hydrophobic, but it is surrounded by numerous lysine side-chains, which interact electrostatically with analogously positioned side-chain carboxylates of the acceptor. The prediction output is an ensemble of energetically similar structures that are rotationally related to each other. While such an ensemble may reflect incomplete prediction power of the docking protocol, it may also manifest a biological situation where there are multiple ways of forming a productive electron transfer complex. Analyses of the predicted structures and the conservation pattern of the amino acid residues suggest the existence of specific electron transfer pathways to and from the CuA center of nitrous oxide reductase.
Collapse
Affiliation(s)
- Kimmo Mattila
- Institute of Biomedical Sciences/Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
23
|
Hwang HJ, Lu Y. pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer. Proc Natl Acad Sci U S A 2004; 101:12842-7. [PMID: 15326290 PMCID: PMC516483 DOI: 10.1073/pnas.0403473101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Indexed: 11/18/2022] Open
Abstract
A pH-dependent transition between delocalized and trapped mixed valence states of an engineered CuA center in azurin has been investigated by UV-visible absorption and electron paramagnetic resonance spectroscopic techniques. At pH 7.0, the CuA azurin displays a typical delocalized mixed valence dinuclear [Cu(1.5)....Cu(1.5)] spectra with optical absorptions at 485, 530, and 760 nm, and with a seven-line EPR hyperfine. Upon lowering of the pH from 7.0 to 4.0, the absorption at 760 nm shifted to lower energy toward 810 nm, and a four-line EPR hyperfine, typical of a trapped valence, was observed. The pH-dependent transition is reversible because increasing the pH restores all delocalized spectral features. Lowering the pH resulted in not only a trapped valence state, but also a dramatically increased reduction potential of the Cu center (from 160 mV to 340 mV). Mutation of the titratable residues around the metal-binding site ruled out Glu-114 and identified the C-terminal histidine ligand (His-120) as a site of protonation, because the His120Ala mutation abolished the above pH-dependent transition. The corresponding histidine in cytochrome c oxidases is along a major electron transfer pathway from CuA center to heme a. Because the protonation of this histidine can result in an increased reduction potential that will prevent electron flow from the CuA to heme a, the CuA and the histidine may play an important role in regulating proton-coupled electron transfer.
Collapse
Affiliation(s)
- Hee Jung Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
24
|
Hill BC. Intermediate forms of cytochrome oxidase observed in transient kinetic experiments and those visited in the catalytic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:256-62. [PMID: 15100040 DOI: 10.1016/j.bbabio.2003.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 07/04/2003] [Accepted: 07/08/2003] [Indexed: 10/26/2022]
Abstract
The cytochrome oxidase family of heme-copper oxidases has been the subject of intense kinetic and mechanistic enquiry. Much of this work has focussed on transient kinetic studies of the partial reactions of the enzyme with the goal being to build a kinetic model describing the catalytic cycle that the enzyme undergoes to direct the oxidation of substrate, reduction of oxygen and vectorial proton transfer. A key aspect of such a model is to define the structures of each of the intermediate forms the enzyme takes up as it traverses the catalytic cycle. One complication that has been prevalent with mitochondrial cytochrome c oxidase is the existence of structural variants of the enzyme, as isolated, that may not be participants in catalysis. Studies of structurally simpler procaryotic members of the family may offer new insight on the intermediates of catalysis. In this paper transient-state and steady-state kinetic studies of cytochrome aa(3)-600 from Bacillus subtilis are integrated into a model of the catalytic cycle. This model specifies that the P intermediate accumulates in the steady-state and it is proposed that the step following its formation is limited by proton uptake.
Collapse
Affiliation(s)
- Bruce C Hill
- Department of Biochemistry, Botterell Hall, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
25
|
Abstract
Advances in bioinorganic chemistry since the 1970s have been driven by three factors: rapid determination of high-resolution structures of proteins and other biomolecules, utilization of powerful spectroscopic tools for studies of both structures and dynamics, and the widespread use of macromolecular engineering to create new biologically relevant structures. Today, very large molecules can be manipulated at will, with the result that certain proteins and nucleic acids themselves have become versatile model systems for elucidating biological function.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
STANBURY DAVIDM. RECENT ADVANCES IN ELECTRON-TRANSFER REACTIONS. ADVANCES IN INORGANIC CHEMISTRY 2003. [DOI: 10.1016/s0898-8838(03)54007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|