1
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024; 32:2023-2037.e5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-12843 Praha2, Czech Republic
| | - Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Nováček
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Daniel Pinkas
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Zdenko Gardian
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic; Laboratory of Electron Microscopy, Biology Centre of the Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic.
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Miyaji K, Masaki Y, Seio K. Inhibitory Effects on RNA Binding and RNase H Induction Activity of Prodrug-Type Oligodeoxynucleotides Modified with a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase. Bioconjug Chem 2024. [PMID: 39376088 DOI: 10.1021/acs.bioconjchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Prodrug-type oligonucleotides (prodrug-ONs) are a class of oligonucleotide designed for activation under specific intracellular conditions or external stimuli. Prodrug-ONs can be activated in the target tissues or cells, thereby reducing the risk of adverse effects. In this study, we synthesized prodrug-type oligodeoxynucleotides activated by β-galactosidase, an enzyme that is overexpressed in cancer and senescent cells. These oligodeoxynucleotides (ODNs) contain a modified thymidine conjugated with galactose via a self-immolative linker at the O4-position. UV-melting analysis revealed that the modifications decreased the melting temperature (Tm) compared with that of the unmodified ODN when hybridized with complementary RNA. Furthermore, cleavage of the glycosidic bond by β-galactosidase resulted in the spontaneous removal of the linker from the nucleobase moiety, generating unmodified ODNs. Additionally, the introduction of multiple modified thymidines into ODNs completely inhibited the RNase H-mediated cleavage of complementary RNA. These findings suggest the possibility of developing prodrug-ONs, which are specifically activated in cancer cells or senescent cells with high β-galactosidase expression.
Collapse
Affiliation(s)
- Kento Miyaji
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Nucleotide and Peptide Drug Discovery Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Hever E, Santhanam V, Alberi S, Dhara A, Bols M, Nasheuer HP, Murphy PV. Synthesis of C-glycoside analogues of isopropyl β-D-1-thiogalactopyranoside (IPTG) and 1-β-D-galactopyranosyl-2-methylpropane. Conformational analysis and evaluation as inhibitors of the lac repressor in E. coli and as galactosidase inhibitors. Org Biomol Chem 2024; 22:7460-7477. [PMID: 39189157 DOI: 10.1039/d4ob01286k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Isopropyl 1-thio-β-D-galactopyranoside (IPTG, 1) is used widely as an inducer of protein expression in E. coli and 1-β-D-galactopyranosyl-2-methylpropane (2), a C-glycoside analogue of 1, has also been identified as an inducer. Here, synthesis and study of mimetics of 1 and 2, 1-β-D-galactopyranosyl-2-methylpropan-1-ols and two cyclic acetals derivatives, that constrain the presentation of the iPr group in various geometries is described. Conformational analysis of C-glycosides in protic solvent is performed using (i) Desmond metadynamics simulations (OPLS4) and (ii) use of 3JHH values obtained by 1H-NMR spectroscopy. 1-β-D-Galactopyranosyl-2-methylpropane (2) is an effective protein expression inducer when compared to the new mimetics, which were less effective or did not induce expression. 1-β-D-Galactopyranosyl-2-methylpropane (2) led to significantly reduced proteolysis during protein expression, compared to IPTG suggesting that recombinant protein purification will be easier to achieve with 2, yielding proteins with higher quality and activity. IPTG reduced bacterial growth to a greater degree than 2 compared to the control. IPTG's isopropyl group was observed by molecular dynamics (MD) simulations to be flexible in the binding pocket, deviating from its crystal structure binding mode, without impacting other interactions. The MD simulations predicted that 1-β-D-galactopyranosyl-2-methylpropane (2) was more likely than IPTG to bind the repressor with a conformation favoured in protic solvent, while maintaining interactions observed for IPTG. MD simulations predicted that isobutanol derivatives may disrupt interactions associated with IPTG's binding mode. The compounds were also evaluated as inhibitors of galactosidases, with 2 being the more potent inhibitor of the E. coli β-galactosidase. The constrained cyclic acetals showed similar inhibition constants to IPTG indicating E. coli β-galactosidase can recognize galactopyranoses with varying presentation of the iPr group.
Collapse
Affiliation(s)
- Eoin Hever
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
| | - Venkatesan Santhanam
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
| | - Sherivan Alberi
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
| | - Mikael Bols
- Department of Chemistry, Københavns Universitet, Universitetsparken 5, 2100 København Ø, Denmark
| | - Heinz-Peter Nasheuer
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
| | - Paul V Murphy
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland, H91TK33.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Galway, University Road, Galway, Ireland, H91TK33
| |
Collapse
|
4
|
Kil Y, Pichkur EB, Sergeev VR, Zabrodskaya Y, Myasnikov A, Konevega AL, Shtam T, Samygina VR, Rychkov GN. The archaeal highly thermostable GH35 family β-galactosidase DaβGal has a unique seven domain protein fold. FEBS J 2024; 291:3686-3705. [PMID: 38825733 DOI: 10.1111/febs.17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
The most extensively studied β-d-galactosidases (EC3.2.1.23) belonging to four glycoside hydrolase (GH) families 1, 2, 35, and 42 are widely distributed among Bacteria, Archaea and Eukaryotes. Here, we report a novel GH35 family β-galactosidase from the hyperthermophilic Thermoprotei archaeon Desulfurococcus amylolyticus (DaβGal). Unlike fungal monomeric six-domain β-galactosidases, the DaβGal enzyme is a dimer; it has an extra jelly roll domain D7 and three composite domains (D4, D5, and D6) that are formed by the distantly located polypeptide chain regions. The enzyme possesses a high specificity for β-d-galactopyranosides, and its distinguishing feature is the ability to cleave pNP-β-d-fucopyranoside. DaβGal efficiently catalyzes the hydrolysis of lactose at high temperatures, remains stable and active at 65 °С, and retains activity at 95 °С with a half-life time value equal to 73 min. These properties make archaeal DaβGal a more attractive candidate for biotechnology than the widely used fungal β-galactosidases.
Collapse
Affiliation(s)
- Yury Kil
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
- Structural Biology Department, Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
- Laboratory of X-ray Analysis and Synchrotron Radiation, Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir R Sergeev
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Russia
| | - Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Russia
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - Alexander Myasnikov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Andrey L Konevega
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
- Structural Biology Department, Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Russia
| | - Tatiana Shtam
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
- Structural Biology Department, Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Valeriya R Samygina
- Structural Biology Department, Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
- Laboratory of X-ray Analysis and Synchrotron Radiation, Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
| | - Georgy N Rychkov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Russia
| |
Collapse
|
5
|
Xiang X, Dong C, Zhou L, Liu J, Rabinowitz ZM, Zhang Y, Guo H, He F, Chen X, Wang Y, Cui L, Ma X. Novel PET Imaging Probe for Quantitative Detection of Senescence In Vivo. J Med Chem 2024; 67:5924-5934. [PMID: 38507820 PMCID: PMC11017977 DOI: 10.1021/acs.jmedchem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Real-time detection of cellular senescence remains a clinical challenge. Here, we aimed to develop a positron emission tomography (PET) imaging probe targeting senescence-associated β-galactosidase (SA-β-Gal), the most widely used biomarker of cellular senescence, and investigate its performance for real-time in vivo quantitative detection of cellular senescence. A stable PET imaging agent [68Ga]Ga-BGal was obtained with a high labeling yield (90.0 ± 4.3%) and a radiochemical purity (>95%). [68Ga]Ga-BGal displayed high sensitivity and specificity for β-Gal both in vitro and in vivo. The reaction and uptake of the probe correlated with the β-Gal concentration and reaction time. In PET imaging, high β-Gal-expressing CT26.CL25 tumors and doxorubicin-treated HeLa tumors showed high signals from [68Ga]Ga-BGal, while a low signal was observed in CT26.WT and untreated HeLa tumors. In summary, we showcased successful PET imaging of senescence in preclinical models using probe [68Ga]Ga-BGal. This finding holds the potential for translating senescence imaging into clinical applications.
Collapse
Affiliation(s)
- Xin Xiang
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuning Dong
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lianbo Zhou
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun Liu
- Department
of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zachary M. Rabinowitz
- Department
of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, University of Florida, Gainesville, Florida 32610, United States
| | - Yuzhao Zhang
- Department
of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, University of Florida, Gainesville, Florida 32610, United States
| | - Honghui Guo
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Feng He
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xingdou Chen
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yunhua Wang
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lina Cui
- Department
of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaowei Ma
- Department
of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Li L, Jia F, Li Y, Peng Y. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Adv 2024; 14:3010-3023. [PMID: 38239445 PMCID: PMC10795002 DOI: 10.1039/d3ra07968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Beta-galactosidase (β-galactosidase), a lysosomal hydrolytic enzyme, plays a critical role in the catalytic hydrolysis of glycosidic bonds, leading to the conversion of lactose into galactose. This hydrolytic enzyme is used as a biomarker in various applications, including enzyme-linked immunosorbent assays (ELISAs), gene expression studies, tuberculosis classification, and in situ hybridization. β-Galactosidase abnormalities are linked to various diseases, such as ganglioside deposition, primary ovarian cancer, and cell senescence. Thus, effective detection of β-galactosidase activity may aid disease diagnoses and treatment. Activatable optical probes with high sensitivity, specificity, and spatiotemporal resolution imaging capabilities have become powerful tools for visualization and real time tracking in vivo in the past decade. This manuscript reviews the sensing mechanism, molecular design strategies, and advances of fluorescence probes in the biological application of β-galactosidase, particularly in the field of ovarian cancer research. Current challenges in tracking β-galactosidase and future directions are also discussed.
Collapse
Affiliation(s)
- Liangliang Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Feifei Jia
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yunxiu Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yan Peng
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| |
Collapse
|
7
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Beal MA, Meier MJ, Dykes A, Yauk CL, Lambert IB, Marchetti F. The functional mutational landscape of the lacZ gene. iScience 2023; 26:108407. [PMID: 38058303 PMCID: PMC10696112 DOI: 10.1016/j.isci.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
The lacZ gene of Escherichia coli encodes β-galactosidase (β-gal), a lactose metabolism enzyme of the lactose operon. Previous chemical modification or site-directed mutagenesis experiments have identified 21 amino acids that are essential for β-gal catalytic activity. We have assembled over 10,000 lacZ mutations from published studies that were collected using a positive selection assay to identify mutations in lacZ that disrupted β-gal function. We analyzed 6,465 independent lacZ mutations that resulted in 2,732 missense mutations that impaired β-gal function. Those mutations affected 492 of the 1,023 lacZ codons, including most of the 21 previously known residues critical for catalytic activity. Most missense mutations occurred near the catalytic site and in regions important for subunit tetramerization. Overall, our work provides a comprehensive and detailed map of the amino acid residues affecting the structure and catalytic activity of the β-gal enzyme.
Collapse
Affiliation(s)
- Marc A. Beal
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Angela Dykes
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Sun J, Wang W, Hao J. GH2 family β-galactosidases evolution using degenerate oligonucleotide gene shuffling. Biotechnol Lett 2023; 45:655-665. [PMID: 37071382 DOI: 10.1007/s10529-023-03368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES To improve the biochemical characteristics of the GH2 family β-galactosidases using a family shuffling method based on degenerate oligonucleotide gene shuffling. RESULTS Four β-galactosidase genes from the genus Alteromonas were divided into 14 gene segments, and each included the homologous sequence in the adjacent segments. The gene segments were regenerated into complete β-galactosidase genes and amplified by PCR. The obtained chimeric genes were cloned into a plasmid and screened for β-galactosidase activity. Approximately 320 positive clones were observed on the screening plate, of which nine sequenced genes were chimera. Additionally, the M22 and M250 mutants were expressed, purified, and characterized. The optimal temperature and substrate specificity of the recombinant M22 and M250 were consistent with those of the wild-type enzymes. The catalytic efficiency of recombinant M22 enzyme was higher than that of the wild-type enzymes, and the recombinant M250 displayed weak transglycosylation activity. CONCLUSIONS The chimeric genes of GH2 β-galactosidase were obtained using a controlled family shuffling that will provide an enzyme evolutionary method to obtain the β-galactosidases with excellent characteristics for laboratory and industrial purposes.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wei Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Wu K, Zhai X, Chen H, Zheng J, Yu Z, Xu X, Huang J. The effect of barium and strontium on activity of glucoamylase QsGH97a from Qipengyuania seohaensis SW-135. Sci Rep 2023; 13:5840. [PMID: 37037863 PMCID: PMC10086023 DOI: 10.1038/s41598-023-32161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
Glycoside hydrolases (GHs), the enzymes that break glycosidic bonds, are ubiquitous in the ecosystem, where they perform a range of biological functions. As an interesting glycosidase family, Glycoside hydrolase family 97 (GH97) contains α-glucosidase, α-galactosidase, and glucoamylase. Only ten members of GH97 have been characterized so far. It is critical to explore novel members to elucidate the catalytic mechanism and application potential of GH97 family. In this study, a novel glucoamylase QsGH97a from Qipengyuania seohaensis SW-135 was cloned and expressed in E. coli. Sequence analysis and NMR results show that QsGH97a is classified into GH97a, and adopts inverting mechanism. The biochemical characterization indicates that QsGH97a shows the optimal activity at 50 °C and pH 8.0. Ca2+ has little effect on the catalytic activity; however, the activity can be substantially increased by 8-13 folds in the presence of Ba2+ or Sr2+. Additionally, the metal content of QsGH97a assay showed a high proportion of Sr2+. The specific metal activity was initially revealed in glucoamylases, which is not found in other members. These results imply that QsGH97a not only is a new member of GH97, but also has potential for industrial applications. Our study reveals that Ba2+ or Sr2+ may be involved in the catalytic mechanism of glucoamylase, laying the groundwork for a more complete knowledge of GH97 and its possible industrial application.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Xingyu Zhai
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Jinfeng Zheng
- Hunan Institute for Drug Control, Changsha, 410013, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Millán C, McCoy AJ, Terwilliger TC, Read RJ. Likelihood-based docking of models into cryo-EM maps. Acta Crystallogr D Struct Biol 2023; 79:281-289. [PMID: 36920336 PMCID: PMC10071562 DOI: 10.1107/s2059798323001602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Optimized docking of models into cryo-EM maps requires exploiting an understanding of the signal expected in the data to minimize the calculation time while maintaining sufficient signal. The likelihood-based rotation function used in crystallography can be employed to establish plausible orientations in a docking search. A phased likelihood translation function yields scores for the placement and rigid-body refinement of oriented models. Optimized strategies for choices of the resolution of data from the cryo-EM maps to use in the calculations and the size of search volumes are based on expected log-likelihood-gain scores computed in advance of the search calculation. Tests demonstrate that the new procedure is fast, robust and effective at placing models into even challenging cryo-EM maps.
Collapse
Affiliation(s)
- Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Thomas C. Terwilliger
- New Mexico Consortium, Los Alamos National Laboratory, 100 Entrada Drive, Los Alamos, NM 87544, USA
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
12
|
Heymann JB. The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions. J Struct Biol X 2022; 7:100083. [PMID: 36632443 PMCID: PMC9826812 DOI: 10.1016/j.yjsbx.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
In our quest to solve biomolecular structures to higher resolutions in cryoEM, care must be taken to deal with all aspects of image formation in the electron microscope. One of these is the Ewald sphere/focus gradient that derives from the scattering geometry in the microscope and its implications for recovering high resolution and handedness information. While several methods to deal with it has been proposed and implemented, there are still questions as to the correct approach. At the high acceleration voltages used for cryoEM, the traditional projection approximation that ignores the Ewald sphere breaks down around 2-3 Å and with large particles. This is likely not crucial for most biologically interesting molecules, but is required to understand detail about catalytic events, molecular orbitals, orientation of bound water molecules, etc. Through simulation I show that integration along the Ewald spheres in frequency space during reconstruction, the "simple insertion method" is adequate to reach resolutions to the Nyquist frequency. Both theory and simulations indicate that the handedness information encoded in such phases is irretrievably lost in the formation of real space images. The conclusion is that correct reconstruction along the Ewald spheres avoids the limitations of the projection approximation.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
13
|
Wu Q, Zhou QH, Li W, Ren TB, Zhang XB, Yuan L. Evolving an Ultra-Sensitive Near-Infrared β-Galactosidase Fluorescent Probe for Breast Cancer Imaging and Surgical Resection Navigation. ACS Sens 2022; 7:3829-3837. [PMID: 36383027 DOI: 10.1021/acssensors.2c01752] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early diagnosis and therapy are clinically crucial in decreasing mortality from breast carcinoma. However, the existing probes have difficulty in accurately identifying the margins and contours of breast carcinoma due to poor sensitivity and specificity. There is an urgent need to develop high-sensitive fluorescent probes for the diagnosis of breast carcinoma and for differentiating tumors from normal tissues during surgery. β-Galactosidase is a significant biomarker, whose overexpression is closely associated with the progression of breast tumors. Herein, we have constructed a β-galactosidase-activated fluorescent probe NIR-βgal-2 through rational design and molecular docking engineering simulations. The probe displayed superior sensitivity (detection limit = 2.0 × 10-3 U/mL), great affinity (Km = 1.84 μM), and catalytic efficiency (kcat/Km = 0.24 μM-1 s-1) for β-galactosidase. Leveraging this probe, we demonstrated the differentiation of cancer cells overexpressing β-galactosidase from normal cells and then applied the probe for intraoperative guided excision of breast tumors. Moreover, we exhibited the application of NIR-βgal-2 for the successful resection of orthotopic breast tumors by "in situ spraying" and monitored a good prognostic recovery. This work may promote the application of enzyme-activated near-infrared fluorescent probes for the development of carcinoma diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian-Hui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
In Silico Discovery of Anticancer Peptides from Sanghuang. Int J Mol Sci 2022; 23:ijms232213682. [PMID: 36430160 PMCID: PMC9693127 DOI: 10.3390/ijms232213682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.
Collapse
|
15
|
Lin CC, Yang YC, Lu ZY, Bagal-Kestwal DR, Lu TJ. Profile diversity of galacto-oligosaccharides from disaccharides to hexasaccharides by porous graphitic carbon liquid chromatography-orbitrap tandem mass spectrometry. Food Chem 2022; 390:133151. [DOI: 10.1016/j.foodchem.2022.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
16
|
Vang JY, Breceda C, Her C, Krishnan VV. Enzyme kinetics by real-time quantitative NMR (qNMR) spectroscopy with progress curve analysis. Anal Biochem 2022; 658:114919. [PMID: 36154835 DOI: 10.1016/j.ab.2022.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
This review article summarizes how the experimental data obtained using quantitative nuclear magnetic resonance (qNMR) spectroscopy can be combined with progress curve analysis to determine enzyme kinetic parameters. The qNMR approach enables following the enzymatic conversion of the substrate to the product in real-time by a continuous collection of spectra. The Lambert-W function, a closed-form solution to the time-dependent substrate/product kinetics of the rate equation, can estimate the Michaelis-Menten constant (KM.) and the maximum velocity (Vmax) from a single experiment. This article highlights how the qNMR data is well suited for analysis using the Lambert-W function with three different applications. Results from studies on acetylcholinesterase (acetylcholine to acetic acid and choline), β-Galactosidase (lactose to glucose and galactose), and invertase (sucrose to glucose and fructose) are presented. Furthermore, an additional example of how the progress curve analysis is applied to understand the inhibitory role of the artificial sweetener sucralose on sucrose's enzymatic conversion by invertase is discussed. With the wide availability of NMR spectrometers in academia and industries, including bench-top systems with permanent magnets, and the potential to enhance sensitivity using dynamic nuclear polarization in combination with ultrafast methods, the NMR-based enzyme kinetics could be considered a valuable tool for broader applications in the field of enzyme kinetics.
Collapse
Affiliation(s)
- Justin Y Vang
- Department of Chemistry & Biochemistry, California State University, Fresno, CA, 93740, USA
| | - Candido Breceda
- Department of Chemistry & Biochemistry, California State University, Fresno, CA, 93740, USA
| | - Cheenou Her
- Department of Chemistry & Biochemistry, California State University, Fresno, CA, 93740, USA
| | - V V Krishnan
- Department of Chemistry & Biochemistry, California State University, Fresno, CA, 93740, USA; Department of Medical Pathology & Laboratory Medicine, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Motabar D, Wang S, Tsao CY, Payne GF, Bentley WE. Protein G: β-galactosidase fusion protein for multi-modal bioanalytical applications. Biotechnol Prog 2022; 38:e3297. [PMID: 35976745 PMCID: PMC10078426 DOI: 10.1002/btpr.3297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
β-galactosidase (β-gal) is one of the most prevalent markers of gene expression. Its activity can be monitored via optical and fluorescence microscopy, electrochemistry, and many other ways after slight modification using protein engineering. Here, we have constructed a chimeric version that incorporates a streptococcal protein G domain at the N-terminus of β-gal that binds immunoglobins, namely IgG. This protein G:β-galactosidase fusion enables β-gal-based spectrophotometric and electrochemical measurements of IgG. Moreover, our results show linearity over an industrially relevant range. We demonstrate applicability with rapid spectroelectrochemical detection of IgG in several formats including using an electrochemical sensing interface that is rapidly assembled directly onto electrodes for incorporation into biohybrid devices. The fusion protein enables sensitive, linear, and rapid responses, and in our case, makes IgG measurements quite robust and simple, expanding the molecular diagnostics toolkit for biological measurement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
18
|
Luis AS, Baslé A, Byrne DP, Wright GSA, London JA, Jin C, Karlsson NG, Hansson GC, Eyers PA, Czjzek M, Barbeyron T, Yates EA, Martens EC, Cartmell A. Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nat Chem Biol 2022; 18:841-849. [PMID: 35710619 PMCID: PMC7613211 DOI: 10.1038/s41589-022-01039-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
Abstract
Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.
Collapse
Affiliation(s)
- Ana S Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth S A Wright
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James A London
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Faculty of Health Sciences, Department of Life Sciences and Health, Pharmacy, Oslo Metropolitan University, Oslo, Norway
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mirjam Czjzek
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Alan Cartmell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
20
|
Iyengar SM, Barnsley KK, Xu R, Prystupa A, Ondrechen MJ. Electrostatic fingerprints of catalytically active amino acids in enzymes. Protein Sci 2022; 31:e4291. [PMID: 35481659 PMCID: PMC8994506 DOI: 10.1002/pro.4291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
The computed electrostatic and proton transfer properties are studied for 20 enzymes that represent all six major enzyme commission classes and a variety of different folds. The properties of aspartate, glutamate, and lysine residues that have been previously experimentally determined to be catalytically active are reported. The catalytic aspartate and glutamate residues studied here are strongly coupled to at least one other aspartate or glutamate residue and often to multiple other carboxylate residues with intrinsic pKa differences less than 1 pH unit. Sometimes these catalytic acidic residues are also coupled to a histidine residue, such that the intrinsic pKa of the acidic residue is higher than that of the histidine. All catalytic lysine residues studied here are strongly coupled to tyrosine or cysteine residues, wherein the intrinsic pKa of the anion-forming residue is higher than that of the lysine. Some catalytic lysines are also coupled to other lysines with intrinsic pKa differences within 1 pH unit. Some evidence of the possible types of interactions that facilitate nucleophilicity is discussed. The interactions reported here provide important clues about how side chain functional groups that are weak Brønsted acids or bases for the free amino acid in solution can achieve catalytic potency and become strong acids, bases or nucleophiles in the enzymatic environment.
Collapse
Affiliation(s)
- Suhasini M. Iyengar
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Kelly K. Barnsley
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Rholee Xu
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Aleksandr Prystupa
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
21
|
Dada L, Manzano VE, Varela O. Benzyl Glycosides of Thiodisaccharides. Influence of C‐2 Configuration of the Reducing End and Substitution at Benzyl on the Inhibition of the
E. coli
β‐Galactosidase. ChemistrySelect 2021. [DOI: 10.1002/slct.202103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucas Dada
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Verónica E. Manzano
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| | - Oscar Varela
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica. Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR)
| |
Collapse
|
22
|
Zhou Z, He N, Han Q, Liu S, Xue R, Hao J, Li S. Characterization and Application of a New β-Galactosidase Gal42 From Marine Bacterium Bacillus sp. BY02. Front Microbiol 2021; 12:742300. [PMID: 34759900 PMCID: PMC8573354 DOI: 10.3389/fmicb.2021.742300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/04/2022] Open
Abstract
β-Galactosidase plays an important role in medicine and dairy industry. In this study, a new glycoside hydrolase family 42 (GH42) β-galactosidase-encoding gene, gal42, was cloned from a newly isolated marine bacterium Bacillus sp. BY02 and expressed in Escherichia coli. Structural characterization indicated that the encoding β-galactosidase, Gal42, is a homotrimer in solution, and homology modeling indicated that it retains the zinc binding sites of the Cys cluster. The reaction activity of Gal42 was significantly increased by Zn2+ (229.6%) and other divalent metal ions (Mn2+, Mg2+, and Co2+), while its activity was inhibited by EDTA (53.9%). Meanwhile, the thermo-stability of the Gal42 was also significantly enhanced by 5 and 10 mM of zinc ion supplement, which suggested that the “Cys-Zn” motif played important roles in both structural stability and catalytic function. Furthermore, Gal42 showed effective lactose hydrolysis activity, which makes the enzyme hydrolyze the lactose in milk effectively. These properties make Gal42 a potential candidate in food technology.
Collapse
Affiliation(s)
- Zihan Zhou
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qi Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Songshen Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ruikun Xue
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Hovorková M, Kulik N, Konvalinková D, Petrásková L, Křen V, Bojarová P. Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem 2021. [DOI: 10.1002/cctc.202101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
- Department of Genetics and Microbiology Faculty of Science Charles University Viničná 5 CZ-12843 Prague 2 Czech Republic
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology Institute of Microbiology Czech Academy of Sciences Zámek 136 CZ-37333 Nové Hrady Czech Republic
| | - Dorota Konvalinková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| |
Collapse
|
24
|
Sheik Amamuddy O, Glenister M, Tshabalala T, Tastan Bishop Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput Struct Biotechnol J 2021; 19:5059-5071. [PMID: 34589183 PMCID: PMC8455658 DOI: 10.1016/j.csbj.2021.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
The web server, MDM-TASK-web, combines the MD-TASK and MODE-TASK software suites, which are aimed at the coarse-grained analysis of static and all-atom MD-simulated proteins, using a variety of non-conventional approaches, such as dynamic residue network analysis, perturbation-response scanning, dynamic cross-correlation, essential dynamics and normal mode analysis. Altogether, these tools allow for the exploration of protein dynamics at various levels of detail, spanning single residue perturbations and weighted contact network representations, to global residue centrality measurements and the investigation of global protein motion. Typically, following molecular dynamic simulations designed to investigate intrinsic and extrinsic protein perturbations (for instance induced by allosteric and orthosteric ligands, protein binding, temperature, pH and mutations), this selection of tools can be used to further describe protein dynamics. This may lead to the discovery of key residues involved in biological processes, such as drug resistance. The server simplifies the set-up required for running these tools and visualizing their results. Several scripts from the tool suites were updated and new ones were also added and integrated with 2D/3D visualization via the web interface. An embedded work-flow, integrated documentation and visualization tools shorten the number of steps to follow, starting from calculations to result visualization. The Django-powered web server (available at https://mdmtaskweb.rubi.ru.ac.za/) is compatible with all major web browsers. All scripts implemented in the web platform are freely available at https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web and https://github.com/RUBi-ZA/MODE-TASK/tree/mdm-task-web.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Thulani Tshabalala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
25
|
Antarctic Rahnella inusitata: A Producer of Cold-Stable β-Galactosidase Enzymes. Int J Mol Sci 2021; 22:ijms22084144. [PMID: 33923711 PMCID: PMC8074230 DOI: 10.3390/ijms22084144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022] Open
Abstract
There has been a recent increase in the exploration of cold-active β-galactosidases, as it offers new alternatives for the dairy industry, mainly in response to the current needs of lactose-intolerant consumers. Since extremophilic microbial compounds might have unique physical and chemical properties, this research aimed to study the capacity of Antarctic bacterial strains to produce cold-active β-galactosidases. A screening revealed 81 out of 304 strains with β-galactosidase activity. The strain Se8.10.12 showed the highest enzymatic activity. Morphological, biochemical, and molecular characterization based on whole-genome sequencing confirmed it as the first Rahnella inusitata isolate from the Antarctic, which retained 41–62% of its β-galactosidase activity in the cold (4 °C–15 °C). Three β-galactosidases genes were found in the R. inusitata genome, which belong to the glycoside hydrolase families GH2 (LacZ and EbgA) and GH42 (BglY). Based on molecular docking, some of these enzymes exhibited higher lactose predicted affinity than the commercial control enzyme from Aspergillus oryzae. Hence, this work reports a new Rahnella inusitata strain from the Antarctic continent as a prominent cold-active β-galactosidase producer.
Collapse
|
26
|
Benešová E, Šućur Z, Těšínský M, Spiwok V, Lipovová P. Transglycosylation abilities of β-d-galactosidases from GH family 2. 3 Biotech 2021; 11:168. [PMID: 33816045 DOI: 10.1007/s13205-021-02715-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to predict the transglycosylation activity of glycosidases by in silico analysis was investigated. The transglycosylation abilities of 7 different β-d-galactosidases from GH family 2 were tested experimentally using 7 different acceptors and p-nitrophenyl-β-d-galactopyranoside as a donor of galactosyl moiety. Similar transglycosylation abilities were confirmed for all enzymes originating from bacteria belonging to Enterobacteriaceae, which were able to use all tested acceptor molecules. Higher acceptor selectivity was observed for all others used bacterial strains. Structure models of all enzymes were constructed using homology modeling. Ligand-docking method was used for enzymes-transglycosylation products models construction and evaluation. Results obtained by in silico analysis were compared with results arisen out of experimental testing. The experiments confirmed that significant differences in transglycosylation abilities are caused by small differences in active sites composition of analyzed enzymes. According to obtained result, it is possible to conclude that homology modeling may serve as a quick starting point for detection or exclusion of enzymes with defined transglycosylation abilities, which can be used for subsequent synthesis of e.g., pharmaceutically interesting glycosides. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02715-w.
Collapse
Affiliation(s)
- Eva Benešová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Zoran Šućur
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Miroslav Těšínský
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Czech Republic
| |
Collapse
|
27
|
Gao Y, Hu Y, Liu Q, Li X, Li X, Kim CY, James TD, Li J, Chen X, Guo Y. Two-Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angew Chem Int Ed Engl 2021; 60:10756-10765. [PMID: 33624914 DOI: 10.1002/anie.202101278] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 01/10/2023]
Abstract
The tracking of cellular senescence usually depends on the detection of senescence-associated β-galactosidase (SA-β-gal). Previous probes for SA-β-gal with this purpose only cover a single dimension: the accumulation of this enzyme in lysosomes. However, this is insufficient to determine the destiny of senescence because endogenous β-gal enriched in lysosomes is not only related to senescence, but also to some other physiological processes. To address this issue, we introduce our fluorescent probes including a second dimension: lysosomal pH, since de-acidification is a unique feature of the lysosomes in senescent cells. With this novel design, our probes achieved excellent discrimination of SA-β-gal from cancer-associated β-gal, which enables them to track cellular senescence as well as tissue aging more precisely. Our crystal structures of a model enzyme E. coli β-gal mutant (E537Q) complexed with each probe further revealed the structural basis for probe recognition.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Yulu Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Qimeng Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.,Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
28
|
Gao Y, Hu Y, Liu Q, Li X, Li X, Kim C, James TD, Li J, Chen X, Guo Y. Two‐Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ying Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Yulu Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Qimeng Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Chu‐Young Kim
- Department of Chemistry and Biochemistry The University of Texas at El Paso El Paso TX 79968 USA
| | - Tony D. James
- Department of Chemistry University of Bath Bath BA2 7AY UK
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 China
- Clinical Medicine Scientific and Technical Innovation Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200092 China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
29
|
Glycoside hydrolase family 2 exo-β-1,6-galactosidase LpGal2 from Lactobacillus plantarum: Cloning, expression, and enzymatic characterization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Horne J, Beddingfield E, Knapp M, Mitchell S, Crawford L, Mills SB, Wrist A, Zhang S, Summers RM. Caffeine and Theophylline Inhibit β-Galactosidase Activity and Reduce Expression in Escherichia coli. ACS OMEGA 2020; 5:32250-32255. [PMID: 33376862 PMCID: PMC7758883 DOI: 10.1021/acsomega.0c03909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
The β-galactosidase enzyme is a common reporter enzyme that has been used extensively in microbiological and synthetic biology research. Here, we demonstrate that caffeine and theophylline, common natural methylxanthine products found in many foods and pharmaceuticals, negatively impact both the expression and activity of β-galactosidase in Escherichia coli. The β-galactosidase activity in E. coli grown with increasing concentrations of caffeine and theophylline was reduced over sixfold in a dose-dependent manner. We also observed decreasing lacZ mRNA transcript levels with increasing methylxanthine concentrations in the growth media. Similarly, caffeine and theophylline inhibit the activity of the purified β-galactosidase enzyme, with an approximately 1.7-fold increase in K M toward o-nitrophenyl-β-galactoside and a concomitant decrease in v max. The authors recommend the use of alternative reporter systems when such methylxanthines are expected to be present.
Collapse
Affiliation(s)
| | - Elizabeth Beddingfield
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Madison Knapp
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Stephanie Mitchell
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Logan Crawford
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shelby Brooks Mills
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexandra Wrist
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shuyuan Zhang
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
31
|
McGee JP, Melani RD, Yip PF, Senko MW, Compton PD, Kafader JO, Kelleher NL. Isotopic Resolution of Protein Complexes up to 466 kDa Using Individual Ion Mass Spectrometry. Anal Chem 2020; 93:2723-2727. [PMID: 33322893 DOI: 10.1021/acs.analchem.0c03282] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes. By recording mass spectra of individual ions via charge detection mass spectrometry, we report isotopic resolution for pyruvate kinase (232 kDa) and β-galactosidase (466 kDa), extending the limits of isotopic resolution for high mass and high m/z by >2.5-fold and >1.6-fold, respectively.
Collapse
Affiliation(s)
- John P McGee
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Ping F Yip
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael W Senko
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Philip D Compton
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jared O Kafader
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Expression, characterization and structural profile of a heterodimeric β-galactosidase from the novel strain Lactobacillus curieae M2011381. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
34
|
A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020; 28:1249-1258.e2. [PMID: 32857966 DOI: 10.1016/j.str.2020.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Ramachandran plots report the distribution of the (ϕ, ψ) torsion angles of the protein backbone and are one of the best quality metrics of experimental structure models. Typically, validation software reports the number of residues belonging to "outlier," "allowed," and "favored" regions. While "zero unexplained outliers" can be considered the current "gold standard," this can be misleading if deviations from expected distributions are not considered. We revisited the Ramachandran Z score (Rama-Z), a quality metric introduced more than two decades ago but underutilized. We describe a reimplementation of the Rama-Z score in the Computational Crystallography Toolbox along with an algorithm to estimate its uncertainty for individual models; final implementations are available in Phenix and PDB-REDO. We discuss the interpretation of the Rama-Z score and advocate including it in the validation reports provided by the Protein Data Bank. We also advocate reporting it alongside the outlier/allowed/favored counts in structural publications.
Collapse
|
35
|
Rutkiewicz M, Wanarska M, Bujacz A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci 2020; 21:E5354. [PMID: 32731412 PMCID: PMC7432029 DOI: 10.3390/ijms21155354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character. Furthermore, usage of mutants with diminished and abolished enzymatic activity enabled solving six complex structures with galactose, lactulose or sucrose bounds. As a result, not only the galactose binding sites were mapped on the enzyme's surface but also the mode of lactulose, product of transglycosylation reaction, and binding within the enzyme's active site were determined and the glucopyranose binding site in the distal of active site was discovered. The latter two especially show structural details of transglycosylation, providing valuable information that may be used for engineering of ArthβDG or other analogous galactosidases belonging to GH2 family.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| |
Collapse
|
36
|
Kjeldsen C, Ardenkjær-Larsen JH, Duus JØ. Unexpected Anomeric Acceptor Preference Observed Using dDNP NMR for Transglycosylation Studies of β-Galactosidases. Biochemistry 2020; 59:2903-2908. [DOI: 10.1021/acs.biochem.0c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Yang Y, Wang P, Jin B, Dong Z, Chen G, Liu D. Screening of Potential Key Transcripts Involved in Planarian Regeneration and Analysis of Its Regeneration Patterns by PacBio Long-Read Sequencing. Front Genet 2020; 11:580. [PMID: 32612637 PMCID: PMC7308552 DOI: 10.3389/fgene.2020.00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Dugesia japonica is an excellent animal model for studying the regeneration mechanism due to its characteristics of rapid regeneration and easy breeding. PacBio sequencing was performed on the intact planarians (In) and regenerating planarians of 1 day (1d), 3 days (3d), and 5 days (5d) after amputation. The aim of this study is to deeply profile the transcriptome of D. japonica and to evaluate its regenerate changes. Using robust statistical analysis, we identified 5931, 5115, and 4669 transcripts differentially expressed between 1d and In, 3d and In, 5d and In, respectively. A total of 63 key transcripts were screened from these DETs. These key transcripts enhance the expression in different regenerate stages respectively to regulate specific processes including signal transduction, mitosis, protein synthesis, transport and degradation, apoptosis, neural development, and energy cycling. Finally, according to the biological processes involved in these potential key transcripts, we propose a hypothesis of head regeneration model about D. japonica. In addition, the weighted gene co-expression network analysis provides a new way to screen key transcripts from large amounts of data. Together, these analyses identify a number of potential key regulators controlling proliferation, differentiation, apoptosis, and signal transduction. What's more, this study provides a powerful data foundation for further research on planarians regeneration.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Peizheng Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
38
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
39
|
Li X, Qiu W, Li J, Chen X, Hu Y, Gao Y, Shi D, Li X, Lin H, Hu Z, Dong G, Sheng C, Jiang B, Xia C, Kim CY, Guo Y, Li J. First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated β-galactosidase. Chem Sci 2020; 11:7292-7301. [PMID: 34123013 PMCID: PMC8159415 DOI: 10.1039/d0sc01234c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human senescence-associated β-galactosidase (SA-β-gal), the most widely used biomarker of aging, is a valuable tool for assessing the extent of cell ‘healthy aging’ and potentially predicting the health life span of an individual. Human SA-β-gal is an endogenous lysosomal enzyme expressed from GLB1, the catalytic domain of which is very different from that of E. coli β-gal, a bacterial enzyme encoded by lacZ. However, existing chemical probes for this marker still lack the ability to distinguish human SA-β-gal from β-gal of other species, such as bacterial β-gal, which can yield false positive signals. Here, we show a molecular design strategy to construct fluorescent probes with the above ability with the aid of structure-based steric hindrance adjustment catering to different enzyme pockets. The resulting probes normally work as traditional SA-β-gal probes, but they are unique in their powerful ability to distinguish human SA-β-gal from E. coli β-gal, thus achieving species-selective visualization of human SA-β-gal for the first time. NIR-emitting fluorescent probe KSL11 as their representative further displays excellent species-selective recognition performance in biological systems, which has been herein verified by testing in senescent cells, in lacZ-transfected cells and in E. coli-β-gal-contaminated tissue sections of mice. Because of our probes, it was also discovered that SA-β-gal content in mice increased gradually with age and SA-β-gal accumulated most in the kidneys among the main organs of naturally aging mice, suggesting that the kidneys are the organs with the most severe aging during natural aging. The first-generation chemical probes for species-selective fluorescence imaging of human senescence-associated β-galactosidase are developed.![]()
Collapse
Affiliation(s)
- Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Wenjing Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Jinwen Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Yulu Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Ying Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Huiling Lin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Zelan Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Bei Jiang
- Institute of Materia Medica, College of Pharmacy and Chemistry, Dali University Dali 671000 China
| | - Conglong Xia
- Institute of Materia Medica, College of Pharmacy and Chemistry, Dali University Dali 671000 China
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso El Paso Texas 79968 USA
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China .,Institute of Materia Medica, College of Pharmacy and Chemistry, Dali University Dali 671000 China
| |
Collapse
|
40
|
Mohamad Sobri MF, Abd-Aziz S, Abu Bakar FD, Ramli N. In-Silico Characterization of Glycosyl Hydrolase Family 1 β-Glucosidase from Trichoderma asperellum UPM1. Int J Mol Sci 2020; 21:ijms21114035. [PMID: 32512945 PMCID: PMC7311958 DOI: 10.3390/ijms21114035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
β-glucosidases (Bgl) are widely utilized for releasing non-reducing terminal glucosyl residues. Nevertheless, feedback inhibition by glucose end product has limited its application. A noticeable exception has been found for β-glucosidases of the glycoside hydrolase (GH) family 1, which exhibit tolerance and even stimulation by glucose. In this study, using local isolate Trichoderma asperellum UPM1, the gene encoding β-glucosidase from GH family 1, hereafter designated as TaBgl2, was isolated and characterized via in-silico analyses. A comparison of enzyme activity was subsequently made by heterologous expression in Escherichia coli BL21(DE3). The presence of N-terminal signature, cis-peptide bonds, conserved active site motifs, non-proline cis peptide bonds, substrate binding, and a lone conserved stabilizing tryptophan (W) residue confirms the identity of Trichoderma sp. GH family 1 β-glucosidase isolated. Glucose tolerance was suggested by the presence of 14 of 22 known consensus residues, along with corresponding residues L167 and P172, crucial in the retention of the active site's narrow cavity. Retention of 40% of relative hydrolytic activity on ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) in a concentration of 0.2 M glucose was comparable to that of GH family 1 β-glucosidase (Cel1A) from Trichoderma reesei. This research thus underlines the potential in the prediction of enzymatic function, and of industrial importance, glucose tolerance of family 1 β-glucosidases following relevant in-silico analyses.
Collapse
Affiliation(s)
- Mohamad Farhan Mohamad Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia;
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
- Correspondence: ; Tel.: +60-3-9769-1948
| |
Collapse
|
41
|
Dashnyam P, Lin HY, Chen CY, Gao S, Yeh LF, Hsieh WC, Tu Z, Lin CH. Substituent Position of Iminocyclitols Determines the Potency and Selectivity for Gut Microbial Xenobiotic-Reactivating Enzymes. J Med Chem 2020; 63:4617-4627. [PMID: 32105467 DOI: 10.1021/acs.jmedchem.9b01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Lun-Fu Yeh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Wei-Che Hsieh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
42
|
Saur M, Hartshorn MJ, Dong J, Reeks J, Bunkoczi G, Jhoti H, Williams PA. Fragment-based drug discovery using cryo-EM. Drug Discov Today 2020; 25:485-490. [PMID: 31877353 DOI: 10.1016/j.drudis.2019.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in electron cryo-microscopy (cryo-EM) structure determination have pushed the resolutions obtainable by the method into the range widely considered to be of utility for drug discovery. Here, we review the use of cryo-EM in fragment-based drug discovery (FBDD) based on in-house method development. We demonstrate not only that cryo-EM can reveal details of the molecular interactions between fragments and a protein, but also that the current reproducibility, quality, and throughput are compatible with FBDD. We exemplify this using the test system β-galactosidase (Bgal) and the oncology target pyruvate kinase 2 (PKM2).
Collapse
Affiliation(s)
- Michael Saur
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Michael J Hartshorn
- Isohelio Ltd, Lewis House, Great Chesterford Court, Great Chesterford, CB10 1PF, UK
| | - Jing Dong
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Judith Reeks
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Gabor Bunkoczi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Harren Jhoti
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK.
| | - Pamela A Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| |
Collapse
|
43
|
β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv 2020; 39:107465. [DOI: 10.1016/j.biotechadv.2019.107465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
44
|
Chen JA, Pan H, Wang Z, Gao J, Tan J, Ouyang Z, Guo W, Gu X. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission. Chem Commun (Camb) 2020; 56:2731-2734. [PMID: 32022000 DOI: 10.1039/c9cc09158k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein develop two β-galactosidase (β-Gal) activatable NIR fluorescent probes for visualizing ovarian cancers. Particularly, probe BOD-M-βGal produced NIR-II emission light at 900-1300 nm upon β-Gal activation. By using our activatable and target specific NIR-II probe for deep-tissue imaging of β-Gal overexpressed ovarian cancer cells, rapid and accurate imaging of ovarian tumors in nude mice was achieved.
Collapse
Affiliation(s)
- Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rutkiewicz M, Bujacz A, Wanarska M, Wierzbicka-Wos A, Cieslinski H. Active Site Architecture and Reaction Mechanism Determination of Cold Adapted β-d-galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci 2019; 20:E4301. [PMID: 31484304 PMCID: PMC6747455 DOI: 10.3390/ijms20174301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
ArthβDG is a dimeric, cold-adapted β-d-galactosidase that exhibits high hydrolytic and transglycosylation activity. A series of crystal structures of its wild form, as well as its ArthβDG_E441Q mutein complexes with ligands were obtained in order to describe the mode of its action. The ArthβDG_E441Q mutein is an inactive form of the enzyme designed to enable observation of enzyme interaction with its substrate. The resulting three-dimensional structures of complexes: ArthβDG_E441Q/LACs and ArthβDG/IPTG (ligand bound in shallow mode) and structures of complexes ArthβDG_E441Q/LACd, ArthβDG/ONPG (ligands bound in deep mode), and galactose ArthβDG/GAL and their analysis enabled structural characterization of the hydrolysis reaction mechanism. Furthermore, comparative analysis with mesophilic analogs revealed the most striking differences in catalysis mechanisms. The key role in substrate transfer from shallow to deep binding mode involves rotation of the F581 side chain. It is worth noting that the 10-aa loop restricting access to the active site in mesophilic GH2 βDGs, in ArthβDG is moved outward. This facilitates access of substrate to active site. Such a permanent exposure of the entrance to the active site may be a key factor for improved turnover rate of the cold adapted enzyme and thus a structural feature related to its cold adaptation.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Wierzbicka-Wos
- Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Hubert Cieslinski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
46
|
Subramanian A, Kadirvel P, Anishetty S. Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus β-glycosidase: A molecular dynamics study. Carbohydr Res 2019; 480:42-53. [DOI: 10.1016/j.carres.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
|
47
|
Structural features of cold-adapted dimeric GH2 β-D-galactosidase from Arthrobacter sp. 32cB. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:776-786. [PMID: 31195142 DOI: 10.1016/j.bbapap.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/12/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
Crystal structures of cold-adapted β-d-galactosidase (EC 3.2.1.23) from the Antarctic bacterium Arthrobacter sp. 32cB (ArthβDG) have been determined in an unliganded form resulting from diffraction experiments conducted at 100 K (at resolution 1.8 Å) and at room temperature (at resolution 3.0 Å). A detailed comparison of those two structures of the same enzyme was performed in order to estimate differences in their molecular flexibility and rigidity and to study structural rationalization for the cold-adaptation of the investigated enzyme. Furthermore, a comparative analysis with structures of homologous enzymes from psychrophilic, mesophilic, and thermophilic sources has been discussed to elucidate the relationship between structure and cold-adaptation in a wider context. The performed studies confirm that the structure of cold-adapted ArthβDG maintains balance between molecular stability and structural flexibility, which can be observed independently on the temperature of conducted X-ray diffraction experiments. Obtained information about proper protein function under given conditions provide a guideline for rational engineering of proteins in terms of their temperature optimum and thermal stability.
Collapse
|
48
|
Abstract
Tetrazole derivatives are a prime class of heterocycles, very important to medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid and amide moieties but also to their metabolic stability and other beneficial physicochemical properties. Although more than 20 FDA-approved drugs contain 1 H- or 2 H-tetrazole substituents, their exact binding mode, structural biology, 3D conformations, and in general their chemical behavior is not fully understood. Importantly, multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole scaffolds providing the three important elements of novelty, diversity, and complexity, yet MCR pathways to tetrazoles are far from completely explored. Here, we review the use of multicomponent reactions for the preparation of substituted tetrazole derivatives. We highlight specific applications and general trends holding therein and discuss synthetic approaches and their value by analyzing scope and limitations, and also enlighten their receptor binding mode. Finally, we estimated the prospects of further research in this field.
Collapse
Affiliation(s)
- Constantinos G. Neochoritis
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ting Zhao
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
49
|
Capabilities of the Falcon III detector for single-particle structure determination. Ultramicroscopy 2019; 203:145-154. [PMID: 30738626 DOI: 10.1016/j.ultramic.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 02/02/2023]
Abstract
Direct electron detectors are an essential asset for the resolution revolution in electron cryo microscopy of biological objects. The direct detectors provide two modes of data acquisition; the counting mode in which single electrons are counted, and the integrating mode in which the signal that arises from the incident electrons is integrated. While counting mode leads to far higher detective quantum efficiency at all spatial frequencies, the integrating mode enables faster data acquisition at higher exposure rates. For optimal throughput at best possible resolution it is important to understand when the better performance in counting mode becomes essential for solving a structure and when the lower detective quantum efficiency in integrating mode can be compensated by increasing the number of particles in the data set. Here, we provide a case study of the Falcon III camera, which has counting mode capability at exposure rates of <0.9 e-/Px² and integrating mode capability at exposure rates above 10 e-/Px². We found that counting mode gives better resolution for medium sized complexes such as the β-galactosidase (465 kDa) (2.2 Å, 97% of Nyquist vs. 2.4 Å, 89% of Nyquist) with data sets of similar size. However, for larger particles such as Hepatitis B virus capsid like particles (4.8 MDa) we did not find any resolution gain in counting mode.
Collapse
|
50
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|