1
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. Int J Mol Sci 2023; 24:12547. [PMID: 37628726 PMCID: PMC10454150 DOI: 10.3390/ijms241612547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.); (R.T.R.); (L.M.M.)
| |
Collapse
|
2
|
Svensson B, Nitu FR, Rebbeck RT, McGurran LM, Oda T, Thomas DD, Bers DM, Cornea RL. Molecular Mechanism of a FRET Biosensor for the Cardiac Ryanodine Receptor Pathologically Leaky State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548138. [PMID: 37461514 PMCID: PMC10350043 DOI: 10.1101/2023.07.07.548138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ca 2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide, (DPc10) detects leaky RyR2 in cardiomyocytes. Conversely, calmodulin (CaM) inhibits RyR2 leak. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. Here we used FRET to understand the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca 2+ , DPc10 decreased both FRET max (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca 2+ , DPc10 decreased FRET max without affecting CaM/RyR2 binding affinity. This correlates with analysis of fluorescence-lifetime-detected FRET indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca 2+ and lengthens D-FKBP/A-CaM distances independent of [Ca 2+ ]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, this effect being larger in micromolar vs. nanomolar Ca 2+ . Moreover, A-DPc10/RyR2 binding is cooperative in CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Florentin R. Nitu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Robyn T. Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Lindsey M. McGurran
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Tetsuro Oda
- Department of Pharmacology, University of California, Davis
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Razvan L. Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis
| |
Collapse
|
3
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
4
|
Ashna A, van Helden DF, Dos Remedios C, Molenaar P, Laver DR. Phenytoin Reduces Activity of Cardiac Ryanodine Receptor 2; A Potential Mechanism for Its Cardioprotective Action. Mol Pharmacol 2020; 97:250-258. [PMID: 32015008 DOI: 10.1124/mol.119.117721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenytoin is a hydantoin derivative that is used clinically for the treatment of epilepsy and has been reported to have antiarrhythmic actions on the heart. In a failing heart, the elevated diastolic Ca2+ leak from the sarcoplasmic reticulum can be normalized by the cardiac ryanodine receptor 2 (RyR2) inhibitor, dantrolene, without inhibiting Ca2+ release during systole or affecting Ca2+ release in normal healthy hearts. Unfortunately, dantrolene is hepatotoxic and unsuitable for chronic long-term administration. Because phenytoin and dantrolene belong to the hydantoin class of compounds, we test the hypothesis that dantrolene and phenytoin have similar inhibitory effects on RyR2 using a single-channel recording of RyR2 activity in artificial lipid bilayers. Phenytoin produced a reversible inhibition of RyR2 channels from sheep and human failing hearts. It followed a hyperbolic dose response with maximal inhibition of ∼50%, Hill coefficient ∼1, and IC50 ranging from 10 to 20 µM. It caused inhibition at diastolic cytoplasmic [Ca2+] but not at Ca2+ levels in the dyadic cleft during systole. Notably, phenytoin inhibits RyR2 from failing human heart but not from healthy heart, indicating that phenytoin may selectively target defective RyR2 channels in humans. We conclude that phenytoin could effectively inhibit RyR2-mediated release of Ca2+ in a manner paralleling that of dantrolene. Moreover, the IC50 of phenytoin in RyR2 is at least threefold lower than for other ion channels and clinically used serum levels, pointing to phenytoin as a more human-safe alternative to dantrolene for therapies against heart failure and cardiac arrythmias. SIGNIFICANCE STATEMENT: We show that phenytoin, a Na channel blocker used clinically for treatment of epilepsy, is a diastolic inhibitor of cardiac calcium release channels [cardiac ryanodine receptor 2 (RyR2)] at doses threefold lower than its current therapeutic levels. Phenytoin inhibits RyR2 from failing human heart and not from healthy heart, indicating that phenytoin may selectively target defective RyR2 channels in humans and pointing to phenytoin as a more human-safe alternative to dantrolene for therapies against heart failure and cardiac arrhythmias.
Collapse
Affiliation(s)
- A Ashna
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - C Dos Remedios
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - P Molenaar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (A.A., D.F.v.H., D.R.L.); Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales, Australia (C.d.R.); School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (P.M.); and Northside Clinical School of Medicine, University of Queensland, Cardio-vascular Molecular & Therapeutics Translational Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia (P.M.)
| |
Collapse
|
5
|
Diszházi G, Magyar ZÉ, Mótyán JA, Csernoch L, Jóna I, Nánási PP, Almássy J. Dantrolene Requires Mg 2+ and ATP To Inhibit the Ryanodine Receptor. Mol Pharmacol 2019; 96:401-407. [PMID: 31337666 DOI: 10.1124/mol.119.116475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Dantrolene is a ryanodine receptor (RyR) inhibitor, which is used to relax muscles in malignant hyperthermia syndrome. Although dantrolene binds to the RyR protein, its mechanism of action is unknown, mainly because of the controversial results showing that dantrolene inhibited Ca2+ release from intact fibers and sarcoplasmic reticulum (SR) vesicles, but failed to inhibit single RyR channel currents in bilayers. Accordingly, it was concluded that an important factor for dantrolene's action was lost during the purification procedure of RyR. Recently, Mg2+ was demonstrated to be the essential factor for dantrolene to inhibit Ca2+ release in skinned muscle fibers. The aim of the present study was to confirm these results in Ca2+ release and bilayer experiments, using SR vesicles and solubilized channels, respectively. Our Ca2+ release experiments demonstrated that the effect of dantrolene and Mg2+ was cooperative and that ATP enhanced the inhibiting effect of dantrolene. Namely, 10 µM dantrolene reduced RyR channel open probability by ∼50% in the presence of 3 mM free Mg2+ and 1 mM ATP, whereas channel activity further decreased to ∼20% of control when [ATP] was increased to 2 mM. Our data provide important complementary information that supports the direct, Mg2+-dependent mechanism of dantrolene's action and suggests that dantrolene also requires ATP to inhibit RyR.
Collapse
Affiliation(s)
- Gyula Diszházi
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Édua Magyar
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - István Jóna
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - Péter Pál Nánási
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 2017; 44:135-142. [PMID: 27626620 DOI: 10.1111/1440-1681.12669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Cardiac output and rhythm depend on the release and the take-up of calcium from the sarcoplasmic reticulum (SR). Excessive diastolic calcium leak from the SR due to dysfunctional calcium release channels (RyR2) contributes to the formation of delayed after-depolarizations, which underlie the fatal arrhythmias that occur in heart failure and inherited syndromes. Calmodulin (CaM) is a calcium-binding protein that regulates target proteins and acts as a calcium sensor. CaM is comprised of two calcium-binding EF-hand domains and a flexible linker. CaM is an accessory protein that partially inhibits RyR2 channel activity. CaM is critical for normal cardiac function, and altered CaM binding and efficacy may contribute to defects in SR calcium release. The present paper reviews CaM binding to RyR2 and how it regulates RyR2 channel activity. It then goes on to review how mutations in the CaM amino acid sequence give rise to inherited syndromes such as Catecholaminergic Polymorphic Ventricular Tachychardia (CPVT) and long QT syndrome (LQTS). In addition, the role of reduced CaM binding to RyR2 that results from RyR2 phosphorylation or from oxidation of either RyR2 or CaM contributes to the progression of heart failure is reviewed. Finally, this manuscript reviews recent evidence that CaM binding to RyR2 is required for the inhibitory action of a pharmaceutical agent (dantrolene) on RyR2. Dantrolene is a clinically used muscle relaxant that has recently been found to exert antiarrhythmic effects against SR Ca2+ overload arrhythmias.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Abstract
The ryanodine receptor/Ca2+ release channel plays a pivotal role in skeletal and cardiac muscle excitation-contraction coupling. Defective regulation leads to neuromuscular disorders and arrhythmogenic cardiac disease. This mini-review focuses on channel regulation through structural intra- and inter-subunit interactions and their implications in ryanodine receptor pathophysiology.
Collapse
|
9
|
FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys J 2015; 107:2037-48. [PMID: 25418089 DOI: 10.1016/j.bpj.2014.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.
Collapse
|
10
|
Vervliet T, Decrock E, Molgó J, Sorrentino V, Missiaen L, Leybaert L, De Smedt H, Kasri NN, Parys JB, Bultynck G. Bcl-2 binds to and inhibits ryanodine receptors. J Cell Sci 2014; 127:2782-92. [DOI: 10.1242/jcs.150011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only counteracts apoptosis at the mitochondria by scaffolding pro-apoptotic Bcl-2-family members, but also acts at the endoplasmic reticulum, thereby controlling intracellular Ca2+ dynamics. Bcl-2 inhibits Ca2+ release by targeting the inositol 1,4,5-trisphosphate receptor (IP3R). Sequence analysis revealed that the Bcl-2-binding site on the IP3R displays strong homology with a conserved sequence present in all three ryanodine-receptor (RyR) isoforms. We now report that, Bcl-2 co-immunoprecipitated with RyRs in ectopic expression systems and in native rat hippocampi, indicating the existence of endogenous RyR/Bcl-2 complexes. Purified RyR domains containing the putative Bcl-2-binding site bound full-length Bcl-2 in pull-down experiments and interacted with Bcl-2's BH4 domain in surface-plasmon-resonance experiments, suggesting a direct interaction. Exogenous expression of full-length Bcl-2 or electroporation loading of Bcl-2's BH4-domain dampened RyR-mediated Ca2+ release in HEK293 cell models. Finally, introducing the BH4-domain peptide into hippocampal neurons via a patch pipette decreased RyR-mediated Ca2+ release. In conclusion, this study identifies Bcl-2 as a novel inhibitor of RyR-based intracellular Ca2+-release channels.
Collapse
|
11
|
Yano M, Yamamoto T, Kobayashi S, Matsuzaki M. [Molecular mechanism of defective intracellular calcium release in heart failure and lethal arrhythmia]. Nihon Yakurigaku Zasshi 2012; 140:250-4. [PMID: 23229629 DOI: 10.1254/fpj.140.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Oda T, Yang Y, Nitu FR, Svensson B, Lu X, Fruen BR, Cornea RL, Bers DM. In cardiomyocytes, binding of unzipping peptide activates ryanodine receptor 2 and reciprocally inhibits calmodulin binding. Circ Res 2012; 112:487-97. [PMID: 23233753 DOI: 10.1161/circresaha.111.300290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping N-terminal and central domains. Calmodulin (CaM) and FK506-binding protein (FKBP12.6) bind to RyR2 and stabilize the closed channel. Little is known about DPc10 binding to the RyR2 and how that may interact with binding (and effects) of CaM and FKBP12.6 to RyR2. OBJECTIVE To measure, directly in cardiac myocytes, the kinetics and binding affinity of DPc10 to RyR2 and how that affects RyR2 interaction with FKBP12.6 and CaM. METHODS AND RESULTS We used permeabilized rat ventricular myocytes and fluorescently labeled DPc10, FKBP12.6, and CaM. DPc10 access to its binding site is extremely slow in resting RyR2 but is accelerated by promoting RyR opening or unzipping (by unlabeled DPc10). RyR2-bound CaM (but not FKBP12.6) drastically slowed DPc10 binding. Conversely, DPc10 binding significantly reduced CaM (but not FKBP12.6) binding to the RyR2. Fluorescence resonance energy transfer measurements indicate that DPc10-binding and CaM-binding sites are separate and allow triangulation of the structural DPc10 binding locus on RyR2 vs FKBP12.6-binding and CaM-binding sites. CONCLUSIONS DPc10-RyR2 binding is sterically limited by the resting zipped RyR2 state. CaM binding to RyR2 stabilizes this zipped state, whereas RyR2 activation or prebound DPc10 enhances DPc10 access. DPc10-binding and CaM-binding sites are distinct but are allosterically interacting RyR2 sites. Neither DPc10 nor FKBP12.6 influences RyR2 binding of the other.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel. PLoS One 2012; 7:e48725. [PMID: 23144945 PMCID: PMC3492408 DOI: 10.1371/journal.pone.0048725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.
Collapse
Affiliation(s)
- Olga B. Popova
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tina P. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tri Le
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Olojo RO, Hernández-Ochoa EO, Ikemoto N, Schneider MF. Effects of conformational peptide probe DP4 on bidirectional signaling between DHPR and RyR1 calcium channels in voltage-clamped skeletal muscle fibers. Biophys J 2011; 100:2367-77. [PMID: 21575570 DOI: 10.1016/j.bpj.2011.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023] Open
Abstract
In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca²⁺ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu²⁴⁴²-Pro²⁴⁷⁷ of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca²⁺ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca²⁺ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca²⁺ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling.
Collapse
Affiliation(s)
- Rotimi O Olojo
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
15
|
MacLennan DH, Zvaritch E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:948-64. [DOI: 10.1016/j.bbamcr.2010.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
|
16
|
Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res 2010; 106:1413-24. [PMID: 20224043 DOI: 10.1161/circresaha.109.209312] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by a single point mutation in a well-defined region of the cardiac type 2 ryanodine receptor (RyR)2. However, the underlying mechanism by which a single mutation in such a large molecule produces drastic effects on channel function remains unresolved. OBJECTIVE Using a knock-in (KI) mouse model with a human CPVT-associated RyR2 mutation (R2474S), we investigated the molecular mechanism by which CPVT is induced by a single point mutation within the RyR2. METHODS AND RESULTS The R2474S/+ KI mice showed no apparent structural or histological abnormalities in the heart, but they showed clear indications of other abnormalities. Bidirectional or polymorphic ventricular tachycardia was induced after exercise on a treadmill. The interaction between the N-terminal (amino acids 1 to 600) and central (amino acids 2000 to 2500) domains of the RyR2 (an intrinsic mechanism to close Ca(2+) channels) was weakened (domain unzipping). On protein kinase A-mediated phosphorylation of the RyR2, this domain unzipping further increased, resulting in a significant increase in the frequency of spontaneous Ca(2+) transients. cAMP-induced aberrant Ca(2+) release events (Ca(2+) sparks/waves) occurred at much lower sarcoplasmic reticulum Ca(2+) content as compared to the wild type. Addition of a domain-unzipping peptide, DPc10 (amino acids 2460 to 2495), to the wild type reproduced the aforementioned abnormalities that are characteristic of the R2474S/+ KI mice. Addition of DPc10 to the (cAMP-treated) KI cardiomyocytes produced no further effect. CONCLUSIONS A single point mutation within the RyR2 sensitizes the channel to agonists and reduces the threshold of luminal [Ca(2+)] for activation, primarily mediated by defective interdomain interaction within the RyR2.
Collapse
Affiliation(s)
- Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Blayney LM, Jones JL, Griffiths J, Lai FA. A mechanism of ryanodine receptor modulation by FKBP12/12.6, protein kinase A, and K201. Cardiovasc Res 2010; 85:68-78. [PMID: 19661110 DOI: 10.1093/cvr/cvp273] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Our objective was to explore the functional interdependence of protein kinase A (PKA) phosphorylation with binding of modulatory FK506 binding proteins (FKBP12/12.6) to the ryanodine receptor (RyR). RyR type 1 or type 2 was prepared from rabbit skeletal muscle or pig cardiac muscle, respectively. In heart failure, RyR2 dysfunction is implicated in fatal arrhythmia and RyR1 dysfunction is associated with muscle fatigue. A controversial underlying mechanism of RyR1/2 dysfunction is proposed to be hyperphosphorylation of RyR1/2 by PKA, causing loss of FKBP12/12.6 binding that is reversible by the experimental inhibitory drug K201 (JTV519). Phosphorylation is also a trigger for fatal arrhythmia in catecholaminergic polymorphic ventricular tachycardia associated with point mutations in RyR2. METHODS AND RESULTS Equilibrium binding kinetics of RyR1/2 to FKBP12/12.6 were measured using surface plasmon resonance (Biacore). Free Ca(2+) concentration was used to modulate the open/closed conformation of RyR1/2 channels measured using [(3)H]ryanodine binding assays. The affinity constant-K(A), for RyR1/2 binding to FKBP12/12.6, was significantly greater for the closed compared with the open conformation. The effect of phosphorylation or K201 was to reduce the K(A) of the closed conformation by increasing the rate of dissociation k(d). K201 reduced [(3)H]ryanodine binding to RyR1/2 at all free Ca(2+) concentrations including PKA phosphorylated preparations. CONCLUSION The results are explained through a model proposing that phosphorylation and K201 acted similarly to change the conformation of RyR1/2 and regulate FKBP12/12.6 binding. K201 stabilized the conformation, whereas phosphorylation facilitated a subsequent molecular event that might increase the rate of an open/closed conformational transition.
Collapse
Affiliation(s)
- Lynda M Blayney
- Department of Medicine - Cardiology, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
20
|
Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009; 53:1993-2005. [PMID: 19460614 DOI: 10.1016/j.jacc.2009.01.065] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/12/2009] [Accepted: 01/19/2009] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We sought to investigate the effect of dantrolene, a drug generally used to treat malignant hyperthermia, on the Ca2+ release and cardiomyocyte function in failing hearts. BACKGROUND The N-terminal (N: 1-600) and central (C: 2000-2500) domains of the ryanodine receptor (RyR) harbor many mutations associated with malignant hyperthermia in skeletal muscle RyR (RyR1) and polymorphic ventricular tachycardia in cardiac RyR (RyR2). There is strong evidence that interdomain interaction between these regions plays an important role in the mechanism of channel regulation. METHODS Sarcoplasmic reticulum vesicles and cardiomyocytes were isolated from the left ventricular muscles of dogs (normal or rapid ventricular pacing for 4 weeks), for Ca2+ leak, transient, and spark assays. To assess the zipped or unzipped state of the interacting domains, the RyR was labeled fluorescently with methylcoumarin acetate in a site-directed manner. We used a quartz-crystal microbalance technique to identify the dantrolene binding site within the RyR2. RESULTS Dantrolene specifically bound to domain 601-620 in RyR2. In the sarcoplasmic reticulum isolated from pacing-induced failing dog hearts, the defective interdomain interaction (domain unzipping) had already occurred, causing spontaneous Ca2+ leak. Dantrolene suppressed both domain unzipping and the Ca2+ leak, demonstrating identical drug concentration-dependence (IC50 = 0.3 micromol/l). In failing cardiomyocytes, both diastolic Ca2+ sparks and delayed afterdepolarization were observed frequently, but 1 micromol/l dantrolene inhibited both events. CONCLUSIONS Dantrolene corrects defective interdomain interactions within RyR2 in failing hearts, inhibits spontaneous Ca2+ leak, and in turn improves cardiomyocyte function in failing hearts. Thus, dantrolene may have a potential to treat heart failure, specifically targeting the RyR2.
Collapse
Affiliation(s)
- Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tateishi H, Yano M, Mochizuki M, Suetomi T, Ono M, Xu X, Uchinoumi H, Okuda S, Oda T, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M. Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovasc Res 2008; 81:536-45. [PMID: 18996969 DOI: 10.1093/cvr/cvn303] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS A domain peptide (DP) matching the Gly(2460)-Pro(2495) region of the cardiac type-2 ryanodine receptor (RyR2), DPc10, is known to mimic channel dysfunction associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), owing to its interference in a normal interaction of the N-terminal (1-600) and central (2000-2500) domains (viz. domain unzipping). Using DPc10 and two other DPs harboring different mutation sites, we investigated the underlying mechanism of abnormal Ca(2+) cycling in failing hearts. METHODS AND RESULTS Sarcoplasmic reticulum (SR) vesicles and cardiomyocytes were isolated from dog left ventricular muscles for Ca(2+) leak and spark assays. The RyR2 moiety of the SR was fluorescently labelled with methylcoumarin acetate (MCA) using DPs corresponding to the 163-195 and 4090-4123 regions of RyR2 (DP163-195 and DP4090-4123, respectively) as site-directed carriers. Both DPs mediated a specific MCA fluorescence labelling of RyR2. Addition of either DP to the MCA-labelled SR induced domain unzipping, as evidenced by an increased accessibility of the bound MCA to a large-size fluorescence quencher. Both SR Ca(2+) leak and Ca(2+) spark frequency (SpF) were markedly increased in failing cardiomyocytes. Upon introduction of DP163-195 or DP4090-4123 into normal SR or cardiomyocytes, both Ca(2+) leak and SpF increased to the levels comparable with those of failing myocytes. K201 (JTV519) suppressed all of the effects induced by DP163-195 (domain unzipping and increased Ca(2+) leak and SpF) or those in failing cardiomyocytes, but did not suppress the effects induced by DP4090-4123. CONCLUSION Defective inter-domain interaction between N-terminal and central domains induces diastolic Ca(2+) leak, leading to heart failure and lethal arrhythmia. Mutation at the C-terminal region seen in CPVT does not seem to communicate with the aforementioned N-terminal and central inter-domain interaction, although spontaneous Ca(2+) leak is similarly induced.
Collapse
Affiliation(s)
- Hiroki Tateishi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Abnormal intracellular Ca(2+) handling by the sarcoplasmic reticulum (SR) is a critical factor in the development of heart failure (HF). Not only decreased Ca(2+) uptake, but also uncoordinated Ca(2+) release plays a significant role in contractile and relaxation dysfunction. Spontaneous Ca(2+) release through ryanodine receptor (RyR) 2, a huge tetrameric protein, during diastole leads to a decrease in the SR Ca(2+) content, and also triggers delayed after depolarization that is a substrate for lethal arrhythmia. Several disease-linked mutations of RyR have been reported in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right ventricular cardiomyopathy type 2 (ARVC2). The unique distribution of these mutation sites has lead to the concept that an interaction among the putative regulatory domains within RyR may play a key role in regulating channel opening, and that there seems to be a common abnormality in the channel disorder of HF and CPVT/ARVC2. Recent knowledge gained from pathological conditions may lead to the development of a new therapeutic strategy for the treatment of HF or cardiac arrhythmia.
Collapse
Affiliation(s)
- Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube 755-8505, Japan.
| |
Collapse
|
23
|
Interaction of the Lys(3614)-Asn(3643) calmodulin-binding domain with the Cys(4114)-Asn(4142) region of the type 1 ryanodine receptor is involved in the mechanism of Ca2+/agonist-induced channel activation. Biochem J 2008; 411:415-23. [PMID: 18171325 DOI: 10.1042/bj20071375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study we show that the interaction of the CaM (calmodulin)-binding domain (Lys(3614)-Asn(3643)) with the Cys(4114)-Asn(4142) region (a region included in the CaM-like domain) serves as an intrinsic regulator of the RyR1 (type-1 ryanodine receptor). We tested the effects of antibodies raised against the two putative key regions of RyR1 [anti-(Lys(3614)-Asn(3643)) and anti-(Cys(4114)-Asn(4142)) antibodies]. Both antibodies produced significant inhibition of [3H]ryanodine-binding activity of RyR1. This suggests that the inter-domain interaction between the two domains, Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142), activates the channel, and that the binding of antibody to either side of the interacting domain pair interfered with the formation of a 'channel-activation link' between the two regions. In order to spectroscopically monitor the mode of interaction of these domains, the site of inter-domain interaction was fluorescently labelled with MCA [(7-methoxycoumarin-4-yl)acetyl] in a site-directed manner. The accessibility of the bound MCA to a large molecular mass fluorescence quencher, BSA-QSY (namely, the size of a gap between the interacting domains) decreased with an increase of [Ca2+] in a range of 0.03-2.0 microM, as determined by Stern-Volmer fluorescence quenching analysis. The Ca2+-dependent decrease in the quencher accessibility was more pronounced in the presence of 150 microM 4-CmC (4-chlorometacresol), and was reversed by 1 mM Mg2+ (a well-known inhibitor of Ca2+/agonist-induced channel activation). These results suggest that the Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142) regions of RyR1 interact with each other in a Ca2+- and agonist-dependent manner, and this serves as a mechanism of Ca2+- and agonist-dependent activation of the RyR1 Ca2+ channel.
Collapse
|
24
|
Cherednichenko G, Ward CW, Feng W, Cabrales E, Michaelson L, Samso M, López JR, Allen PD, Pessah IN. Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 2008; 73:1203-12. [PMID: 18171728 DOI: 10.1124/mol.107.043299] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dantrolene is the drug of choice for the treatment of malignant hyperthermia (MH) and is also useful for treatment of spasticity or muscle spasms associated with several clinical conditions. The current study examines the mechanisms of dantrolene's action on skeletal muscle and shows that one of dantrolene's mechanisms of action is to block excitation-coupled calcium entry (ECCE) in both adult mouse flexor digitorum brevis fibers and primary myotubes. A second important new finding is that myotubes isolated from mice heterozygous and homozygous for the ryanodine receptor type 1 R163C MH susceptibility mutation show significantly enhanced ECCE rates that could be restored to those measured in wild-type cells after exposure to clinical concentrations of dantrolene. We propose that this gain of ECCE function is an important etiological component of MH susceptibility and possibly contributes to the fulminant MH episode. The inhibitory potency of dantrolene on ECCE found in wild-type and MH-susceptible muscle is consistent with the drug's clinical potency for reversing the MH syndrome and is incomplete as predicted by its efficacy as a muscle relaxant.
Collapse
Affiliation(s)
- Gennady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Murayama T, Oba T, Hara H, Wakebe K, Ikemoto N, Ogawa Y. Postulated role of interdomain interaction between regions 1 and 2 within type 1 ryanodine receptor in the pathogenesis of porcine malignant hyperthermia. Biochem J 2007; 402:349-57. [PMID: 17107340 PMCID: PMC1798429 DOI: 10.1042/bj20061040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated recently that CICR (Ca2+-induced Ca2+ release) activity of RyR1 (ryanodine receptor 1) is held to a low level in mammalian skeletal muscle ('suppression' of the channel) and that this is largely caused by the interdomain interaction within RyR1 [Murayama, Oba, Kobayashi, Ikemoto and Ogawa (2005) Am. J. Physiol. Cell Physiol. 288, C1222-C1230]. To test the hypothesis that aberration of this suppression mechanism is involved in the development of channel dysfunctions in MH (malignant hyperthermia), we investigated properties of the RyR1 channels from normal and MHS (MH-susceptible) pig skeletal muscles with an Arg615-->Cys mutation using [3H]ryanodine binding, single-channel recordings and SR (sarcoplasmic reticulum) Ca2+ release. The RyR1 channels from MHS muscle (RyR1MHS) showed enhanced CICR activity compared with those from the normal muscle (RyR1N), although there was little or no difference in the sensitivity to several ligands tested (Ca2+, Mg2+ and adenine nucleotide), nor in the FKBP12 (FK506-binding protein 12) regulation. DP4, a domain peptide matching the Leu2442-Pro2477 region of RyR1 which was reported to activate the Ca2+ channel by weakening the interdomain interaction, activated the RyR1N channel in a concentration-dependent manner, and the highest activity of the affected channel reached a level comparable with that of the RyR1MHS channel with no added peptide. The addition of DP4 to the RyR1MHS channel produced virtually no further effect on the channel activity. These results suggest that stimulation of the RyR1MHS channel caused by affected inter-domain interaction between regions 1 and 2 is an underlying mechanism for dysfunction of Ca2+ homoeostasis seen in the MH phenotype.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF. A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochem J 2007; 401:317-24. [PMID: 16989644 PMCID: PMC1698670 DOI: 10.1042/bj20060686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine residues that are variably spliced in the juvenile and adult isoforms of the skeletal-muscle RyR1 (type 1 ryanodine receptor). The juvenile ASI(-) splice variant is less active than the adult ASI(+) variant and is overexpressed in patients with DM (myotonic dystrophy) [Kimura, Nakamori, Lueck, Pouliquin, Aoike, Fujimura, Dirksen, Takahashi, Dulhunty and Sakoda (2005) Hum. Mol. Genet. 14, 2189-2200]. In the present study, we explore the ASI region using synthetic peptides corresponding to rabbit RyR1 residues Thr3471-Gly3500 either containing [PASI(+)] or lacking [PASI(-)] the ASI residues. Both peptides increased [3H]ryanodine binding to rabbit RyR1s, increased Ca2+ release from sarcoplasmic reti-culum vesicles and increased single RyR1 channel activity. The peptide PASI(-) was more active in each case than PASI(+). [3H]Ryanodine binding to recombinant ASI(+)RyR1 or ASI(-)-RyR1 was enhanced more by PASI(-) than PASI(+), with the greatest increase seen when PASI(-) was added to ASI(-)RyR1. The activation of the RyR channels is consistent with the hypo-thesis that the peptides interrupt an inhibitory inter-domain inter-action and that PASI(-) is more effective at interrupting this interaction than PASI(+). We therefore suggest that the ASI(-) sequence interacts more tightly than the ASI(+) sequence with its binding partner, so that the ASI(-)RyR1 is more strongly inhibited (less active) than the ASI(+)RyR1. Thus the affinity of the binding partners in this inter-domain interaction may deter-mine the activities of the mature and juvenile isoforms of RyR1 and the stronger inhibition in the juvenile isoform may contribute to the myopathy in DM.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, JCSMR (John Curtin School of Medical Research), Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Bannister M, Hamada T, Murayama T, Harvey P, Casarotto M, Dulhunty A, Ikemoto N. Malignant hyperthermia mutation sites in the Leu2442-Pro2477 (DP4) region of RyR1 (ryanodine receptor 1) are clustered in a structurally and functionally definable area. Biochem J 2007; 401:333-9. [PMID: 16958617 PMCID: PMC1698659 DOI: 10.1042/bj20060902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (ryanodine receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442-Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure-function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two a-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.
Collapse
Affiliation(s)
| | - Tomoyo Hamada
- *Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A
| | - Takashi Murayama
- †Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Peta J. Harvey
- ‡Division of Molecular Bioscience, John Curtin School of Medical Research, P.O. Box 334, Australian National University, Canberra, ACT 2601, Australia
| | - Marco G. Casarotto
- ‡Division of Molecular Bioscience, John Curtin School of Medical Research, P.O. Box 334, Australian National University, Canberra, ACT 2601, Australia
| | - Angela F. Dulhunty
- ‡Division of Molecular Bioscience, John Curtin School of Medical Research, P.O. Box 334, Australian National University, Canberra, ACT 2601, Australia
| | - Noriaki Ikemoto
- *Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A
- §Department of Neurology, Harvard Medical School, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Ogawa Y. Dysregulation of the gain of CICR through ryanodine receptor1 (RyR1): the putative mechanism underlying malignant hyperthermia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:287-94. [PMID: 17278373 DOI: 10.1007/978-4-431-38453-3_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Yasuo Ogawa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
Dulhunty AF, Beard NA, Pouliquin P, Kimura T. Novel regulators of RyR Ca2+ release channels: insight into molecular changes in genetically-linked myopathies. J Muscle Res Cell Motil 2006; 27:351-65. [PMID: 16909197 DOI: 10.1007/s10974-006-9086-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
There are many mutations in the ryanodine receptor (RyR) Ca2+ release channel that are implicated in skeletal muscle disorders and cardiac arrhythmias. More than 80 mutations in the skeletal RyR1 have been identified and linked to malignant hyperthermia, central core disease or multi-minicore disease, while more than 40 mutations in the cardiac RyR2 lead to ventricular arrhythmias and sudden cardiac death in patients with structurally normal hearts. These RyR mutations cause diverse changes in RyR activity which either excessively activate or block the channel in a manner that disrupts Ca2+ signalling in the muscle fibres. In a different myopathy, myotonic dystrophy (DM), a juvenile isoform of the skeletal RyR is preferentially expressed in adults. There are two regions of RyR1 that are variably spiced and developmentally regulated (ASI and ASII). The juvenile isoform (ASI(-)) is less active than the adult isoform (ASI(+)) and its over-expression in adults with DM may contribute to functional changes. Finally, mutations in an important regulator of the RyR, the Ca2+ binding protein calsequestrin (CSQ), have been linked to a disruption of Ca2+ homeostasis in cardiac myocytes that results in arrhythmias. We discuss evidence supporting the hypothesis that mutations in each of these situations alter protein/protein interactions within the RyR complex or between the RyR and its associated proteins. The disruption of these protein-protein interactions can lead either to excess Ca2+ release or reduced Ca2+ release and thus to abnormal Ca2+ homeostasis. Much of the evidence for disruption of protein-protein interactions has been provided by the actions of a group of novel RyR regulators, domain peptides with sequences that correspond to sequences within the RyR and which compete with the endogenous residues for their interaction sites.
Collapse
Affiliation(s)
- A F Dulhunty
- Division of Molecular Bioscience, JCSMR and RSC, ANU, Canberra, ACT, 2601, Australia.
| | | | | | | |
Collapse
|
31
|
Pouliquin P, Pace SM, Curtis SM, Harvey PJ, Gallant EM, Zorzato F, Casarotto MG, Dulhunty AF. Effects of an alpha-helical ryanodine receptor C-terminal tail peptide on ryanodine receptor activity: modulation by Homer. Int J Biochem Cell Biol 2006; 38:1700-15. [PMID: 16725367 DOI: 10.1016/j.biocel.2006.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/22/2006] [Accepted: 03/29/2006] [Indexed: 11/30/2022]
Abstract
We have determined the structure of a domain peptide corresponding to the extreme 19 C-terminal residues of the ryanodine receptor Ca2+ release channel. We examined functional interactions between the peptide and the channel, in the absence and in the presence of the regulatory protein Homer. The peptide was partly alpha-helical and structurally homologous to the C-terminal end of the T1 domain of voltage-gated K+ channels. The peptide (0.1-10 microM) inhibited skeletal ryanodine receptor channels when the cytoplasmic Ca2+ concentration was 1 microM; but with 10 microM cytoplasmic Ca2+, skeletal ryanodine receptors were activated by < or = 1.0 microM peptide and inhibited by 10 microM peptide. Cardiac ryanodine receptors on the other hand were inhibited by all peptide concentrations, at both Ca2+ concentrations. When channels did open in the presence of the peptide, they were more likely to open to substate levels. The inhibition and increased fraction of openings to subconductance levels suggested that the domain peptide might destabilise inter-domain interactions that involve the C-terminal tail. We found that Homer 1b not only interacts with the channels, but reduces the inhibitory action of the C-terminal tail peptide, perhaps by stabilizing inter-domain interactions and preventing their disruption.
Collapse
Affiliation(s)
- Pierre Pouliquin
- Division of Molecular Bioscience, JCSMR and RSC, ANU, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bannister M, Ikemoto N. Effects of peptide C corresponding to the Glu724-Pro760 region of the II-III loop of the DHP (dihydropyridine) receptor alpha1 subunit on the domain- switch-mediated activation of RyR1 (ryanodine receptor 1) Ca2+ channels. Biochem J 2006; 394:145-52. [PMID: 16302848 PMCID: PMC1386012 DOI: 10.1042/bj20051373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Leu720-Leu764 region of the II-III loop of the dihydropyridine receptor is believed to be important for both orthograde and retrograde communications with the RyR (ryanodine receptor), but its actual role has not yet been resolved. Our recent studies suggest that voltage-dependent activation of the RyR channel is mediated by a pair of interacting N-terminal and central domains, designated as the 'domain switch'. To investigate the effect of peptide C (a peptide corresponding to residues Glu724-Pro760) on domain- switch-mediated activation of the RyR, we measured Ca2+ release induced by DP (domain peptide) 1 or DP4 (which activates the RyR by mediation of the domain switch) and followed the Ca2+ release time course using a luminal Ca2+ probe (chlortetracycline) under Ca2+-clamped conditions. Peptide C produced a significant potentiation of the domain-switch-mediated Ca2+ release, provided that the Ca2+ concentration was sufficiently low (e.g. 0.1 microM) and the Ca2+ channel was only partially activated by the domain peptide. However, at micromolar Ca2+ concentrations, peptide C inhibits activation. Covalent cross-linking of fluorescently labelled peptide C to the RyR and screening of the fluorescently labelled tryptic fragments permitted us to localize the peptide-C-binding site to residues 450-1400, which may represent the primary region involved in physical coupling. Based on the above findings, we propose that the physiological role of residues Glu724-Pro760 is to facilitate depolarization-induced and domain-switch-mediated RyR activation at sub- or near-threshold concentrations of cytoplasmic Ca2+ and to suppress activation upon an increase of cytoplasmic Ca2+.
Collapse
Affiliation(s)
| | - Noriaki Ikemoto
- *Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A
- †Department of Neurology, Harvard Medical School, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Yano M, Okuda S, Oda T, Tokuhisa T, Tateishi H, Mochizuki M, Noma T, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M. Correction of Defective Interdomain Interaction Within Ryanodine Receptor by Antioxidant Is a New Therapeutic Strategy Against Heart Failure. Circulation 2005; 112:3633-43. [PMID: 16330705 DOI: 10.1161/circulationaha.105.555623] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Defective interdomain interaction within the ryanodine receptor (RyR2) seems to play a key role in the pathogenesis of heart failure, as shown in recent studies. In the present study we investigated the effect of oxidative stress on the interdomain interaction, its outcome in the cardiac function in heart failure, and the possibility of preventing the problem with antioxidants.
Methods and Results—
Sarcoplasmic reticulum (SR) vesicles were isolated from dog left ventricular (LV) muscle (normal or rapid ventricular pacing for 4 weeks with or without the antioxidant edaravone). In the edaravone-treated paced dogs (EV+), but not in the untreated paced dogs (EV−), normal cardiac function was restored almost completely. In the SR vesicles isolated from the EV−, oxidative stress of the RyR2 (reduction in the number of free thiols) was severe, but it was negligible in EV+. The oxidative stress of the RyR2 destabilized interdomain interactions within the RyR2 (EV−), but its effect was reversed in EV+. Abnormal Ca
2+
leak through the RyR2 was found in EV− but not in EV+. The amount of the RyR2-bound FKBP12.6 was less in EV− than in normal dogs, whereas it was restored almost to a normal amount in EV+. The NO donor 3-morpholinosydnonimine (SIN-1) reproduced, in normal SR, several abnormal features seen in failing SR, such as defective interdomain interaction and abnormal Ca
2+
leak. Both cell shortening and Ca
2+
transients were impaired by SIN-1 in isolated normal myocytes, mimicking the pathophysiological conditions in failing myocytes. Incubation of failing myocytes with edaravone restored the normal properties.
Conclusions—
During the development of heart failure, edaravone ameliorated the defective interdomain interaction of the RyR2. This prevented Ca
2+
leak and LV remodeling, leading to an improvement of cardiac function and an attenuation of LV remodeling.
Collapse
Affiliation(s)
- Masafumi Yano
- Division of Cardiovascular Medicine, Department of Medical Bioregulation, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yano M, Yamamoto T, Ikemoto N, Matsuzaki M. Abnormal ryanodine receptor function in heart failure. Pharmacol Ther 2005; 107:377-91. [PMID: 15951021 DOI: 10.1016/j.pharmthera.2005.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
The abnormally regulated release of Ca2+ from an intracellular Ca2+ store, the sarcoplasmic reticulum (SR), is the mechanism underlying contractile and relaxation dysfunctions in heart failure (HF). According to recent reports, protein kinase A (PKA)-mediated hyperphosphorylation of ryanodine receptor (RyR) in the SR has been shown to cause the dissociation of FK506 binding protein (FKBP) 12.6 from the RyR in heart failure. This causes an abnormal Ca2+ leak through the Ca2+ channel located in the RyR, leading to an increase in the cytosolic Ca2+ during diastole, prolongation of the Ca2+ transient, and delayed/slowed diastolic Ca2+ re-uptake. More recently, a considerable number of disease-linked mutations in the RyR have been reported in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right ventricular dysplasia type 2. An analysis of the disposition of these mutation sites within well-defined domains of the RyR polypeptide chain has led to the new concept that interdomain interactions among these domains play a critical role in channel regulation, and an altered domain interaction causes channel dysfunction in the failing heart. The knowledge gained from the recent literature concerning the critical proteins and the changes in their properties under pathological conditions has brought us to a better position to develop new pharmacological or genetic strategies for the treatment of heart failure or cardiac arrhythmia. A considerable body of evidence reviewed here indicates that abnormal RyR function plays an important role in the pathogenesis of heart failure. This review also covers some controversial issues in the literature concerning the involvement of phosphorylation and FKBP12.6.
Collapse
Affiliation(s)
- Masafumi Yano
- Department of Medical Bioregulation, Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan.
| | | | | | | |
Collapse
|
35
|
Oda T, Yano M, Yamamoto T, Tokuhisa T, Okuda S, Doi M, Ohkusa T, Ikeda Y, Kobayashi S, Ikemoto N, Matsuzaki M. Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure. Circulation 2005; 111:3400-10. [PMID: 15967847 DOI: 10.1161/circulationaha.104.507921] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND According to our hypothesis, 2 domains within the ryanodine receptor (RyR) of sarcoplasmic reticulum (SR) (N-terminal [0 to 600] and central [2000 to 2500] domains), where many mutations have been found in patients with polymorphic ventricular tachycardia, interact with each other as a regulatory switch for channel gating. Here, we investigated whether the defective FKBP12.6-mediated stabilization of RyR in heart failure is produced by an abnormal interdomain interaction. METHODS AND RESULTS SR vesicles were isolated from dog left ventricular muscles, and then the RyR moiety of the SR was fluorescently labeled with methylcoumarin acetate (MCA) using DPc10, a synthetic peptide corresponding to Gly2460-Pro2495 of RyR (one of the mutable domains in polymorphic ventricular tachycardia), as a site-directing carrier; the carrier was removed from the RyR after MCA labeling. Addition of DPc10 induced an unzipped state of the interacting N-terminal and central domains, as evidenced by an increase in the accessibility of the RyR-bound MCA fluorescence to a large fluorescence quencher. Domain unzipping resulted in Ca2+ leak through the RyR and facilitated cAMP-dependent hyperphosphorylation of RyR and FKBP12.6 dissociation from RyR. When DPc10 was introduced into the isolated myocytes, the magnitude of intracellular Ca2+ transient decreased, and its decay time was prolonged. In the SR isolated from pacing-induced dog failing hearts, the domain unzipping has already occurred, together with FKBP12.6 dissociation and Ca2+ leak. CONCLUSIONS The specific domain interaction within the RyR regulates the channel gating property, and the defectiveness in the mode of the interdomain interaction seems to be the initial critical step of the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Medical Bioregulation, Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Rodney GG, Schneider MF. Effects of azumolene on Ca2+ sparks in skeletal muscle fibers. J Pharmacol Exp Ther 2005; 314:94-102. [PMID: 15831441 DOI: 10.1124/jpet.105.084046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Azumolene is an analog of dantrolene, the only approved medicine for treatment of malignant hyperthermia (MH). The pharmacological mechanism of these drugs is to inhibit skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release by modulating the activity of the SR ryanodine receptor (RyR) Ca2+ release channel. To investigate the effects of azumolene on SR Ca2+ channel gating within skeletal muscle fibers, we monitored Ca2+ sparks in permeabilized frog skeletal muscle fibers. Application of 0.0001 to 10 microM azumolene suppressed the frequency of spontaneous Ca2+ sparks in a dose-dependent manner (EC50 = 0.25 microM; Hill coefficient = 1.44), but it did not cause systematic dose-dependent effects on the properties of the Ca2+ sparks. These results suggest that azumolene decreases the likelihood of Ca2+ release channel openings that initiate Ca2+ sparks, thereby decreasing spark frequency, but it has little effect on aggregate Ca2+ channel open times during a spark. To assess azumolene inhibition of RyRs activated in a manner analogous to those activated during an MH episode, we applied DP4, a synthetic peptide corresponding to a central region of RyR1 (Leu2442 to Pro2477), which mimics an MH modification. Azumolene also decreased Ca2+ spark frequency in a dose-dependent manner without altering spark properties in the DP4 MH model. We conclude that azumolene suppresses the opening rate but not the open time of RyR Ca2+ release channels within skeletal fibers.
Collapse
Affiliation(s)
- Yingfan Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | | | | |
Collapse
|
37
|
Murayama T, Oba T, Kobayashi S, Ikemoto N, Ogawa Y. Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum. Am J Physiol Cell Physiol 2005; 288:C1222-30. [PMID: 15677376 DOI: 10.1152/ajpcell.00415.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca(2+)-induced Ca(2+) release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [(3)H]ryanodine binding, single-channel recordings, and Ca(2+) release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu(2442)-Pro(2477) region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [(3)H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca(2+), Mg(2+), and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca(2+) release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca(2+) release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca(2+) handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|
38
|
Kobayashi S, Bannister ML, Gangopadhyay JP, Hamada T, Parness J, Ikemoto N. Dantrolene stabilizes domain interactions within the ryanodine receptor. J Biol Chem 2004; 280:6580-7. [PMID: 15611117 DOI: 10.1074/jbc.m408375200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interdomain interactions between N-terminal and central domains serving as a "domain switch" are believed to be essential to the functional regulation of the skeletal muscle ryanodine receptor-1 Ca(2+) channel. Mutational destabilization of the domain switch in malignant hyperthermia (MH), a genetic sensitivity to volatile anesthetics, causes functional instability of the channel. Dantrolene, a drug used to treat MH, binds to a region within this proposed domain switch. To explore its mechanism of action, the effect of dantrolene on MH-like channel activation by the synthetic domain peptide DP4 or anti-DP4 antibody was examined. A fluorescence probe, methylcoumarin acetate, was covalently attached to the domain switch using DP4 as a delivery vehicle. The magnitude of domain unzipping was determined from the accessibility of methylcoumarin acetate to a macromolecular fluorescence quencher. The Stern-Volmer quenching constant (K(Q)) increased with the addition of DP4 or anti-DP4 antibody. This increase was reversed by dantrolene at both 37 and 22 degrees C and was unaffected by calmodulin. [(3)H]Ryanodine binding to the sarcoplasmic reticulum and activation of sarcoplasmic reticulum Ca(2+) release, both measures of channel activation, were enhanced by DP4. These activities were inhibited by dantrolene at 37 degrees C, yet required the presence of calmodulin at 22 degrees C. These results suggest that the mechanism of action of dantrolene involves stabilization of domain-domain interactions within the domain switch, preventing domain unzipping-induced channel dysfunction. We suggest that temperature and calmodulin primarily affect the coupling between the domain switch and the downstream mechanism of regulation of Ca(2+) channel opening rather than the domain switch itself.
Collapse
Affiliation(s)
- Shigeki Kobayashi
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kobayashi S, Yamamoto T, Parness J, Ikemoto N. Antibody probe study of Ca2+ channel regulation by interdomain interaction within the ryanodine receptor. Biochem J 2004; 380:561-9. [PMID: 15027895 PMCID: PMC1224195 DOI: 10.1042/bj20040112] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 02/26/2004] [Accepted: 03/18/2004] [Indexed: 11/17/2022]
Abstract
N-terminal and central domains of ryanodine receptor 1 (RyR1), where many reported malignant hyperthermia (MH) mutations are localized, represent putative channel regulatory domains. Recent domain peptide (DP) probe studies led us to the hypothesis that these domains interact to stabilize the closed state of channel (zipping), while weakening of domain-domain interactions (unzipping) by mutation de-stabilizes the channel, making it leaky to Ca2+ or sensitive to the agonists of RyR1. As shown previously, DP1 (N-terminal domain peptide) and DP4 (central domain peptide) produced MH-like channel activation/sensitization effects, presumably by peptide binding to sites critical to stabilizing domain-domain interactions and resultant loss of conformational constraints. Here we report that polyclonal anti-DP1 and anti-DP4 antibodies also produce MH-like channel activation and sensitization effects as evidenced by about 4-fold enhancement of high affinity [3H]ryanodine binding to RyR1 and by a significant left-shift of the concentration-dependence of activation of sarcoplasmic reticulum Ca2+ release by polylysine. Fluorescence quenching experiments demonstrate that the accessibility of a DP4-directed, conformationally sensitive fluorescence probe linked to the RyR1 N-terminal domain is increased in the presence of domain-specific antibodies, consistent with the view that these antibodies produce unzipping of interacting domains that are of hindered accessibility to the surrounding aqueous environment. Our results suggest that domain-specific antibody binding induces a conformational change resulting in channel activation, and are consistent with the hypothesis that interacting N-terminal and central domains are intimately involved in the regulation of RyR1 channel function.
Collapse
|
40
|
Abstract
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Siena, Italy
| | | |
Collapse
|
41
|
Paul-Pletzer K, Yamamoto T, Bhat MB, Ma J, Ikemoto N, Jimenez LS, Morimoto H, Williams PG, Parness J. Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor. J Biol Chem 2002; 277:34918-23. [PMID: 12167662 DOI: 10.1074/jbc.m205487200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dantrolene is a drug that suppresses intracellular Ca(2+) release from sarcoplasmic reticulum (SR) in skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Although its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca(2+) release channel in SR, as a molecular target for dantrolene using the photoaffinity analog [(3)H]azidodantrolene. Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [(3)H]azidodantrolene, indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1 previously shown to affect RyR1 function in vitro and in vivo were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2s, peptides containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [(3)H]azidodantrolene. A monoclonal anti-RyR1 antibody that recognizes RyR1 and its 1400-amino acid N-terminal fragment recognizes DP1 and DP1-2s in both Western blots and immunoprecipitation assays and specifically inhibits [(3)H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in SR. Our results indicate that synthetic domain peptides can mimic a native, ligand-binding conformation in vitro and that the dantrolene-binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino acids 590-609.
Collapse
Affiliation(s)
- Kalanethee Paul-Pletzer
- Department of Anesthesia, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neet KE, Lee JC. Biophysical characterization of proteins in the post-genomic era of proteomics. Mol Cell Proteomics 2002; 1:415-20. [PMID: 12169682 DOI: 10.1074/mcp.r200003-mcp200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomics focuses on the high throughput study of the expression, structure, interactions, and, to some extent, function of large numbers of proteins. A true understanding of the functioning of a living cell also requires a quantitative description of the stoichiometry, kinetics, and energetics of each protein complex in a cellular pathway. Classical molecular biophysical studies contribute to understanding of these detailed properties of proteins on a smaller scale than does proteomics in that individual proteins are usually studied. This perspective article deals with the role of biophysical methods in the study of proteins in the proteomic era. Several important physical biochemical methods are discussed briefly and critiqued from the standpoint of information content and data acquisition. The focus is on conformational changes and macromolecular assembly, the utility of dynamic and static structural data, and the necessity to combine experimental approaches to obtain a full functional description. The conclusions are that biophysical information on proteins is a useful adjunct to "standard" proteomic methods, that data can be obtained by high throughput technology in some instances, but that hypothesis-driven experimentation may frequently be required.
Collapse
Affiliation(s)
- Kenneth E Neet
- Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | |
Collapse
|
43
|
Yamamoto T, Ikemoto N. Peptide probe study of the critical regulatory domain of the cardiac ryanodine receptor. Biochem Biophys Res Commun 2002; 291:1102-8. [PMID: 11866478 DOI: 10.1006/bbrc.2002.6569] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently devised domain peptide probe technique was used to identify and characterize critical domains of the cardiac ryanodine receptor (RyR2). A synthetic peptide corresponding to the Gly(2460)-Pro(2495) domain of the RyR2, designated DPc10, enhanced the ryanodine binding activity and increased the sensitivity of the RyR2 to activating Ca(2+): the effects that resemble the typical phenotypes of cardiac diseases. A single Arg-to-Ser mutation made in DPc10, mimicking the recently reported Arg(2474)-to-Ser(2474) human mutation, abolished all of these effects that would have been produced by DPc10. On the basis of the principle of the domain peptide probe approach (see Model 1), these results indicate that the in vivo RyR2 domain corresponding to DPc10 plays a key role in the cardiac channel regulation and in the pathogenic mechanism. This domain peptide approach opens the new possibility in the studies of the regulatory and pathogenic mechanisms of the cardiac Ca(2+) channel.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|