1
|
Xiao S, Zhu H, Wang L, Liang H. DNA conformational flexibility study using phosphate backbone neutralization model. SOFT MATTER 2014; 10:1045-1055. [PMID: 24983118 DOI: 10.1039/c3sm52345d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Due to the critical role of DNA in the processes of the cell cycle, the structural and physicochemical properties of DNA have long been of concern. In the present work, the effect of interplay between the DNA duplex and metal ions in solution on the DNA structure and conformational flexibility is studied by comparing the structure and dynamic conformational behavior of a duplex in a normal form and its “null isomer” using molecular dynamics methods. It was found that the phosphate neutralization changes the cation atmosphere around the DNA duplex greatly, increases the major groove width, decreases the minor groove width, and reduces the global bending direction preference. We also noted that the probability of BI phosphate linkages increases significantly because of the charge reduction in the backbone phosphate groups. More importantly, we found that the electrostatic effect on the DNA conformational flexibility is dependent on the sequence; that is, the phosphate backbone neutralization induces the global dynamic bending to be less flexible for GC-rich sequences but more flexible for AT-rich sequences.
Collapse
|
2
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
3
|
Khesbak H, Savchuk O, Tsushima S, Fahmy K. The Role of Water H-Bond Imbalances in B-DNA Substate Transitions and Peptide Recognition Revealed by Time-Resolved FTIR Spectroscopy. J Am Chem Soc 2011; 133:5834-42. [DOI: 10.1021/ja108863v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Boryskina OP, Tkachenko MY, Shestopalova AV. Protein-DNA complexes: specificity and DNA readout mechanisms. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.00007c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. P. Boryskina
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - M. Yu. Tkachenko
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - A. V. Shestopalova
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| |
Collapse
|
5
|
Oguey C, Foloppe N, Hartmann B. Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS One 2010; 5:e15931. [PMID: 21209967 PMCID: PMC3012109 DOI: 10.1371/journal.pone.0015931] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/30/2010] [Indexed: 01/05/2023] Open
Abstract
Background The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves. Methodology/Principal Findings The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR 31P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The 31P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties. Conclusions/Significance The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions.
Collapse
Affiliation(s)
- Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR-8089, Centre National de la Recherche Scientifique et Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Nicolas Foloppe
- UMR-S665, Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Institut National de la Transfusion Sanguine, Paris, France
- * E-mail: (BH); (NF)
| | - Brigitte Hartmann
- UMR-S665, Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Institut National de la Transfusion Sanguine, Paris, France
- * E-mail: (BH); (NF)
| |
Collapse
|
6
|
Boryskina OP, Tkachenko MY, Shestopalova AV. Variability of DNA structure and protein-nucleic acid reconginition. ACTA ACUST UNITED AC 2010. [DOI: 10.7124/bc.00016a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. P. Boryskina
- A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - M. Yu. Tkachenko
- A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - A. V. Shestopalova
- A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
| |
Collapse
|
7
|
Sequence-Dependent DNA Flexibility Mediates DNase I Cleavage. J Mol Biol 2010; 395:123-33. [DOI: 10.1016/j.jmb.2009.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022]
|
8
|
Hart K, Nilsson L. Investigation of transcription factor Ndt80 affinity differences for wild type and mutant DNA: a molecular dynamics study. Proteins 2009; 73:325-37. [PMID: 18433057 DOI: 10.1002/prot.22062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulations and free energy calculations have been performed on the transcription factor Ndt80 either in complex with the native DNA sequence or with a mutant DNA with a switched central base pair, C5-G5' to G5-C5'. This mutant has been shown to have a 100-fold decrease in binding affinity of Ndt80, and in this study we explain this both structurally and energetically. The major interactions between the protein and the DNA were maintained in the simulations, apart from around the mutation site. The crystal structure of the Ndt80-DNA complex revealed that R177 makes a base specific bidentate interaction with G5' which is part of a conserved 5'-YpG-3' step. In the simulation with the mutant DNA, the side chain of R177 changes conformation and makes three new stable hydrogen bonds to the DNA backbone. This in turn induces a conformational change in the DNA backbone of the T6'-G5' step from the unusual BII state to the canonical BI state. The affinity difference for the protein-DNA complex with the native DNA compared with the mutant DNA is only about 3 kcal/mol. The free energy calculations of the base pair switch indicated a larger difference than what was found experimentally, about 7.7 kcal/mol, but this is explained in structural terms using the 10 ns simulations of the solvated complexes and the rearrangement of the R177 side chain.
Collapse
Affiliation(s)
- Katarina Hart
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | |
Collapse
|
9
|
Heddi B, Foloppe N, Bouchemal N, Hantz E, Hartmann B. Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J Am Chem Soc 2007; 128:9170-7. [PMID: 16834390 DOI: 10.1021/ja061686j] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The backbone states of B-DNA influence its helical parameters, groove dimensions, and overall curvature. Therefore, detection and fine characterization of these conformational states are desirable. Using routine NMR experiments on a nonlabeled B-DNA oligomer and analyzing high-resolution X-ray structures, we investigated the relationship between interproton distances and backbone conformational states. The three H2'i-H6/8i+1, H2' 'i-H6/8i+1, and H6/8i-H6/8i+1 sequential distances were found cross-correlated and linearly coupled to epsilon-zeta values in X-ray structures and 31P chemical shifts (deltaP) in NMR that reflect the interconversion between the backbone BI (epsilon-zeta < 0 degrees ) and BII (epsilon-zeta > 0 degrees) states. These relationships provide a detailed check of the NMR data consistency and the possibility to extend the set of restraints for structural refinement through various extrapolations. Furthermore, they allow translation of deltaP in terms of BI/BII ratios. Also, comparison of many published deltaP in solution to crystal data shows that the impact of sequence on the BI/BII propensities is similar in both environments and is therefore an intrinsic and general property of B-DNA. This quantification of the populations of BI and BII is of general interest because these sequence-dependent backbone states act on DNA overall structure, a key feature for DNA-protein-specific recognition.
Collapse
Affiliation(s)
- Brahim Heddi
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | | | | | | | |
Collapse
|
10
|
René B, Masliah G, Antri SE, Fermandjian S, Mauffret O. Conformations and Dynamics of the Phosphodiester Backbone of a DNA Fragment That Bears a Strong Topoisomerase II Cleavage Site. J Phys Chem B 2007; 111:4235-43. [PMID: 17391020 DOI: 10.1021/jp0683115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of the DNA phosphodiester backbone conformations have been studied for a strong topoisomerase II cleavage site (site 22) using molecular dynamics simulations in explicit water and in the presence of sodium ions. We investigated the backbone motions and more particularly the BI/BII transitions involving the epsilon and zeta angles. The consensus cleavage site is adjacent to the phosphate which shows the most important phosphodiester backbone flexibility in the sequence. We infer that these latter properties could be responsible for the preferential cleavage at this site possibly through the perturbation of the cleavage/ligation activities of the topoisomerase II. More generally, the steps pur-pur and pyr-pur are those presenting the highest BII contents. Relations are observed between the backbone phosphodiester BI/BII transitions and the flexibility of the deoxyribose sugar and the helical parameters such as roll. The roll is sequence dependent when the related phosphate is in the BI form, whereas this appears not to be true when it is in the BII form. The BI/BII transitions are associated with water migration, and new relations are observed with counterions. Indeed, it is observed that a strong coupling exists between the BII form and the presence of sodium ions near the adjacent sugar deoxyribose. The presence of sodium ions in the O4' surroundings or their binding could assist the BI to BII transition by furnishing energy. The implications of these new findings and, namely, their importance in the context of the sequence-dependent behavior of BI/BII transitions will be investigated in future studies.
Collapse
Affiliation(s)
- Brigitte René
- UMR 8113 CNRS, Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée (Ecole Normale Supérieure de Cachan), Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Heddi B, Foloppe N, Hantz E, Hartmann B. The DNA structure responds differently to physiological concentrations of K(+) or Na(+). J Mol Biol 2007; 368:1403-11. [PMID: 17395202 DOI: 10.1016/j.jmb.2007.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 11/17/2022]
Abstract
The influence of monovalent cations on DNA conformation and readout is an open question. This NMR study of DNA with either Na(+) or K(+) at physiological concentrations shows that the nature of the cation affects the (31)P chemical shifts (deltaP) and the sequential distances H2'(i)-H6/8(i+1), H2"(i)-H6/8(i+1), and H6/8(i)-H6/8(i+1). The deltaP and distance variations ascertain that the nature of the cation affects the DNA overall structure, i.e. both the conformational equilibria between the backbone BI (epsilon-zeta <0 degrees ) and BII (epsilon-zeta >0 degrees ) states and the helical parameters, via their strong mechanical coupling. These results reveal that Na(+) and K(+) interactions with DNA are different and sequence-dependent. These ions modulate the overall intrinsic properties of DNA, and possibly its packaging and readout.
Collapse
Affiliation(s)
- Brahim Heddi
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | | | | | |
Collapse
|
12
|
Wibowo FR, Rauch C, Trieb M, Liedl KR. M.TaqI facilitates the base flipping via an unusual DNA backbone conformation. Biopolymers 2005; 79:128-38. [PMID: 16047360 DOI: 10.1002/bip.20341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MD simulations have been carried out to understand the dynamical behavior of the DNA substrate of the Thermus aquaticus DNA methyltransferase (M.TaqI) in the methylation process at N6 of adenine. As starting structures, an x-ray structure of M.TaqI in complex with DNA and cofactor analogue (PDB code: 1G 38) and free decamer d(GTTCGATGTC)(2) were taken. The x-ray structure shows two consecutive BII substates that are not observed in the free decamer. These consecutive BII substates are also observed during our simulation. Additionally, their facing backbones adopt the same conformations. These double facing BII substates are stable during the last 9 ns of the trajectories and result in a stretched DNA structure. On the other hand, protein-DNA contacts on 5' and 3' phosphodiester groups of the partner thymine of flipped adenine have changed. The sugar and phosphate parts of thymine have moved further into the empty space left by the flipping base without the influence of protein. Furthermore, readily high populated BII substates at the GpA step of palindromic tetrad TCGA rather than CpG step are observed in the free decamer. On the contrary, the BI substate at the GpA step is observed on the flipped adenine strand. A restrained MD simulation, reproducing the BI/BII pattern in the complex, demonstrated the influence of the unusual backbone conformation on the dynamical behavior of the target base. This finding along with the increased nearby interstrand phosphate distance is supportive to the N6-methylation mechanism.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
13
|
Madhumalar A, Bansal M. Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis. J Biomol Struct Dyn 2005; 23:13-27. [PMID: 15918673 DOI: 10.1080/07391102.2005.10507043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering sequence information from sugar-phosphate backbone is finely tuned through the conformational substates of DNA. BII conformation, one of the conformational substates of B-DNA, is known to play a key role in DNA-protein recognition. BI and BII are identified by the epsilon-zeta difference, which is negative in BI and positive in BII. Our analysis of MD and crystal structures shows that BII conformation is sequence specific and dinucleotides GC, CG, CA, TG, TA show high preference to take up BII conformation, while TT, TC, CT, CC dinucleotides rarely take up this conformation. Significant changes were observed in the dinucleotide parameters viz. twist, roll, and slide for the steps having BII conformation. Interestingly, the magnitude of variation in the dinucleotide parameters is seen to depend mainly on two factors, the magnitude of epsilon-zeta difference and the presence or absence of BII conformation in the second strand, across the WC base-paired dinucleotide step. Based on these two factors, the conformational substate of a dinucleotide step can be further classified as BI.BI (BI conformation in both strands), BI.BII (BI conformation in one strand and BII conformation in the other), and BII.BII (BII conformation in both strands). The occurrence of BII in both strands was found to be quite rare and thus, it can be concluded that BI.BI and BI.BII hybrid steps are more favorable than a BII.BII step. In conformity with the sequence preference seen for dinucleotides in each strand, BII.BII combination of backbone conformation was observed only for GC, CG, CA, and TG containing dinucleotide steps. We further classified BII.BII step as strong BII and weak BII depending on the magnitude of the average epsilon-zeta difference. The dinucleotide steps which belong to the category of strong BII, have large twist, high positive slide and negative roll values, while those in the weak BII group have roll, twist, and slide values similar to that of hybrid BI.BII steps. This conformational property could be contributing to the groove opening/closing and thus can modulate protein-DNA interaction.
Collapse
Affiliation(s)
- A Madhumalar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
14
|
Chapter 6 Molecular Modeling and Atomistic Simulation of Nucleic Acids. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-1400(05)01006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Wibowo FR, Trieb M, Rauch C, Wellenzohn B, Liedl KR. The N6-Methyl Group of Adenine Further Increases the BI Stability of DNA Compared to C5-Methyl Groups. J Phys Chem B 2004; 109:557-64. [PMID: 16851047 DOI: 10.1021/jp048519v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methylated DNA bases are natural modifications which play an important role in protein-DNA interactions. Recent experimental and theoretical results have shown an influence of the base modification on the conformational behavior of the DNA backbone. MD simulations of four different B-DNA dodecamers (d(GC)(6), d(AT)(6), d(G(5mCG)(5)C), and d(A(T6mA)(5)T)) have been performed with the aim to examine the influence of methyl groups on the B-DNA backbone behavior. An additional control simulation of d(AU)(6) has also been performed to examine the further influence of the C5-methyl group in thymine. Methyl groups in the major groove (as in C5-methylcytosine, thymine, or N6-methyladenine) decrease the BII substate population of RpY steps. Due to methylation a clearer distinction of the BI substate stability between YpR and RpY (CpG/GpC or TpA/ApT) steps arises. A positive correlation between the BII substate population and base stacking distances is seen only for poly(GC). A methyl group added into the major groove increases mean water residence times around the purine N7 atom, which may stabilize the BI substate by improving the hydration network between the DNA backbone and the major groove. The N6-methyl group also forms a water molecule bridge between the N6 and O4 atoms, and thus further stabilizes the BI substate.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
16
|
Abstract
In moving towards the simulation of larger nucleic acid assemblies over longer timescales that include more accurate representations of the environment, we are nearing the end of an era characterized by single nanosecond molecular dynamics simulation of nucleic acids. We are excited by the promise and predictability of the modeling methods, yet remain prudently cautious of sampling and force field limitations. Highlights include the accurate representation of subtle drug-DNA interactions, the detailed study of modified and unusual nucleic acid structures, insight into the influence of dynamics on the structure of DNA, and exploration of the interaction of solvent and ions with nucleic acids.
Collapse
Affiliation(s)
- Thomas E Cheatham
- Department of Medicinal Chemistry, University of Utah, 2000 East, 30 South, Skaggs Hall 201, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
17
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Mayer E, Liedl KR. Daunomycin Intercalation Stabilizes Distinct Backbone Conformations of DNA. J Biomol Struct Dyn 2004; 21:713-24. [PMID: 14769064 DOI: 10.1080/07391102.2004.10506961] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daunomycin is a widely used antibiotic of the anthracycline family. In the present study we reveal the structural properties and important intercalator-DNA interactions by means of molecular dynamics. As most of the X-ray structures of DNA-daunomycin intercalated complexes are short hexamers or octamers of DNA with two drug molecules per doublehelix we calculated a self complementary 14-mer oligodeoxyribonucleotide duplex d(CGCGCGATCGCGCG)2 in the B-form with two putative intercalation sites at the 5'-CGA-3' step on both strands. Consequently we are able to look at the structure of a 1:1 complex and exclude crystal packing effects normally encountered in most of the X-ray crystallographic studies conducted so far. We performed different 10 to 20 ns long molecular dynamics simulations of the uncomplexed DNA structure, the DNA-daunomycin complex and a 1:2 complex of DNA-daunomycin where the two intercalator molecules are stacked into the two opposing 5'-CGA-3' steps. Thereby--in contrast to X-ray structures--a comparison of a complex of only one with a complex of two intercalators per doublehelix is possible. The chromophore of daunomycin is intercalated between the 5'-CG-3' bases while the daunosamine sugar moiety is placed in the minor groove. We observe a flexibility of the dihedral angle at the glycosidic bond, leading to three different positions of the ammonium group responsible for important contacts in the minor groove. Furthermore a distinct pattern of BI and BII around the intercalation site is induced and stabilized. This indicates a transfer of changes in the DNA geometry caused by intercalation to the DNA backbone.
Collapse
Affiliation(s)
- Michael Trieb
- Institute of General Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
18
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Liedl KR. Dynamics of DNA: BI and BII Phosphate Backbone Transitions. J Phys Chem B 2004. [DOI: 10.1021/jp037079p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Trieb
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Christine Rauch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Fajar Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Djuranovic D, Hartmann B. DNA fine structure and dynamics in crystals and in solution: The impact of BI/BII backbone conformations. Biopolymers 2004; 73:356-68. [PMID: 14755572 DOI: 10.1002/bip.10528] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
20
|
Wibowo FR, Rauch C, Trieb M, Wellenzohn B, Liedl KR. Water-mediated contacts in thetrp-repressor operator complex recognition process. Biopolymers 2004; 73:668-81. [PMID: 15048770 DOI: 10.1002/bip.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
21
|
Obika S, Reddy SY, Bruice TC. Sequence specific DNA binding of Ets-1 transcription factor: molecular dynamics study on the Ets domain--DNA complexes. J Mol Biol 2003; 331:345-59. [PMID: 12888343 DOI: 10.1016/s0022-2836(03)00726-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular dynamics (MD) simulations for Ets-1 ETS domain-DNA complexes were performed to investigate the mechanism of sequence-specific recognition of the GGAA DNA core by the ETS domain. Employing the crystal structure of the Ets-1 ETS domain-DNA complex as a starting structure we carried out MD simulations of: (i). the complex between Ets-1 ETS domain and a 14 base-pair DNA containing GGAA core sequence (ETS-GGAA); (ii). the complex between the ETS domain and a DNA having single base-pair mutation, GGAG sequence (ETS-GGAG); and (iii). the 14 base-pair DNA alone (GGAA). Comparative analyses of the MD structures of ETS-GGAA and ETS-GGAG reveal that the DNA bending angles and the ETS domain-DNA phosphate interactions are similar in these complexes. These results support that the GGAA core sequence is distinguished from the mutated GGAG sequence by a direct readout mechanism in the Ets-1 ETS domain-DNA complex. Further analyses of the direct contacts in the interface between the helix-3 region of Ets-1 and the major groove of the core DNA sequence clearly show that the highly conserved arginine residues, Arg391 and Arg394, play a critical role in binding to the GGAA core sequence. These arginine residues make bidentate contacts with the nucleobases of GG dinucleotides in GGAA core sequence. In ETS-GGAA, the hydroxyl group of Tyr395 is hydrogen bonded to N7 nitrogen of A(3) (the third adenosine in the GGAA core), while the hydroxyl group makes a contact with N4 nitrogen of C(4') (the complementary nucleotide of the fourth guanosine G(4) in the GGAG sequence) in the ETS-GGAG complex. We have found that this difference in behavior of Tyr395 results in the relatively large motion of helix-3 in the ETS-GGAG complex, causing the collapse of bidentate contacts between Arg391/Arg394 and the GG dinucleotides in the GGAG sequence.
Collapse
Affiliation(s)
- Satoshi Obika
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
22
|
Djuranovic D, Hartmann B. Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J Biomol Struct Dyn 2003; 20:771-88. [PMID: 12744707 DOI: 10.1080/07391102.2003.10506894] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Theorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
23
|
Chirakul P, Sigurdsson ST. Stereospecific syntheses of 3'-deuterated pyrimidine nucleosides and their site-specific incorporation into DNA. Org Lett 2003; 5:917-9. [PMID: 12633105 DOI: 10.1021/ol034102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] 2'-Deoxy-3'-deutero pyrimidines have been synthesized in high yields and incorporated into deoxyoligonucleotides using standard phosphoramidite chemistry. A key synthetic step is a stereospecific reduction of 3'-keto nucleosides using sodium triacetoxyborodeuteride to give 3'-deuterated thymidine and 2'-deoxy uridine nucleosides. Conversion of the corresponding phorphoramidites 7a and 7b to 4-triazolo derivatives has, for the first time, enabled incorporation of 2'-deoxy-3'-deutero cytidine and 2'-deoxy-3'-deutero-5-methyl cytidine into oligonucleotides.
Collapse
Affiliation(s)
- Panadda Chirakul
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
24
|
Rauch C, Trieb M, Flader W, Wellenzohn B, Winger RH, Mayer E, Hallbrucker A, Liedl KR. PvuII-endonuclease induces structural alterations at the scissile phosphate group of its cognate DNA. J Mol Biol 2002; 324:491-500. [PMID: 12445784 DOI: 10.1016/s0022-2836(02)01089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the PvuII endonuclease with its cognate DNA by means of molecular dynamics simulations. Comparing the complexed DNA with a reference simulation of free DNA, we saw structural changes at the scissile phosphodiester bond. At this GpC step, the enzyme induces the highest twist and axial rise, inclination is increased and the minor groove widened. The distance between the scissile phosphate group and the phosphate group of the following thymine base is shortened significantly, indicating a substrate-assisted catalysis. A feasible reason for this vicinity is the catalytically important amino acid residue lysine 70, which bridges the free oxygen atoms of the successive phosphate groups. Due to this geometry, a compact reaction pocket is formed where a water molecule can be held, thus bringing the reaction partners for hydrolysis into contact. The O1-P-O2 angle of the scissile nucleotide is decreased, probably due to a complexation of the negative oxygen atoms through protein and solvent contacts.
Collapse
Affiliation(s)
- Christine Rauch
- Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|