1
|
Li X, Zhang J, Du C, Jiang Y, Zhang W, Wang S, Zhu X, Gao J, Zhang X, Ren D, Zheng Y, Tang J. Polyhexamethylene guanidine aerosol triggers pulmonary fibrosis concomitant with elevated surface tension via inhibiting pulmonary surfactant. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126642. [PMID: 34329089 DOI: 10.1016/j.jhazmat.2021.126642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals inhalation exposure could induce pulmonary fibrosis, which is characterized by the excessive proliferation of fibroblasts and accumulation of extracellular matrix components, in which surface tension usually plays vital roles. Polyhexamethylene guanidine (PHMG) was first recognized as a potential hazard ingredient in humidifier disinfectants, which caused an outbreak of pulmonary fibrosis in South Korea. However, the underlying mechanisms involved in PHMG-induced pulmonary fibrosis have not yet been fully elucidated. Therefore, this study mainly focuses on the effect of PHMG on surface tension to unveil the influence and involved mechanisms in PHMG-induced pulmonary fibrosis. C57BL/6J mice were exposed to sub-acute PHMG aerosol for 8 weeks. The results indicated that PHMG induced pulmonary fibrosis combined with elevated surface tension. Results from in vitro study further confirmed PHMG elevated surface tension by inhibited pulmonary surfactant. Mechanistically, PHMG suppressed the key surfactant protein SP-B and SP-C by inhibiting protein expression and block their active sites. The present study, for the first time, revealed the molecular mechanism of PHMG-induced pulmonary fibrosis based on pulmonary surfactant inhibition mediated surface tension elevated. And pulmonary surfactant may be a potential target for further intervention to prevent PHMG-induced fibrosis or alleviate the symptom of relevant patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuo Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoxiao Zhu
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinling Gao
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Tran N, Kurian J, Bhatt A, McKenna R, Long JR. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25). J Phys Chem B 2017; 121:9102-9112. [PMID: 28872861 DOI: 10.1021/acs.jpcb.7b06538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B1-25) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B1-25-induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B1-25 using 2H and 31P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31P T2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
Collapse
Affiliation(s)
- Nhi Tran
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Justin Kurian
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Walther FJ, Gordon LM, Waring AJ. Design of Surfactant Protein B Peptide Mimics Based on the Saposin Fold for Synthetic Lung Surfactants. Biomed Hub 2016; 1. [PMID: 28503550 PMCID: PMC5424708 DOI: 10.1159/000451076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the saposin or saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here, we review the synthesis, molecular biophysics and activity of synthetic analogs of saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Baoukina S, Tieleman DP. Computer simulations of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2431-2440. [PMID: 26922885 DOI: 10.1016/j.bbamem.2016.02.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/26/2023]
Abstract
Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
5
|
Chen Z, Cai S, Huang Y, Lin Y. High-resolution NMR spectroscopy in inhomogeneous fields. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:1-31. [PMID: 26592943 DOI: 10.1016/j.pnmrs.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 06/05/2023]
Abstract
High-resolution NMR spectroscopy, providing information on chemical shifts, J coupling constants, multiplet patterns, and relative peak areas, is a mainstream tool for analysis of molecular structures, conformations, compositions, and dynamics. Generally, a homogeneous magnetic field is a prerequisite for obtaining high-resolution NMR information. Magnetic field inhomogeneity, whether from non-ideal experimental conditions or from intrinsic magnetic susceptibility discontinuities in samples, represents a hurdle for applications of high-resolution NMR. Numerous techniques have been proposed for measuring high-resolution NMR spectra free from the influence of inhomogeneous magnetic fields. Besides developments and improvements in NMR instrumentation, various types of experimental approaches have been established for recovering NMR information in inhomogeneous magnetic fields. Three main types are systematically described in this review. In addition, other high-resolution NMR approaches or data processing methods are also briefly described. All high-resolution NMR approaches covered in this review have individual advantages and disadvantages in practical applications, and no one technique is applicable to all practical circumstances. Hence, they are complementary for high-resolution NMR applications in inhomogeneous fields. The underlying mechanisms of these approaches are presented, together with analyses of their applicability and efficiency.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulan Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Hemming J, Hughes BR, Rennie AR, Tomas S, Campbell RA, Hughes AV, Arnold T, Botchway SW, Thompson KC. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). Biochemistry 2015; 54:5185-97. [PMID: 26270023 PMCID: PMC4571829 DOI: 10.1021/acs.biochem.5b00308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function.
Collapse
Affiliation(s)
- Joanna
M. Hemming
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Brian R. Hughes
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Adrian R. Rennie
- Materials Physics, Department
of
Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Salvador Tomas
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Richard A. Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 09, France
| | - Arwel V. Hughes
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas Arnold
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Stanley W. Botchway
- STFC, Lasers
for Science Facility,
Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Katherine C. Thompson
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| |
Collapse
|
7
|
Olmeda B, García‐Álvarez B, Gómez MJ, Martínez‐Calle M, Cruz A, Pérez‐Gil J. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 2015; 29:4236-47. [DOI: 10.1096/fj.15-273458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bárbara Olmeda
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | | | - Manuel J. Gómez
- Centro de Astrobiología (INTA‐CSIC), Torrejón de ArdozMadridSpain
| | - Marta Martínez‐Calle
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Antonio Cruz
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Jesús Pérez‐Gil
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| |
Collapse
|
8
|
Sharifahmadian M, Sarker M, Palleboina D, Waring AJ, Walther FJ, Morrow MR, Booth V. Role of the N-terminal seven residues of surfactant protein B (SP-B). PLoS One 2013; 8:e72821. [PMID: 24023779 PMCID: PMC3759391 DOI: 10.1371/journal.pone.0072821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the “insertion sequence”. These studies employed a construct of SP-B, SP-B (1–25,63–78), also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state 2H NMR were used to study the structure of SP-B (1–25,63–78) and its interactions with phospholipid bilayers. Comparison of results for SP-B (8–25,63–78) and SP-B (1–25,63–78) demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Muzaddid Sarker
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Dharamaraju Palleboina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alan J. Waring
- Department of Medicine at Harbor UCLA, Division of Molecular Medicine, Torrance, California, United States of America
| | - Frans J. Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Centre, Torrance, California, United States of America
- Department of Pediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michael R. Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
9
|
Sylvester A, MacEachern L, Booth V, Morrow MR. Interaction of the C-terminal peptide of pulmonary surfactant protein B (SP-B) with a bicellar lipid mixture containing anionic lipid. PLoS One 2013; 8:e72248. [PMID: 23991073 PMCID: PMC3753361 DOI: 10.1371/journal.pone.0072248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/08/2013] [Indexed: 01/12/2023] Open
Abstract
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.
Collapse
Affiliation(s)
- Alexander Sylvester
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lauren MacEachern
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Michael R. Morrow
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
10
|
Olmeda B, García-Álvarez B, Pérez-Gil J. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:209-22. [DOI: 10.1007/s00249-012-0858-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 02/06/2023]
|
11
|
Palleboina D, Waring AJ, Notter RH, Booth V, Morrow M. Effects of the lung surfactant protein B construct Mini-B on lipid bilayer order and topography. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:755-67. [PMID: 22903196 DOI: 10.1007/s00249-012-0850-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 01/02/2023]
Abstract
The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid-protein layer at the alveolar air-water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B(8-25)) and C-terminal (SP-B(63-78)) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid-peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid-peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.
Collapse
Affiliation(s)
- Dharamaraju Palleboina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | | | |
Collapse
|
12
|
Fang X, Bai C, Wang X. Bioinformatics insights into acute lung injury/acute respiratory distress syndrome. Clin Transl Med 2012; 1:9. [PMID: 23369517 PMCID: PMC3560991 DOI: 10.1186/2001-1326-1-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/23/2012] [Indexed: 02/08/2023] Open
Abstract
Bioinformatics is the application of omics science, information technology, mathematics and statistics in the field of biomarker detection. Clinical bioinformatics can be applied for identification and validation of new biomarkers to improve current methods of monitoring disease activity and identify new therapeutic targets. Acute lung injurt (ALI)/Acute respiratory distress syndrome (ARDS) affects a large number of patients with a poor prognosis. The present review mainly focused on the progress in understanding disease heterogeneity through the use of evolving biological, genomic, and genetic approaches and the role of clinical bioinformatics in the pathogenesis and treatment of ALI/ARDS. The remarkable advances in clinical bioinformatics can be a new way for understanding disease pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaocong Fang
- Department of Pulmonary MedicineZhongshan Hospital, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
13
|
Simonato M, Baritussio A, Ori C, Vedovelli L, Rossi S, Dalla Massara L, Rizzi S, Carnielli VP, Cogo PE. Disaturated-phosphatidylcholine and surfactant protein-B turnover in human acute lung injury and in control patients. Respir Res 2011; 12:36. [PMID: 21429235 PMCID: PMC3072954 DOI: 10.1186/1465-9921-12-36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/24/2011] [Indexed: 01/26/2023] Open
Abstract
Background Patients with Adult Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover. Objectives To analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls). Methods 2H2O as precursor of disaturated-phosphatidylcholine-palmitate and 113C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the 2H and 13C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured. Results 1) Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2) In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p < 0.01), while the fractional synthesis rate of surfactant protein-B was not different. 3) In ARDS/ALI patients the concentrations of disaturated-phosphatidylcholine and surfactant protein-B in tracheal aspirates were markedly and significantly reduced (17% and 40% of the control values respectively). Conclusions 1) Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2) In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.
Collapse
|
14
|
Sarker M, Rose J, McDonald M, Morrow MR, Booth V. Modifications to surfactant protein B structure and lipid interactions under respiratory distress conditions: consequences of tryptophan oxidation. Biochemistry 2010; 50:25-36. [PMID: 21128671 DOI: 10.1021/bi101426s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
These studies detail the altered structure-function relationships caused by oxidation of surfactant protein B (SP-B), a mode of damage thought to be important in acute respiratory distress syndrome (ARDS), a common and frequently fatal condition. An 18-residue fragment comprising the N-terminal helix of SP-B was investigated in oxidized and unmodified forms by solution and solid-state nuclear magnetic resonance (NMR), circular dichroism (CD), and molecular dynamics (MD) simulation. Taken together, the results indicate that tryptophan oxidation causes substantial disruptions in helical structure and lipid interactions. The structural modifications induced by tryptophan oxidation were severe, with a reduction in helical extent from approximately three helical turns to, at most, one turn, and were observed in a variety of solvent environments, including sodium dodecyl sulfate (SDS) micelles, dodecyl phosphocholine (DPC) micelles, and a 40% hexafluoro-2-propanol (HFIP) aqueous solution. The unmodified peptide takes on an orientation within lipid bilayers that is tilted approximately 30° away from an in-plane position. Tryptophan oxidation causes significant modifications to the peptide-lipid interactions, and the peptide likely shifts to a more in-plane orientation within the lipids. Interestingly, the character of the disruptions to peptide-lipid interactions caused by tryptophan oxidation was highly dependent on the charge of the lipid headgroup.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|
15
|
Walther FJ, Waring AJ, Hernandez-Juviel JM, Gordon LM, Wang Z, Jung CL, Ruchala P, Clark AP, Smith WM, Sharma S, Notter RH. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs. PLoS One 2010; 5:e8672. [PMID: 20084172 PMCID: PMC2805716 DOI: 10.1371/journal.pone.0008672] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/18/2009] [Indexed: 01/14/2023] Open
Abstract
Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor, University of California Los Angeles Medical Center, Torrance, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Frey SL, Pocivavsek L, Waring AJ, Walther FJ, Hernandez-Juviel JM, Ruchala P, Lee KYC. Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B. Am J Physiol Lung Cell Mol Physiol 2009; 298:L335-47. [PMID: 20023175 DOI: 10.1152/ajplung.00190.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung surfactant protein B (SP-B) is required for proper surface activity of pulmonary surfactant. In model lung surfactant lipid systems composed of saturated and unsaturated lipids, the unsaturated lipids are removed from the film at high compression. It is thought that SP-B helps anchor these lipids closely to the monolayer in three-dimensional cylindrical structures termed "nanosilos" seen by atomic force microscopy imaging of deposited monolayers at high surface pressures. Here we explore the role of the SP-B NH(2) terminus in the formation and stability of these cylindrical structures, specifically the distribution of lipid stack height, width, and density with four SP-B truncation peptides: SP-B 1-25, SP-B 9-25, SP-B 11-25, and SP-B 1-25Nflex (prolines 2 and 4 substituted with alanine). The first nine amino acids, termed the insertion sequence and the interface seeking tryptophan residue 9, are shown to stabilize the formation of nanosilos while an increase in the insertion sequence flexibility (SP-B 1-25Nflex) may improve peptide functionality. This provides a functional understanding of the insertion sequence beyond anchoring the protein to the two-dimensional membrane lining the lung, as it also stabilizes formation of nanosilos, creating reversible repositories for fluid lipids at high compression. In lavaged, surfactant-deficient rats, instillation of a mixture of SP-B 1-25 (as a monomer or dimer) and synthetic lung lavage lipids quickly improved oxygenation and dynamic compliance, whereas SP-B 11-25 surfactants showed oxygenation and dynamic compliance values similar to that of lipids alone, demonstrating a positive correlation between formation of stable, but reversible, nanosilos and in vivo efficacy.
Collapse
Affiliation(s)
- Shelli L Frey
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago,929 E. 57 St., Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Doucet N, Pelletier JN. Simulated annealing exploration of an active-site tyrosine in TEM-1 beta-lactamase suggests the existence of alternate conformations. Proteins 2009; 69:340-8. [PMID: 17600829 DOI: 10.1002/prot.21485] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
TEM-1 is a class A beta-lactamase that contributes to the primary defensive measure used by bacteria to hydrolyze the clinically-relevant beta-lactam antibiotics. Several crystal structures of this enzyme complexed with inhibitors display the active-site residue Tyr105 in an alternate orientation relative to that assigned in the free or in the substrate-bound forms. Thus, the alternate conformation may not be favored in the free enzyme and may be adopted only in the presence of inhibitor. As the residue at position 105 is a determinant of substrate specificity, we sought a better understanding of the relation between its conformation and its function in ligand binding. Here, we perform a molecular dynamics simulated annealing protocol to identify stable orientations adopted by Tyr105 in free TEM-1. Our results demonstrate that, in the absence of substrate, structurally validated conformers of Tyr105 predominantly adopt either of the two rotameric orientations observed in the crystal structures. This suggests that adoption of either conformation in the free enzyme is energetically favored and is not strictly promoted by ligand binding. We propose that free TEM-1 alternates between these two conformations of Tyr105 and that a dynamically heterogeneous population of both rotamers exists in solution. The conformational change significantly reshapes the active-site cavity and modifies the potential for forming specific ligand contacts. Our results add to the body of evidence suggesting that Tyr105 displays a dynamical behavior resulting in alternate ligand binding modes and are consistent with the lower affinity of TEM-1 for cephalosporins relative to penicillins.
Collapse
Affiliation(s)
- Nicolas Doucet
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada
| | | |
Collapse
|
18
|
Yang TC, McDonald M, Morrow MR, Booth V. The effect of a C-terminal peptide of surfactant protein B (SP-B) on oriented lipid bilayers, characterized by solid-state 2H- and 31P-NMR. Biophys J 2009; 96:3762-71. [PMID: 19413982 DOI: 10.1016/j.bpj.2009.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 01/29/2009] [Accepted: 02/03/2009] [Indexed: 02/02/2023] Open
Abstract
SP-B(CTERM), a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state (2)H- and (31)P-NMR were used to examine the effects of SP-B(CTERM) on mechanically oriented lipid bilayer samples. SP-B(CTERM) modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The (31)P spectra of BLES, which contains approximately 1% SP-B, and POPC/POPG with 1% SP-B(CTERM), look very similar, supporting a similarity in lipid interactions of SP-B(CTERM) and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-B(CTERM) induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively.
Collapse
Affiliation(s)
- Tran-Chin Yang
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | |
Collapse
|
19
|
Russell-Schulz B, Booth V, Morrow MR. Perturbation of DPPC/POPG bilayers by the N-terminal helix of lung surfactant protein SP-B: a (2)H NMR study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:613-24. [PMID: 19224204 DOI: 10.1007/s00249-009-0415-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 12/21/2022]
Abstract
SP-B(8-25) is a synthetic peptide comprising the N-terminal helix of the essential lung surfactant protein SP-B. Rat lung oxygenation studies have shown that SP-B(8-25) retains some of the function of full-length SP-B. We have used deuterium nuclear magnetic resonance ((2)H-NMR) to examine the influence of SP-B(8-25) on the mixing properties of saturated PC and unsaturated PG lipids in model mixed lipid bilayers containing dipalmitoylphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), in a molar ratio of 7:3. In the absence of the peptide, (2)H-NMR spectra of DPPC/POPG mixtures, with one or the other lipid component deuterated, indicate coexistence of large liquid crystal and gel domains over a range of about 10 degrees C through the liquid crystal to gel transition of the bilayer. Addition of SP-B(8-25) has little effect on the width of the transition but the spectra through the transition range cannot be resolved into distinct liquid crystal and gel spectral components suggesting that the peptide interferes with the tendency of the DPPC and POPG lipid components in this mixture to phase separate near the bilayer transition temperature. Quadrupole echo decay observations suggest that the peptide may also reduce differences in the correlation times for local reorientation of the two lipids. These observations suggest that SP-B(8-25) promotes a more thorough mixing of saturated PC and unsaturated PG components and may be relevant to understanding the behaviour of lung surfactant material under conditions of lateral compression which might be expected to enhance the propensity for saturated and unsaturated surfactant lipid components to segregate.
Collapse
Affiliation(s)
- Bretta Russell-Schulz
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St John's, NF, Canada
| | | | | |
Collapse
|
20
|
Bräuer L, Johl M, Börgermann J, Pleyer U, Tsokos M, Paulsen FP. Detection and localization of the hydrophobic surfactant proteins B and C in human tear fluid and the human lacrimal system. Curr Eye Res 2008; 32:931-8. [PMID: 18027169 DOI: 10.1080/02713680701694369] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the expression and presence of the surfactant proteins (SP) B and C in the lacrimal apparatus at the ocular surface and in tear fluid. METHODS Expression of SP-B and SP-C was analyzed by RT-PCR in healthy lacrimal gland, conjunctiva, meibomian gland, accessory lacrimal glands, cornea, and nasolacrimal ducts. The deposition of the hydrophobic proteins SP-B and SP-C was determined by Western blot and immunohistochemistry in healthy tissues, tear fluid, and aqueous humor. RESULTS The presence of both SP-B and SP-C on mRNA and protein level was evidenced in healthy human lacrimal gland, conjunctiva, cornea, and nasolacrimal ducts. Moreover, both proteins were present in tear fluid but were absent in aqueous humor. Immunohistochemical investigations revealed production of both peptides by acinar epithelial cells of the lacrimal gland and additionally by accessory lacrimal glands of the eyelid as well as epithelial cells of the conjunctiva and nasolacrimal ducts. Immunohistochemically, healthy cornea and goblet cells revealed no reactivity. CONCLUSIONS Besides the recently detected surfactant-associated proteins SP-A and SP-D, our results show that SP-B and SP-C are also peptides of the tear film, the ocular surface, and the lacrimal apparatus. Based on the current knowledge of lowering surface tension in alveolar lung cells, a similar effect of SP-B and SP-C may be assumed concerning the tear film.
Collapse
Affiliation(s)
- Lars Bräuer
- Department of Anatomy and Cell Biology, Martin Luther University of Halle-Wittenberg, Halle/Saale, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Gabrys CM, Weliky DP. Chemical shift assignment and structural plasticity of a HIV fusion peptide derivative in dodecylphosphocholine micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3225-34. [PMID: 17935693 DOI: 10.1016/j.bbamem.2007.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
A "HFPK3" peptide containing the 23 residues of the human immunodeficiency virus (HIV) fusion peptide (HFP) plus three non-native C-terminal lysines was studied in dodecylphosphocholine (DPC) micelles with 2D 1H NMR spectroscopy. The HFP is at the N-terminus of the gp41 fusion protein and plays an important role in fusing viral and target cell membranes which is a critical step in viral infection. Unlike HFP, HFPK3 is monomeric in detergent-free buffered aqueous solution which may be a useful property for functional and structural studies. H alpha chemical shifts indicated that DPC-associated HFPK3 was predominantly helical from I4 to L12. In addition to the highest-intensity crosspeaks used for the first chemical shift assignment (denoted I), there were additional crosspeaks whose intensities were approximately 10% of those used for assignment I. A second assignment (II) for residues G5 to L12 as well as a few other residues was derived from these lower-intensity crosspeaks. Relative to the I shifts, the II shifts were different by 0.01-0.23 ppm with the largest differences observed for HN. Comparison of the shifts of DPC-associated HFPK3 with those of detergent-associated HFP and HFP derivatives provided information about peptide structures and locations in micelles.
Collapse
Affiliation(s)
- Charles M Gabrys
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1320, USA
| | | |
Collapse
|
22
|
Biswas N, Waring AJ, Walther FJ, Dluhy RA. Structure and conformation of the disulfide bond in dimeric lung surfactant peptides SP-B1–25 and SP-B8–25. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1070-82. [PMID: 17349612 DOI: 10.1016/j.bbamem.2007.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 11/23/2022]
Abstract
Raman spectroscopy was used to determine the conformation of the disulfide linkage between cysteine residues in the homodimeric construct of the N-terminal alpha helical domain of surfactant protein B (dSP-B(1-25)). The conformation of the disulfide bond between cysteine residues in position 8 of the homodimer of dSP-B(1-25) was compared with that of a truncated homodimer (dSP-B(8-25)) of the peptide having a disulfide linkage at the same position in the alpha helix. Temperature-dependent Raman spectra of the S-S stretching region centered at approximately 500 cm(-1) indicated a stable, although highly strained disulfide conformation with a chi(CS-SC) dihedral angle of +/-10 degrees for the dSP-B(1-25) dimer. In contrast, the truncated dimer dSP-B(8-25) exhibited a series of disulfide conformations with the chi(CS-SC) dihedral angle taking on values of either +/-30 degrees or 85+/-20 degrees . For conformations with chi(CS-SC) close to the +/-90 degrees value, the Raman spectra of the 8-25 truncated dimers exhibited chi(SS-CC) dihedral angles of 90/180 degrees and 20-30 degrees . In the presence of a lipid mixture, both constructs showed a nu(S-S) band at approximately 488 cm(-1), corresponding to a chi(CS-SC) dihedral angle of +/-10 degrees . Polarized infrared spectroscopy was also used to determine the orientation of the helix and beta-sheet portion of both synthetic peptides. These calculations indicated that the helix was oriented primarily in the plane of the surface, at an angle of approximately 60-70 degrees to the surface normal, while the beta structure had approximately 40 degrees tilt. This orientation direction did not change in the presence of a lipid mixture or with temperature. These observations suggest that: (i) the conformational flexibility of the disulfide linkage is dependent on the amino acid residues that flank the cysteine disulfide bond, and (ii) in both constructs, the presence of a lipid matrix locks the disulfide bond into a preferred conformation.
Collapse
Affiliation(s)
- Nilanjana Biswas
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA
| | | | | | | |
Collapse
|
23
|
Waring AJ, Walther FJ, Gordon LM, Hernandez-Juviel JM, Hong T, Sherman MA, Alonso C, Alig T, Braun A, Bacon D, Zasadzinski JA. The role of charged amphipathic helices in the structure and function of surfactant protein B. ACTA ACUST UNITED AC 2006; 66:364-74. [PMID: 16316452 DOI: 10.1111/j.1399-3011.2005.00300.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.
Collapse
Affiliation(s)
- A J Waring
- Department of Medicine, Division of Infectious Diseases, UCLA School of Medicine, Center for Health Sciences, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dluhy R, Shanmukh S, Morita SI. The application of two-dimensional correlation spectroscopy to surface and interfacial analysis. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Shanmukh S, Biswas N, Waring AJ, Walther FJ, Wang Z, Chang Y, Notter RH, Dluhy RA. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) II. Peptide conformation by infrared spectroscopy. Biophys Chem 2005; 113:233-44. [PMID: 15620508 DOI: 10.1016/j.bpc.2004.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/15/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022]
Abstract
The conformation and orientation of synthetic monomeric human sequence SP-B(1-25) (mSP-B(1-25)) was studied in films with phospholipids at the air-water (A/W) interface by polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS). Modified two-dimensional infrared (2D IR) correlation analysis was applied to PM-IRRAS spectra to define changes in the secondary structure and rates of reorientation of mSP-B(1-25) in the monolayer during compression. PM-IRRAS spectra and 2D IR correlation analysis showed that, in pure films, mSP-B(1-25) had a major alpha-helical conformation plus regions of beta-sheet structure. These alpha-helical regions reoriented later during film compression than beta structural regions, and became oriented normal to the A/W interface as surface pressure increased. In mixed films with 4:1 mol:mol acyl chain perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPC-d(62):DOPG), the IR spectra of mSP-B(1-25) showed that a significant, concentration-dependent conformational change occurred when mSP-B(1-25) was incorporated into a DPPC-d(62):DOPG monolayer. At an mSP-B(1-25) concentration of 10 wt.%, the peptide assumed a predominantly beta-sheet conformation with no contribution from alpha-helical structures. At lower, more physiological peptide concentrations, 2D IR correlation analysis showed that the propensity of mSP-B(1-25) to form alpha-helical structures was increased. In phospholipid films containing 5 wt.% mSP-B(1-25), a substantial alpha-helical peptide structural component was observed, but regions of alpha and beta structure reoriented together rather than independently during compression. In films containing 1 wt.% mSP-B(1-25), peptide conformation was predominantly alpha-helical and the helical regions reoriented later during compression than the remaining beta structural components. The increased alpha-helical structure of mSP-B(1-25) demonstrated here by PM-IRRAS and 2D IR correlation analysis in monolayers of 4:1 DPPC:DOPG containing 1 wt.% (and, to a lesser extent, 5 wt.%) peptide may be relevant for the formation of the intermediate order 'dendritic' surface phase observed in similar surface films by epi-fluorescence.
Collapse
|
26
|
Seurynck SL, Patch JA, Barron AE. Simple, Helical Peptoid Analogs of Lung Surfactant Protein B. ACTA ACUST UNITED AC 2005; 12:77-88. [PMID: 15664517 DOI: 10.1016/j.chembiol.2004.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 11/30/2022]
Abstract
The helical, amphipathic surfactant protein, SP-B, is a critical element of pulmonary surfactant and hence is an important therapeutic molecule. However, it is difficult to isolate from natural sources in high purity. We have created and studied three different, nonnatural analogs of a bioactive SP-B fragment (SP-B(1-25)), using oligo-N-substituted glycines (peptoids) with simple, repetitive sequences designed to favor the formation of amphiphilic helices. For comparison, a peptide with a similar repetitive sequence previously shown to be a good SP mimic was also studied, along with SP-B(1-25) itself. Surface pressure-area isotherms, surfactant film phase morphology, and dynamic adsorption behavior all indicate that the peptoids are promising mimics of SP-B(1-25). The extent of biomimicry appears to correlate with peptoid helicity and lipophilicity. These biostable oligomers could serve in a synthetic surfactant replacement to treat respiratory distress syndrome.
Collapse
Affiliation(s)
- Shannon L Seurynck
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | |
Collapse
|
27
|
Abstract
Integrins are important transmembrane cell-surface receptors, which mediate interactions of the cell with other cells or the extracellular matrix. Integrins are heterodimers composed of an alpha- and a beta-subunit. They can switch between different activation states depending on intra- or extracellular signals. Inside/out and outside/in signaling is mediated via integrins across the membrane. A biologically important and yet still unanswered question is the role of the transmembrane domains in the signaling event. Here it is shown by simulated annealing/molecular dynamics calculations that recently published structural data of the cytoplasmic domains of integrin alphaIIbbeta3 are supporting a structure with interacting transmembrane helices. This corroborates a model of transmembrane domains that are actively involved in the transmembrane signaling event.
Collapse
Affiliation(s)
- Kay-Eberhard Gottschalk
- Department of Biological Chemistry, Weizmann Institute of Science, Herzl St 1, 76100 Rehovot, Israel
| | | |
Collapse
|
28
|
Cole FS. Surfactant protein B: unambiguously necessary for adult pulmonary function. Am J Physiol Lung Cell Mol Physiol 2003; 285:L540-2. [PMID: 12902317 DOI: 10.1152/ajplung.00111.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Wang Y, Rao KMK, Demchuk E. Topographical organization of the N-terminal segment of lung pulmonary surfactant protein B (SP-B(1-25)) in phospholipid bilayers. Biochemistry 2003; 42:4015-27. [PMID: 12680754 DOI: 10.1021/bi027344h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The location and depth of each residue of lung pulmonary surfactant protein B (SP-B(1-25)) in a phospholipid bilayer (PB) was determined by fluorescence quenching using synthesized single-residue-substituted peptides that were reconstituted into 1,2-dipalmitoyl phosphatidylcholine (DPPC)-enriched liposomes. The single-residue substitutions in peptides were either aspartate or tryptophan. The aspartate was subsequently labeled with the N-cyclohexyl-N'-(4-(dimethylamino)naphthyl)carbodiimide (NCD-4) fluorophore, whereas tryptophan is autofluorescent. Spin-labeled compounds, 5-doxylstearic acid (5-DSA), 7-doxylstearic acid (7-DSA), 12-doxylstearic acid (12-DSA), 4-(N,N-dimethyl-N-hexadecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-16), and 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxy iodide (CAT-1), were used in the quenching experiments. The effective quenching order is determined by the accessibility of the quencher to a fluorescent group on the peptide. The order of quenching efficiency provides information about the relative locations of individual residues in the PB. Our data indicate that residues Phe1-Pro6 are located at the surface of PB, residues Tyr7-Trp9 are embedded in PB, and residues Leu10-Ile22 are involved in an amphipathic alpha-helix with its axis parallel to the surface of PB; residues Pro23-Gly25 reside at the surface. The effects of intermolecular disulfide bond formation in the SP-B(1-25) dimer were also investigated. The experiments suggest that the SP-B helix A has to rotate at an angle to form a disulfide bond with the neighboring cysteine, which makes the hydrophobic sides of the amphipathic helices face each other, thus forming a hydrophobic domain. The detailed topographical mapping of SP-B(1-25) and its dimer in PB provides new insights into the conformational organization of the lung pulmonary surfactant proteins in the environment that mimics the native state. The environment-specific conformational flexibility of the hydrophobic domain created by SP-B folding may explain the key functional properties of SP-B including their impact on phospholipid transport between the lipid phases and in modulating the cell inflammatory response during respiratory distress syndrome.
Collapse
Affiliation(s)
- Yudong Wang
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | |
Collapse
|