1
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
2
|
Tahara S, Kuramochi H, Takeuchi S, Tahara T. Protein Dynamics Preceding Photoisomerization of the Retinal Chromophore in Bacteriorhodopsin Revealed by Deep-UV Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2019; 10:5422-5427. [PMID: 31469573 DOI: 10.1021/acs.jpclett.9b02283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacteriorhodopsin is a prototypical photoreceptor protein that functions as a light-driven proton pump. The retinal chromophore of bacteriorhodopsin undergoes C13═C14 trans-to-cis isomerization upon photoexcitation, and it has been believed to be the first event that triggers the cascaded structural changes in bacteriorhodopsin. We investigated the protein dynamics of bacteriorhodopsin using deep-ultraviolet resonance femtosecond stimulated Raman spectroscopy. It was found that the stimulated Raman signals of tryptophan and tyrosine residues exhibit significant changes within 0.2 ps after photoexcitation while they do not noticeably change during the isomerization process. This result implies that the protein environment changes first, and its change is small during isomerization. The obtained femtosecond stimulated Raman data indicate that ultrafast change is induced in the protein part by the sudden creation of the large dipole of the excited-state chromophore, providing an environment that realizes efficient and selective isomerization.
Collapse
Affiliation(s)
- Shinya Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
- PRESTO , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi 332-0012 , Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
| |
Collapse
|
3
|
Mizuno M, Shimoo Y, Kandori H, Mizutani Y. Effect of a bound anion on the structure and dynamics of halorhodopsin from Natronomonas pharaonis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054703. [PMID: 31673569 PMCID: PMC6811361 DOI: 10.1063/1.5125621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Active ion transport across membranes is vital to maintaining the electrochemical gradients of ions in cells and is mediated by transmembrane proteins. Halorhodopsin (HR) functions as a light-driven inward pump for chloride ions. The protein contains all-trans-retinal bound to a specific lysine residue through a protonated Schiff base. Interaction between the bound chloride ion and the protonated Schiff base is crucial for ion transport because chloride ion movement is driven by the flipping of the protonated Schiff base upon photoisomerization. However, it remains unknown how this interaction evolves in the HR photocycle. Here, we addressed the effect of the bound anion on the structure and dynamics of HR from Natronomonas pharaonis in the early stage of the photocycle. Comparison of the chloride-bound, formate-bound, and anion-depleted forms provided insights into the interaction between the bound anion and the chromophore/protein moiety. In the unphotolyzed state, the bound anion affects the π-conjugation of the polyene chain and the hydrogen bond of the protonated Schiff base of the retinal chromophore. Picosecond time scale measurements showed that the band intensities of the W16 and W18 modes of the tryptophan residues decreased instantaneously upon photoexcitation of the formate-bound form. In contrast, these intensity decreases were delayed for the chloride-bound and anion-depleted forms. These observations suggest the stronger interactions of the bound formate ion with the retinal chromophore and the chromophore pocket. On the nanosecond to microsecond timescales, we found that the interaction between the protonated Schiff base and the bound ion is broken upon formation of the K intermediate and is recovered following translocation of the bound anion toward the protonated Schiff base in the L intermediate. Our results demonstrate that the hydrogen-bonding ability of the bound anion plays an essential role in the ion transport of light-driven anion pumps.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yumi Shimoo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Katayama K, Gulati S, Ortega JT, Alexander NS, Sun W, Shenouda MM, Palczewski K, Jastrzebska B. Specificity of the chromophore-binding site in human cone opsins. J Biol Chem 2019; 294:6082-6093. [PMID: 30770468 DOI: 10.1074/jbc.ra119.007587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.
Collapse
Affiliation(s)
- Kota Katayama
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Life Science and Applied Chemistry, Showa-ku, Nagoya 466-8555, Japan; OptoBio Technology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
| | - Joseph T Ortega
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nathan S Alexander
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | - Marina M Shenouda
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697; Polgenix Inc., Cleveland, Ohio 44106.
| | - Beata Jastrzebska
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
5
|
Kuramochi H, Fujisawa T, Takeuchi S, Tahara T. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Hoffman DP, Mathies RA. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity. Acc Chem Res 2016; 49:616-25. [PMID: 27003235 DOI: 10.1021/acs.accounts.5b00508] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Femtosecond spectroscopy has revealed coherent wave packet motion time and time again, but the question as to whether these coherences are necessary for reactivity or merely a consequence of the experiment has remained open. For diatomic systems in the gas phase, such as sodium iodide, the dimensionality of the system requires coordinated atomic motion along the reaction coordinate. Coherent dynamics are also readily observed in condensed-phase multidimensional systems such as chromophores in proteins and solvated charge transfer dimers. Is precisely choreographed nuclear motion (i.e., coherence) required for reactivity in these systems? Can this coherence reveal anything about the reaction coordinate? In this Account, we describe our efforts to tackle these questions using femtosecond stimulated Raman spectroscopy (FSRS). Results of four exemplary systems are summarized to illustrate the role coherence can play in condensed-phase reactivity, the exploitation of vibrational coherence to measure vibrational anharmonicities, and the development of two-dimensional FSRS (2D-FSRS). We begin with rhodopsin, the protein responsible for vertebrate vision. The rhodopsin photoreaction is preternaturally fast: ground-state photoproduct is formed in less than 200 fs. However, the reactively important hydrogen out-of-plane motions as well as various torsions and stretches remain vibrationally coherent long after the reaction is complete, indicating that vibrational coherence can and does survive reactive internal conversion. Both the ultrashort time scale of the reaction and the observed vibrational coherence indicate that the reaction in rhodopsin is a vibrationally coherent process. Next we examine the functional excited-state proton transfer (ESPT) reaction of green fluorescent protein. Oscillations in the phenoxy C-O and imidazolinone C═N stretches in the FSRS spectrum indicated strong anharmonic coupling to a low-frequency phenyl wagging mode that gates the ESPT reaction. In this case, the coherence revealed not only itself but also the mode coupling that is necessary for reactivity. Curious as to whether vibrational coherence is a common phenomenon, we examined two simpler photochemical systems. FSRS studies of the charge transfer dimer tetramethylbenzene:tetracyanoquinodimethane revealed many vibrational oscillations with high signal-to-noise ratio that allowed us to develop a 2D-FSRS technique to quantitatively measure anharmonic vibrational coupling for many modes within a reacting excited state. Armed with this technique, we turned our attention to a bond-breaking reaction, the cycloreversion of a cyclohexadiene derivative. By means of 2D-FSRS, the vibrational composition of the excited-state transition state and therefore the reaction coordinate was revealed. In aggregate, these FSRS measurements demonstrate that vibrational coherences persist for many picoseconds in condensed phases at room temperature and can survive reactive internal conversion. Moreover, these coherences can be leveraged to reveal quantitative anharmonic couplings between a molecule's normal modes in the excited state. These anharmonic couplings are the key to determining how normal modes combine to form a reaction coordinate. It is becoming clear that condensed-phase photochemical reactions that occur in 10 ps or less require coordinated, coherent nuclear motion for efficient reactive internal conversion.
Collapse
Affiliation(s)
- David P. Hoffman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richard A. Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
López-Peña I, Leigh BS, Schlamadinger DE, Kim JE. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy. Biochemistry 2015. [PMID: 26219819 DOI: 10.1021/acs.biochem.5b00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy is a form of vibrational spectroscopy based on inelastic scattering of light. In resonance Raman spectroscopy, the wavelength of the incident light falls within an absorption band of a chromophore, and this overlap of excitation and absorption energy greatly enhances the Raman scattering efficiency of the absorbing species. The ability to probe vibrational spectra of select chromophores within a complex mixture of molecules makes resonance Raman spectroscopy an excellent tool for studies of biomolecules. In this Current Topic, we discuss the type of molecular insights obtained from steady-state and time-resolved resonance Raman studies of a prototypical photoactive protein, rhodopsin. We also review recent efforts in ultraviolet resonance Raman investigations of soluble and membrane-associated biomolecules, including integral membrane proteins and antimicrobial peptides. These examples illustrate that resonance Raman is a sensitive, selective, and practical method for studying the structures of biological molecules, and the molecular bonding, geometry, and environments of protein cofactors, the backbone, and side chains.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 2012; 112:2604-28. [PMID: 22335827 PMCID: PMC3349015 DOI: 10.1021/cr200198a] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Joseph Handen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| |
Collapse
|
10
|
Podstawka-Proniewicz E, Kudelski A, Kim Y, Proniewicz LM. Structure of monolayers formed from neurotensin and its single-site mutants: vibrational spectroscopic studies. J Phys Chem B 2011; 115:6709-21. [PMID: 21542591 DOI: 10.1021/jp200805f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human, pig, and frog neurotensins and four single-site mutants of human neurotensin (NT), having the following modifications, [Gln(4)]NT, [Trp(11)]NT, [D-Trp(11)]NT, and [D-Tyr(11)]NT, were immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution. The orientation of adsorbed molecules was determined from surface-enhanced Raman scattering (SERS) measurements. A comparison was made between these structures to determine how the change upon the mutation of the neurotensin structure influences its adsorption properties. The SERS patterns were correlated with the contribution of the structural components of the aforementioned peptides to the ability to interact with the NTR1 G-protein receptor. Briefly, the SERS spectra revealed that the substitution of native amino acids in investigated peptides influenced slightly their adsorption state on an electrochemically roughened silver surface. Thus, human, pig, and frog neurotensins and [Gln(4)]NT and [D-Tyr(11)]NT tended to adsorb to the surface via the tyrosine ring, the oxygen atom of the deprotonated phenol group of Tyr(11), and the -CH(2)- unit(s), most probably of Tyr(11), Arg(9), and/or Leu(13). The observed changes in the enhancement of the deprotonated Tyr residue SERS signals indicated a further parallel orientation of a phenol-O bond with regard to the silver surface normal for pig NT, [Gln(4)]NT, and [D-Tyr(11)]NT, whereas the orientation was slightly tilted for human and frog NT. In the case of [Trp(11)]NT and [D-Trp(11)]NT, the formation of a peptide/Ag complex was confirmed by strong SERS bands involving the phenyl co-ring of Trp(11)/d-Trp(11) and -CH(2)- vibrations and the tilted and flat orientations of the two compounds with respect to the surface substrate. The spectral features were accompanied by a SERS signal caused by vibrations of the carboxyl group of C-terminal Leu(13) and the guanidine group of Arg(9). Reported changes in SERS spectra of L and D isomers were fully supported by generalized two-dimensional correlation analysis. Additionally, a combination of mutation-labeling and vibrational spectroscopy (Fourier-transform Raman and absorption infrared) was used to investigate the possible peptide conformations and environments of the tyrosine residues.
Collapse
|
11
|
Sekharan S, Morokuma K. QM/MM study of the structure, energy storage, and origin of the bathochromic shift in vertebrate and invertebrate bathorhodopsins. J Am Chem Soc 2011; 133:4734-7. [PMID: 21391708 PMCID: PMC3075117 DOI: 10.1021/ja200322w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By comparing the results from a hybrid quantum mechanics/molecular mechanics method (SORCI+Q//B3LYP/6-31G*:Amber) between vertebrate (bovine) and invertebrate (squid) visual pigments, the mechanism of molecular rearrangements, energy storage, and origin of the bathochromic shift accompanying the transformation of rhodopsin to bathorhodopsin have been evaluated. The analysis reveals that, in the presence of an unrelaxed binding site, bathorhodopsin was found to carry almost 27 kcal/mol energy in both visual pigments and absorb (λ(max)) at 528 nm in bovine and 554 nm in squid. However, when the residues within 4.0 Å radius of the retinal are relaxed during the isomerization event, almost ∼16 kcal/mol energy is lost in squid compared to only ∼8 kcal/mol in bovine. Loss of a larger amount of energy in squid is attributed to the presence of a flexible binding site compared to a rigid binding site in bovine. Structure of the squid bathorhodopsin is characterized by formation of a direct H-bond between the Schiff base and Asn87.
Collapse
|
12
|
Inoue K, Sudo Y, Homma M, Kandori H. Spectrally Silent Intermediates during the Photochemical Reactions of Salinibacter Sensory Rhodopsin I. J Phys Chem B 2011; 115:4500-8. [DOI: 10.1021/jp2000706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
13
|
Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.2011.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Deep UVRR spectra of the aromatic amino acids Phe and Tyr in the wavenumber range 800–1800 cm−1 with λ
exc=195–208 nm exhibit a selective enhancement of signals arising from vibrations localized in the aromatic ring. For λ
exc>198 nm, the UVRR spectra of Phe and Tyr are dominated by contributions from the in-plane ring stretching modes ν
8a
and ν
8b
at ∼1600 cm−1. For λ
exc≤198 nm, intense signals from the symmetric ring stretching, in-plane C–H bending and phenyl–C stretching vibrations below 1400 cm−1 are observed. Excellent stray light rejection is achieved by a triple monochromator, which can be used either in the additive or subtractive mode for high-resolution and low-wavenumber measurements, respectively. A home-built circulating free-flow system allows the investigation of sample volumes as small as 1 mL.
Collapse
|
14
|
Nagel ZD, Klinman JP. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 2010; 110:PR41-67. [PMID: 21141912 PMCID: PMC4067601 DOI: 10.1021/cr1001035] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zachary D. Nagel
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| | - Judith P. Klinman
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| |
Collapse
|
15
|
Chen J, Bender SL, Keough JM, Barry BA. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study. J Phys Chem B 2009; 113:11367-70. [PMID: 19639977 PMCID: PMC2846372 DOI: 10.1021/jp906491r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - James M. Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
16
|
Gansmüller A, Concistrè M, McLean N, Johannessen OG, Marín-Montesinos I, Bovee-Geurts PHM, Verdegem P, Lugtenburg J, Brown RCD, Degrip WJ, Levitt MH. Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1350-7. [PMID: 19265671 DOI: 10.1016/j.bbamem.2009.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired (13)C chemical shifts along the retinylidene chain of the chromophore. Here we compare these results with the chemical shifts of the dark state chromophore in rhodopsin, as well as with the chemical shifts of retinylidene model compounds in solution. An earlier solid-state NMR study of bathorhodopsin found only small changes in the (13)C chemical shifts upon isomerization, suggesting only minor perturbations of the electronic structure in the isomerized retinylidene chain. This is at variance with our recent measurements which show much larger perturbations of the (13)C chemical shifts. Here we present a tentative interpretation of our NMR results involving an increased charge delocalization inside the polyene chain of the bathorhodopsin chromophore. Our results suggest that the bathochromic shift of bathorhodopsin is due to modified electrostatic interactions between the chromophore and the binding pocket, whereas both electrostatic interactions and torsional strain are involved in the energy storage mechanism of bathorhodopsin.
Collapse
Affiliation(s)
- Axel Gansmüller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Resonance Raman Characterization of a Stable Tryptophan Radical in an Azurin Mutant. J Phys Chem B 2008; 113:382-8. [PMID: 19072535 DOI: 10.1021/jp809329a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
18
|
Balakrishnan G, Weeks CL, Ibrahim M, Soldatova AV, Spiro TG. Protein dynamics from time resolved UV Raman spectroscopy. Curr Opin Struct Biol 2008; 18:623-9. [PMID: 18606227 DOI: 10.1016/j.sbi.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Raman spectroscopy can provide unique information on the evolution of structure in proteins over a wide range of time scales; the picosecond to millisecond range can be accessed with pump-probe techniques. Specific parts of the molecule are interrogated by tuning the probe laser to a resonant electronic transition, including the UV transitions of aromatic residues and of the peptide bond. Advances in laser technology have enabled the characterization of transient species at an unprecedented level of structural detail. Applications to protein unfolding and allostery are reviewed.
Collapse
|
19
|
Sanchez KM, Neary TJ, Kim JE. Ultraviolet resonance Raman spectroscopy of folded and unfolded states of an integral membrane protein. J Phys Chem B 2008; 112:9507-11. [PMID: 18588328 DOI: 10.1021/jp800772j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational structure of native anchoring tryptophan (Trp) and tyrosine residues in an integral membrane protein, bacterial outer membrane protein A (OmpA), have been investigated using UV resonance Raman (UVRR) spectroscopy for the first time. Spectra of native OmpA, a single-Trp mutant, and a Trp-less mutant were recorded in folded and unfolded states, and reveal significant changes in tryptophan structure and local environment. Salient alterations upon folding include loss of hydrogen-bonding character of indole N1H, evidenced by a shift in W17 frequency from 874 and 878 cm(-1), and growth in hydrophobicity of the local tryptophan environment, supported by increase in the ratio I1361/I1340. In addition to these site-specific changes in a single tryptophan residue, modification of the vibrational structure of the remaining native tryptophan and tyrosine amino acids is also evident. Finally, the UVRR data presented here indicate that the structures of OmpA folded in vesicle and folded in detergent may differ, and provide important foundations for ongoing studies of membrane protein folding.
Collapse
Affiliation(s)
- Katheryn M Sanchez
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
20
|
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys J 2008; 94:3217-26. [PMID: 18199669 DOI: 10.1529/biophysj.107.105163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins.
Collapse
|
21
|
Kubo M, Uchida T, Nakashima S, Kitagawa T. Construction of a subnanosecond time-resolved, high-resolution ultraviolet resonance Raman measurement system and its application to reveal the dynamic structures of proteins. APPLIED SPECTROSCOPY 2008; 62:30-37. [PMID: 18230205 DOI: 10.1366/000370208783412573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A subnanosecond time-resolved ultraviolet (UV) resonance Raman system has been developed to study protein structural dynamics. The system is based on a 1 kHz Nd:YLF-pumped Ti:Sapphire regenerative amplifier with harmonic generation that can deliver visible (412, 440, 458, and 488 nm) and UV (206, 220, 229, and 244 nm) pulses. A subnanosecond (0.2 ns) tunable near-infrared pulse from a custom-made Ti:Sapphire oscillator is used to seed the regenerative amplifier. A narrow linewidth of the subnanosecond pulse offers the advantage of high resolution of UV resonance Raman spectra, which is critical to obtain site-specific information on protein structures. By combination with a 1 m single spectrograph equipped with a 3600 grooves/mm holographic grating and a custom-made prism prefilter, the present system achieves excellent spectral (<10 cm(-1)) and frequency (approximately 1 cm(-1)) resolutions with a relatively high temporal resolution (<0.5 ns). We also report the application of this system to two heme proteins, hemoglobin A and CooA, with the 440 nm pump and 220 nm probe wavelengths. For hemoglobin A, a structural change during the transition to the earliest intermediate upon CO photodissociation is successfully observed, specifically, nanosecond cleavage of the A-E interhelical hydrogen bonds within each subunit at Trpalpha14 and Trpbeta15 residues. For CooA, on the other hand, rapid structural distortion (<0.5 ns) by CO photodissociation and nanosecond structural relaxation following CO geminate recombination are observed through the Raman bands of Phe and Trp residues located near the heme. These results demonstrate the high potential of this instrument to detect local protein motions subsequent to photoreactions in their active sites.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Zachary D Nagel
- Department of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Sato A, Gao Y, Kitagawa T, Mizutani Y. Primary protein response after ligand photodissociation in carbonmonoxy myoglobin. Proc Natl Acad Sci U S A 2007; 104:9627-32. [PMID: 17517618 PMCID: PMC1887578 DOI: 10.1073/pnas.0611560104] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Indexed: 11/18/2022] Open
Abstract
Time-resolved UV resonance Raman (UVRR) spectroscopic studies of WT and mutant myoglobin were performed to reveal the dynamics of protein motion after ligand dissociation. After dissociation of carbon monoxide (CO) from the heme, UVRR bands of Tyr showed a decrease in intensity with a time constant of 2 ps. The intensity decrease was followed by intensity recovery with a time constant of 8 ps. On the other hand, UVRR bands of Trp residues located in the A helix showed an intensity decrease that was completed within the instrument response time. The intensity decrease was followed by an intensity recovery with a time constant of approximately 50 ps and lasted up to 1 ns. The time-resolved UVRR study of the myoglobin mutants demonstrated that the hydrophobicity of environments around Trp-14 decreased, whereas that around Trp-7 barely changed in the primary protein response. The present data indicate that displacement of the E helix toward the heme occurs within the instrument response time and that movement of the FG corner takes place with a time constant of 2 ps. The finding that the instantaneous motion of the E helix strongly suggests a mechanism in which protein structural changes are propagated from the heme to the A helix through the E helix motion.
Collapse
Affiliation(s)
- Akira Sato
- *Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Ying Gao
- School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Teizo Kitagawa
- School of Advanced Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; and
| | - Yasuhisa Mizutani
- *Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
24
|
Mizuno M, Hamada N, Tokunaga F, Mizutani Y. Picosecond Protein Response to the Chromophore Isomerization of Photoactive Yellow Protein: Selective Observation of Tyrosine and Tryptophan Residues by Time-Resolved Ultraviolet Resonance Raman Spectroscopy. J Phys Chem B 2007; 111:6293-6. [PMID: 17523627 DOI: 10.1021/jp072939d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picosecond time-resolved ultraviolet resonance Raman (UVRR) spectra of photoactive yellow protein (PYP) were measured. UVRR bands attributed to the vibration of tyrosine and tryptophan residues showed a spectral change upon photoreaction. It was found that the hydrogen-bond strength between the chromophore and Y42 increases in the pG* state. The ultrafast change in the tryptophan band revealed that a photoinduced structural change of the chromophore had propagated to the W119 region, located 12 A from the chromophore, within picoseconds.
Collapse
|
25
|
Verhoeven MA, Bovee-Geurts PHM, de Groot HJM, Lugtenburg J, DeGrip WJ. Methyl Substituents at the 11 or 12 Position of Retinal Profoundly and Differentially Affect Photochemistry and Signalling Activity of Rhodopsin. J Mol Biol 2006; 363:98-113. [PMID: 16962138 DOI: 10.1016/j.jmb.2006.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/12/2006] [Accepted: 07/19/2006] [Indexed: 11/18/2022]
Abstract
The C-11=C-12 double bond of the retinylidene chromophore of rhodopsin holds a central position in its light-induced photoisomerization and hence the photosensory function of this visual pigment. To probe the local environment of the HC-11=C-12H element we have prepared the 11-methyl and 12-methyl derivatives of 11-Z retinal and incorporated these into opsin to generate the rhodopsin analogs 11-methyl and 12-methyl rhodopsin. These analog pigments form with much slower kinetics and lower efficiency than the native pigment. The initial photochemistry and the signaling activity of the analog pigments were investigated by UV-vis and FTIR spectroscopy, and by a G protein activation assay. Our data indicate that the ultrafast formation of the first photointermediate is strongly perturbed by the presence of an 11-methyl substituent, but much less by a 12-methyl substituent. These results support the current concept of the mechanism of the primary photoisomerization event in rhodopsin. An important stronghold of this concept is an out-of-plane movement of the C-12H element, which is facilitated by torsion as well as extended positive charge delocalization into the C-10-C-13 segment of the chromophore. We argue that this mechanism is maintained principally with a methyl substituent at C-12. In addition, we show that both an 11-methyl and a 12-methyl substitutent perturb the photointermediate cascade and finally yield a low-activity state of the receptor. The 11-methyl pigment retains about 30% of the G protein activation rate of native rhodopsin, while the 12-methyl chromophore behaves like an inverse agonist up to at least 20 degrees C, trapping the protein in a perturbed Meta-I-like conformation. We conclude that the isomerization region of the chromophore and the spatial structure of the binding site are finely tuned, in order to achieve a high photosensory potential with an efficient pathway to a high-activity state.
Collapse
|
26
|
Wu B, Zhao Y, Gao PJ. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin (Shanghai) 2006; 38:372-8. [PMID: 16761094 DOI: 10.1111/j.1745-7270.2006.00179.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1,4-beta-D-glucan cellobiohydrolase I (CBH I), p-nitrophenyl beta-D-cellobioside, p-nitrophenol and cellobiose show distinct ultraviolet spectra, allowing the design of an assay to track the dynamic process of p-nitrophenyl beta-D-cellobioside hydrolysis by CBH I. Based on the linear relationship between p-nitrophenol formation in the hydrolysate and its first derivative absorption curve of AUC340-400 nm (area under the curve), a new sensitive assay for the determination of CBH I activity was developed. The dynamic parameters of catalysis reaction, such as Vm and kcat, can all be derived from this result. The influence of beta-glucosidase and endoglucanase in crude enzyme sample on the assay was discussed in detail. This approach is useful for accurate determination of the activity of CBHs.
Collapse
Affiliation(s)
- Bin Wu
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | | | | |
Collapse
|
27
|
Kubo M, Inagaki S, Yoshioka S, Uchida T, Mizutani Y, Aono S, Kitagawa T. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy. J Biol Chem 2006; 281:11271-8. [PMID: 16439368 DOI: 10.1074/jbc.m513261200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UV and visible resonance Raman spectra are reported for CooA from Rhodospirillum rubrum, which is a transcriptional regulator activated by growth in a CO atmosphere. CO binding to heme in its sensor domain causes rearrangement of its DNA-binding domain, allowing binding of DNA with a specific sequence. The sensor and DNA-binding domains are linked by a hinge region that follows a long C-helix. UV resonance Raman bands arising from Trp-110 in the C-helix revealed local movement around Trp-110 upon CO binding. The indole side chain of Trp-110, which is exposed to solvent in the CO-free ferrous state, becomes buried in the CO-bound state with a slight change in its orientation but maintains a hydrogen bond with a water molecule at the indole nitrogen. This is the first experimental data supporting a previously proposed model involving displacement of the C-helix and heme sliding. The UV resonance Raman spectra for the CooA-DNA complex indicated that binding of DNA to CooA induces a further displacement of the C-helix in the same direction during transition to the complete active conformation. The Fe-CO and C-O stretching bands showed frequency shifts upon DNA binding, but the Fe-His stretching band did not. Moreover, CO-geminate recombination was more efficient in the DNA-bound state. These results suggest that the C-helix displacement in the DNA-bound form causes the CO binding pocket to narrow and become more negative.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Kholmurodov KT, Feldman TB, Ostrovsky MA. Visual pigment rhodopsin : a computer simulation of the molecular dynamics of 11-cis-retinal chromophore and amino-acid residues in the chromophore centre. MENDELEEV COMMUNICATIONS 2006. [DOI: 10.1070/mc2006v016n01abeh002255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Bykov S, Lednev I, Ianoul A, Mikhonin A, Munro C, Asher SA. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region. APPLIED SPECTROSCOPY 2005; 59:1541-52. [PMID: 16390595 DOI: 10.1366/000370205775142511] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We describe a state-of-the-art tunable ultraviolet (UV) Raman spectrometer for the 193-270 nm spectral region. This instrument allows for steady-state and transient UV Raman measurements. We utilize a 5 kHz Ti-sapphire continuously tunable laser (approximately 20 ns pulse width) between 193 nm and 240 nm for steady-state measurements. For transient Raman measurements we utilize one Coherent Infinity YAG laser to generate nanosecond infrared (IR) pump laser pulses to generate a temperature jump (T-jump) and a second Coherent Infinity YAG laser that is frequency tripled and Raman shifted into the deep UV (204 nm) for transient UV Raman excitation. Numerous other UV excitation frequencies can be utilized for selective excitation of chromophoric groups for transient Raman measurements. We constructed a subtractive dispersion double monochromator to minimize stray light. We utilize a new charge-coupled device (CCD) camera that responds efficiently to UV light, as opposed to the previous CCD and photodiode detectors, which required intensifiers for detecting UV light. For the T-jump measurements we use a second camera to simultaneously acquire the Raman spectra of the water stretching bands (2500-4000 cm(-1)) whose band-shape and frequency report the sample temperature.
Collapse
Affiliation(s)
- Sergei Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX. Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 2004; 343:1409-38. [PMID: 15491621 DOI: 10.1016/j.jmb.2004.08.090] [Citation(s) in RCA: 542] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/26/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
We have determined the structure of bovine rhodopsin at 2.65 A resolution using untwinned native crystals in the space group P3(1), by molecular replacement from the 2.8 A model (1F88) solved in space group P4(1). The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11-cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all-trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.
Collapse
Affiliation(s)
- Jade Li
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
31
|
Spooner PJR, Sharples JM, Goodall SC, Bovee-Geurts PHM, Verhoeven MA, Lugtenburg J, Pistorius AMA, Degrip WJ, Watts A. The ring of the rhodopsin chromophore in a hydrophobic activation switch within the binding pocket. J Mol Biol 2004; 343:719-30. [PMID: 15465057 DOI: 10.1016/j.jmb.2004.08.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 08/08/2004] [Accepted: 08/16/2004] [Indexed: 10/26/2022]
Abstract
The current view that the beta-ionone ring of the rhodopsin chromophore vacates its binding pocket within the protein early in the photocascade has been adopted in efforts to provide structural models of photoreceptor activation. This event casts doubt on the ability of this covalently bonded ligand to participate directly in later stages involving activation of the photoreceptor and it is difficult to translate into predictions for the activation of related G protein-coupled receptors by diffusable ligands (e.g. neurotransmitters). The binding pocket fixes the formally equivalent pair of ring methyl groups (C16/C17) in different orientations that can be distinguished easily by (13)C NMR. Solid-state NMR observations on C16 and C17 are reported here that show instead that the ring is retained with strong selective interactions within the binding site into the activated state. We further show how increased steric interactions for this segment in the activated receptor can be explained by adjustment in the protein structure around the ring whilst it remains in its original location. This describes a plausible role for the ring in operating a hydrophobic switch from within the aromatic cluster of helix 6 of rhodopsin, which is coupled to electronic changes within the receptor through water-mediated, hydrogen-bonded networks between the conserved residues in G protein-coupled receptors.
Collapse
Affiliation(s)
- Paul J R Spooner
- The Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yan ECY, Ganim Z, Kazmi MA, Chang BSW, Sakmar TP, Mathies RA. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry 2004; 43:10867-76. [PMID: 15323547 PMCID: PMC1428786 DOI: 10.1021/bi0400148] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational structure of the chromophore in the primary photoproduct of vision, bathorhodopsin, is examined to determine the cause of the anomalously decoupled and intense C(11)=C(12) hydrogen-out-of-plane (HOOP) wagging modes and their relation to energy storage in the primary photoproduct. Low-temperature (77 K) resonance Raman spectra of Glu181 and Ser186 mutants of bovine rhodopsin reveal only mild mutagenic perturbations of the photoproduct spectrum suggesting that dipolar, electrostatic, or steric interactions with these residues do not cause the HOOP mode frequencies and intensities. Density functional theory calculations are performed to investigate the effect of geometric distortion on the HOOP coupling. The decoupled HOOP modes can be simulated by imposing approximately 40 degrees twists in the same direction about the C(11)=C(12) and C(12)-C(13) bonds. Sequence comparison and examination of the binding site suggests that these distortions are caused by three constraints consisting of an electrostatic anchor between the protonated Schiff base and the Glu113 counterion, as well as steric interactions of the 9- and 13-methyl groups with surrounding residues. This distortion stores light energy that is used to drive the subsequent protein conformational changes that activate rhodopsin.
Collapse
Affiliation(s)
- Elsa C Y Yan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GFX. Electron crystallography reveals the structure of metarhodopsin I. EMBO J 2004; 23:3609-20. [PMID: 15329674 PMCID: PMC517614 DOI: 10.1038/sj.emboj.7600374] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/27/2004] [Indexed: 11/08/2022] Open
Abstract
Rhodopsin is the prototypical G protein-coupled receptor, responsible for detection of dim light in vision. Upon absorption of a photon, rhodopsin undergoes structural changes, characterised by distinct photointermediates. Currently, only the ground-state structure has been described. We have determined a density map of a photostationary state highly enriched in metarhodopsin I, to a resolution of 5.5 A in the membrane plane, by electron crystallography. The map shows density for helix 8, the cytoplasmic loops, the extracellular plug, all tryptophan residues, an ordered cholesterol molecule and the beta-ionone ring. Comparison of this map with X-ray structures of the ground state reveals that metarhodopsin I formation does not involve large rigid-body movements of helices, but there is a rearrangement close to the bend of helix 6, at the level of the retinal chromophore. There is no gradual build-up of the large conformational change known to accompany metarhodopsin II formation. The protein remains in a conformation similar to that of the ground state until late in the photobleaching process.
Collapse
Affiliation(s)
| | | | - Reiner Vogel
- Biophysics Group, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Gebhard FX Schertler
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402328; Fax: +44 1223 213556; E-mail:
| |
Collapse
|