1
|
Maldonado C, Cáceres A, Burgos A, Hinojosa D, Enríquez S, Celi-Erazo M, Vaca F, Ron L, Rodríguez-Hidalgo R, Benítez-Ortiz W, Martínez-Fresneda M, Eleizalde MC, Mendoza M, Navarro JC, Ramírez-Iglesias JR. Seroprevalence of trypanosomosis and associated risk factors in cattle from coast and amazonian provinces of Ecuador. Vet Res Commun 2024; 48:1891-1898. [PMID: 38369611 DOI: 10.1007/s11259-024-10333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Trypanosomosis is a tropical disease caused by various protozoan haemoparasites, which affects wild and domestic animals, the latter ones related to worldwide livestock production systems. Species such as Trypanosoma vivax and Trypanosoma evansi have been described using serological and molecular tools in several countries from South and Central America. However, Ecuador presents a relevant knowledge gap in the associated general epidemiology and risk factors of the disease. Therefore, the objective of this study was to determine the seroprevalence of trypanosomosis in cattle from different regions of Ecuador. 745 serum samples from 7 Coastal and 3 Amazon provinces were screened for IgG anti-Trypanosoma spp. antibodies, using an in-house indirect ELISA. The seropositivity was explored and associated with several variables such as sex, age, breed, region, management, and province, using statistical tools. The general seroprevalence of trypanosomosis was 19.1% (95% CI: 16.30-22.1%). The Amazonian provinces of Sucumbíos and Napo and the Coastal province of Esmeraldas presented the highest seroprevalence values of 36.7% (95% CI: 27.67-46.47%), 23.64% (95% CI: 16.06-32.68%) and 25% (95% CI: 15.99-35.94%), respectively. Statistical significance was found for the region, province, and management variables, indicating as relevant risk factors the extensive management and Amazon location of the cattle analyzed. Specific actions should be taken to identify the exact species on reservoirs and susceptible hosts, evaluate the implication of farm management and cattle movement as risk factors, and implement surveillance and treatment plans for affected herds.
Collapse
Affiliation(s)
- C Maldonado
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - A Cáceres
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - A Burgos
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - D Hinojosa
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - S Enríquez
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - M Celi-Erazo
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - F Vaca
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - L Ron
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - R Rodríguez-Hidalgo
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - W Benítez-Ortiz
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - M Martínez-Fresneda
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
- Engineering and Applied Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - M C Eleizalde
- Centro de Estudios Biomédicos y Veterinarios (CEBIV), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez (UNESR), Apartado Postal 47925, Caracas, Venezuela
| | - M Mendoza
- Centro de Estudios Biomédicos y Veterinarios (CEBIV), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez (UNESR), Apartado Postal 47925, Caracas, Venezuela
| | - J C Navarro
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
| | - J R Ramírez-Iglesias
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador.
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador.
| |
Collapse
|
2
|
Samoel GVA, Fernandes FD, Roman IJ, Rodrigues BT, Miletti LC, Bräunig P, Guerra RR, Sangioni LA, Cargnelutti JF, Vogel FSF. Detection of anti-Trypanosoma spp. antibodies in cattle from southern Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 33:e013723. [PMID: 38126573 PMCID: PMC10782508 DOI: 10.1590/s1984-29612024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Bovine trypanosomosis, caused by Trypanosoma vivax, is a disease that originated in Africa and currently affects cattle in several South American countries, including almost all Brazilian states. Despite the reports on T. vivax infection in southern Brazil, data on its circulation status is currently unavailable. In this study, we aimed to detect anti-Trypanosoma spp. IgG antibodies in cattle from Rio Grande do Sul and suggest areas with T. vivax transmission risk. A total of 691 serum samples from cattle in the intermediate regions of Rio Grande do Sul were analyzed using indirect immunofluorescence assay (IFA). The overall seroprevalence of anti-Trypanosoma antibodies in cattle was 24.6% (170/691). The detection rate ranged from 0-37.3%, with a high prevalence in the intermediate regions of Ijuí (37.3%), Uruguaiana (30.7%), and Passo Fundo (28.9%). Thus, these regions were suggested as possible bovine trypanosomosis risk areas due to the high seroprevalence. This is the first serological study to determine Trypanosoma spp. infection status in cattle from Rio Grande do Sul, providing data on the epidemiology of trypanosomosis in the state.
Collapse
Affiliation(s)
- Gisele Vaz Aguirre Samoel
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Fagner D’ambroso Fernandes
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
- Centro Universitário Ritter dos Reis – UniRitter, Porto Alegre, RS, Brasil
| | - Isac Junior Roman
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Bibiana Teixeira Rodrigues
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | | | - Patrícia Bräunig
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Renata Rojas Guerra
- Departamento de Estatística, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Luís Antônio Sangioni
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Juliana Felipetto Cargnelutti
- Laboratório de Bacteriologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| | - Fernanda Silveira Flores Vogel
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria – UFSM, Santa Maria, RS, Brasil
| |
Collapse
|
3
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Magez S, Li Z, Nguyen HTT, Pinto Torres JE, Van Wielendaele P, Radwanska M, Began J, Zoll S, Sterckx YGJ. The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens 2021; 10:pathogens10081050. [PMID: 34451514 PMCID: PMC8400590 DOI: 10.3390/pathogens10081050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Correspondence:
| | - Zeng Li
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Hang Thi Thu Nguyen
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
| | - Joar Esteban Pinto Torres
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark Zwijnaarde 71, 9000 Ghent, Belgium
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| |
Collapse
|
5
|
Perdomo D, Bubis J. Purification of a Src family tyrosine protein kinase from bovine retinas. ACTA ACUST UNITED AC 2021; 76:273-283. [PMID: 33125342 DOI: 10.1515/znc-2020-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
Abstract
Since tyrosine phosphorylation appears to play important functions in photoreceptor cells, we searched here for retinal nonreceptor tyrosine kinases of the Src family. We demonstrated that Src family tyrosine kinases were present in the cytosolic fraction of extracted bovine retinas. A Src family tyrosine kinase with an apparent molecular mass of about 62 kDa was purified to homogeneity from the soluble fraction of dark-adapted bovine retinas after three consecutive purification steps: ω-aminooctyl-agarose hydrophobic chromatography, Cibacron blue 3GA-agarose pseudo-affinity chromatography, and α-casein-agarose affinity chromatography. The purified protein was subjected to N-terminal amino acid sequencing and the sequence Gly-Ile-Ile-Lys-Ser-Glu-Glu was obtained, which displayed homology with the first seven residues of the Src family tyrosine kinase c-Yes from Bos taurus (Gly-Cys-Ile-Lys-Ser-Lys-Glu). Although the cytosolic fraction from dark-adapted retinas contained tyrosine kinases of the Src family capable of phosphorylating the α-subunit of transducin, which is the heterotrimeric G protein involved in phototransduction, the purified tyrosine kinase was not capable of using transducin as a substrate. The cellular role of this retinal Src family member remains to be found.
Collapse
Affiliation(s)
- Deisy Perdomo
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| |
Collapse
|
6
|
Calomeno NA, Moreira RS, Fernandes LA, Batista F, Marques J, Wagner G, Miletti LC. Serum proteomic signature of Trypanosoma evansi -infected mice for identification of potential biomarkers. Vet Parasitol 2021; 290:109342. [PMID: 33422749 DOI: 10.1016/j.vetpar.2021.109342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Trypanosoma evansi is the agent of "surra," a trypanosomosis endemic in many areas worldwide. Trypanosoma proteins released/secreted during infection are attractive biomarkers for disease detection and monitoring. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we performed a comprehensive analysis of the serum proteome of mice infected with T.evansi and detected changes in the abundance of parasite and host serum proteins during infection. Following bioinformatics analysis, 30 T. evansi proteins were identified in the mice serum including known targets such as pyruvate kinase 1, β-tubulin, actin A, heat shock protein 70, and cyclophilin A. We also identified two exclusive VSG epitopes which are novel putative biomarker targets. In addition, upregulation of 31 mouse proteins, including chitinase-like protein 3 and monocyte differentiation antigen CD14, were observed. Identification of parasite-specific biomarkers in the host serum is critical for the development of reliable serological/ assays for differential diagnosis.
Collapse
Affiliation(s)
- Nathália Anderson Calomeno
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Renato Simões Moreira
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil; Instituto Federal de Santa Catarina (IFSC), Campus Lages, R. Heitor Villa Lobos, 222, São Francisco, Lages, SC, 88506-400, Brazil
| | - Leonardo Antônio Fernandes
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Franciane Batista
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Júlia Marques
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil
| | - Glauber Wagner
- Laboratório de Bioinformática, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Setor F, Bloco A, Sala 318, Caixa postal 476, Trindade, Florianópolis, SC, 88040-970, Brazil
| | - Luiz Claudio Miletti
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
7
|
Uzcanga GL, Bubis J. Dominant IgM synthesis against the soluble form of the prevailing variant surface glycoprotein from TeAp-N/D1 Trypanosoma equiperdum throughout the experimental acute infections of horses with non-tsetse transmitted Trypanozoon parasites. J Immunoassay Immunochem 2020; 41:745-760. [PMID: 32522083 DOI: 10.1080/15321819.2020.1778029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two horses were infected with distinct non-tsetse transmitted Trypanozoon Venezuelan stocks, namely TeAp-N/D1 Trypanosoma equiperdum and TeAp-El Frio01 Trypanosoma evansi. Preceding reports have revealed that a 64-kDa antigenic glycopolypeptide (p64), which is the soluble form of the predominant variant surface glycoprotein from TeAp-N/D1 T. equiperdum, can be used as a good antigen for immunodiagnosis of animal trypanosomosis. Here, the course of the experimental acute infection in both horses was monitored by evaluating total anti-p64 IgG and particular anti-p64 γ-specific IgG and μ-specific IgM isotypes in sera using indirect enzyme-linked immunosorbent assays. Both equines showed a maximum of whole anti-p64 antibody generation, which dropped to readings below the maximum but always above the positive cutoff point. Levels of specific IgG and IgM isotypes oscillated throughout the course of the experiments. Essentially, the γ-specific IgG response remained very close to the cutoff point, whereas the μ-specific IgM response displayed values that were mostly above the positive cutoff point, showing a major peak that coincided with the maximum of complete anti-p64 IgG production. These results showed that horses infected with non-tsetse transmitted Trypanozoon parasites developed an immune reaction characterized by a dominant IgM generation against the p64 antigen.
Collapse
Affiliation(s)
- Graciela L Uzcanga
- Departamento De Biología Celular, Universidad Simón Bolívar , Caracas, Venezuela.,Facultad De Ciencias De La Salud, Universidad Técnica De Manabí , Portoviejo, Ecuador
| | - José Bubis
- Departamento De Biología Celular, Universidad Simón Bolívar , Caracas, Venezuela
| |
Collapse
|
8
|
Parasitological, Hematological, and Immunological Response of Experimentally Infected Sheep with Venezuelan Isolates of Trypanosoma evansi, Trypanosoma equiperdum, and Trypanosoma vivax. J Parasitol Res 2019; 2019:8528430. [PMID: 30881699 PMCID: PMC6381555 DOI: 10.1155/2019/8528430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
There are three trypanosoma species of veterinary importance in South America: (1) Trypanosoma evansi, the causative agent of derrengadera mechanically transmitted by bloodsucking insects such as tabanids, (2) Trypanosoma vivax, also mechanically transmitted by some dipteras hematophages as tabanids and/or Stomoxys, and (3) T. equiperdum, a tissue parasite adapted to sexual transmission and the causative agent of dourine, a distinctive disease that affects only Equidae. In order to evaluate the parasitological, hematological, and serological response of sheep infected with T. vivax, T. evansi, and T. equiperdum, four female sheep were experimentally infected with Venezuelan trypanosome field isolates: two T. evansi of differing virulences, one T. equiperdum; one T. vivax. Parasitemia and clinical parameters such as hematocrit, red blood cell count, hemoglobin, and body temperature were measured. T. evansi caused a chronic disease with undulant parasitemia alternating with some cryptic periods of at least 54 days, with no clinical signs. T. equiperdum, never described as infectious to ruminants, also caused a chronic disease with low undulant parasitemia. T. vivax caused an acute infection with severe anemia showing a drop of more than 70% of the hematocrit value, high fever, and rapid deterioration of physical condition, for 36 days of infection. Indirect ELISAs using crude extracts of the three species of trypanosomes as antigens were performed for detection of anti-trypanosome antibodies in sheep sera. Cross-reaction was observed between the three parasite species. These results show that sheep are susceptible to the three-trypanosome species and suggest they can act as a reservoir when sheep are raised and managed with other important livestock such as cattle, horses, buffalos, or goats. These findings are especially interesting for T. equiperdum, a species that has not been reported as infective to sheep.
Collapse
|
9
|
Mendoza E, Bubis J, Pérez-Rojas Y, Montilla AJ, Spencer LM, Bustamante F, Martínez JC. High immunological response against a Trypanosoma equiperdum protein that exhibits homology with the regulatory subunits of mammalian cAMP-dependent protein kinases. J Immunoassay Immunochem 2018; 39:451-469. [DOI: 10.1080/15321819.2018.1506930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emiliana Mendoza
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Yenis Pérez-Rojas
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Alejandro J. Montilla
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Lilian M. Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Escuela de Ciencias de la Vida, Universidad de Yachay Tech, Hacienda San José, Urcuquí, Ecuador
| | - Floritza Bustamante
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Juan C. Martínez
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| |
Collapse
|
10
|
Escalona JL, Uzcanga GL, Carrasquel LM, Bubis J. The inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant, carbohydrate chains, and proteinaceous components are all responsible for the cross-reactivity of trypanosome variant surface glycoproteins. J Immunoassay Immunochem 2018; 39:173-189. [DOI: 10.1080/15321819.2017.1414701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- José L. Escalona
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Graciela L. Uzcanga
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Quito, Ecuador
| | | | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| |
Collapse
|
11
|
Identification of potential protein partners that bind to the variant surface glycoprotein in Trypanosoma equiperdum. Parasitology 2017; 144:923-936. [DOI: 10.1017/s003118201700004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYTrypanosoma equiperdum possesses a dense coat of a variant surface glycoprotein (VSG) that is used to evade the host immune response by a process known as antigenic variation. Soluble and membrane forms of the predominant VSG from the Venezuelan T. equiperdum TeAp-N/D1 strain (sVSG and mVSG, respectively) were purified to homogeneity; and antibodies against sVSG and mVSG were raised, isolated, and employed to produce anti-idiotypic antibodies that structurally mimic the VSG surface. Prospective VSG-binding partners were initially detected by far-Western blots, and then by immunoblots using the generated anti-idiotypic antibodies. Polypeptides of ~80 and 55 kDa were isolated when anti-idiotypic antibodies–Sepharose affinity matrixes were used as baits. Mass spectrometry sequencing yielded hits with various proteins from Trypanosoma brucei such as heat-shock protein 70, tryparedoxin peroxidase, VSG variants, expression site associated gene product 6, and two hypothetical proteins. In addition, a possible interaction with a protein homologous to the glutamic acid/alanine-rich protein from Trypanosoma congolense was also found. These results indicate that the corresponding orthologous gene products are candidates for VSG-interacting proteins in T. equiperdum.
Collapse
|
12
|
Serodiagnosis of bovine trypanosomosis caused by non-tsetse transmitted Trypanosoma (Duttonella) vivax parasites using the soluble form of a Trypanozoon variant surface glycoprotein antigen. Vet Parasitol 2016; 218:31-42. [DOI: 10.1016/j.vetpar.2016.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
13
|
Birhanu H, Fikru R, Said M, Kidane W, Gebrehiwot T, Hagos A, Alemu T, Dawit T, Berkvens D, Goddeeris BM, Büscher P. Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, Northern Ethiopia. Parasit Vectors 2015; 8:212. [PMID: 25889702 PMCID: PMC4403896 DOI: 10.1186/s13071-015-0818-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/19/2015] [Indexed: 11/12/2022] Open
Abstract
Background African animal trypanosomosis, transmitted cyclically by tsetse flies or mechanically by other biting flies, causes serious inflictions to livestock health. This study investigates the extent of non-tsetse transmitted animal trypanosomosis (NTTAT) by Trypanosoma (T.) evansi and T. vivax in domestic animals in the tsetse-free regions of Northern Ethiopia, Afar and Tigray. Methods A cross sectional study was conducted on 754 dromedary camels, 493 cattle, 264 goats, 181 sheep, 84 donkeys, 25 horses and 10 mules. The microhaematocrit centrifugation technique was used as parasitological test. Plasma was collected for serodiagnosis with CATT/T.evansi and RoTat 1.2 immune trypanolysis (ITL) while buffy coat specimens were collected for molecular diagnosis with T. evansi type A specific RoTat 1.2 PCR, T. evansi type B specific EVAB PCR and T. vivax specific TvPRAC PCR. Results The parasitological prevalence was 4.7% in Tigray and 2.7% in Afar and significantly higher (z = 2.53, p = 0.011) in cattle (7.3%) than in the other hosts. Seroprevalence in CATT/T.evansi was 24.6% in Tigray and 13.9% in Afar and was significantly higher (z = 9.39, p < 0.001) in cattle (37.3%) than in the other hosts. On the other hand, seroprevalence assessed by ITL was only 1.9% suggesting cross reaction of CATT/T.evansi with T. vivax or other trypanosome infections. Molecular prevalence of T. evansi type A was 8.0% in Tigray and in Afar and varied from 28.0% in horses to 2.2% in sheep. It was also significantly higher (p < 0.001) in camel (11.7%) than in cattle (6.1%), donkey (6%), goat (3.8%), and sheep (2.2%). Four camels were positive for T. evansi type B. Molecular prevalence of T. vivax was 3.0% and was similar in Tigray and Afar. It didn’t differ significantly among the host species except that it was not detected in horses and mules. Conclusions NTTAT caused by T. vivax and T. evansi, is an important threat to animal health in Tigray and Afar. For the first time, we confirm the presence of T. evansi type B in Ethiopian camels. Unexplained results obtained with the current diagnostic tests in bovines warrant particular efforts to isolate and characterise trypanosome strains that circulate in Northern Ethiopia.
Collapse
Affiliation(s)
- Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia. .,Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| | - Regassa Fikru
- Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium. .,College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Mussa Said
- Department of Statistics, College of Natural and Computational Sciences, Mekelle University, P.O.Box 231, Mekelle, Ethiopia.
| | - Weldu Kidane
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia.
| | - Tadesse Gebrehiwot
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia.
| | - Ashenafi Hagos
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Tola Alemu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Tesfaye Dawit
- School of Veterinary Medicine, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.
| | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| | - Bruno Maria Goddeeris
- Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium.
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| |
Collapse
|
14
|
Camargo R, Izquier A, Uzcanga GL, Perrone T, Acosta-Serrano A, Carrasquel L, Arias LP, Escalona JL, Cardozo V, Bubis J. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax. Vet Parasitol 2014; 207:17-33. [PMID: 25468674 PMCID: PMC4303646 DOI: 10.1016/j.vetpar.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
Abstract
Soluble forms of VSGs from seven Venezuelan animal trypanosomes were purified and characterized. All purified soluble VSGs exhibited cross-reactivity with Trypanosoma vivax. Anti-VSG antibodies behaved as markers of infection for non-tsetse transmitted trypanosomes. All purified soluble VSGs can be used as diagnostic reagents for bovine trypanosomosis.
Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48–67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence, the use of a combination of various VSGs for the diagnosis of animal trypanosomosis is recommended.
Collapse
Affiliation(s)
- Rocío Camargo
- Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela; Universidad Simón Bolívar, Departamento de Biología Celular, Caracas, Venezuela
| | - Adriana Izquier
- Universidad Simón Bolívar, Departamento de Biología Celular, Caracas, Venezuela; Universidad Central de Venezuela, Instituto de Ciencia y Tecnología de Alimentos, Caracas, Venezuela
| | | | - Trina Perrone
- Instituto Venezolano de Investigaciones Científicas IVIC, Centro de Biofísica y Bioquímica, Caracas, Venezuela
| | | | - Liomary Carrasquel
- Universidad Simón Bolívar, Departamento de Biología Celular, Caracas, Venezuela
| | - Laura P Arias
- Universidad Simón Bolívar, Departamento de Química, Caracas, Venezuela
| | - José L Escalona
- Universidad Simón Bolívar, Departamento de Química, Caracas, Venezuela
| | - Vanessa Cardozo
- Universidad Simón Bolívar, Departamento de Biología Celular, Caracas, Venezuela
| | - José Bubis
- Universidad Simón Bolívar, Departamento de Biología Celular, Caracas, Venezuela.
| |
Collapse
|
15
|
Partial Purification of Integral Membrane Antigenic Proteins from Trypanosoma evansi That Display Immunological Cross-Reactivity with Trypanosoma vivax. J Parasitol Res 2014; 2014:965815. [PMID: 24757558 PMCID: PMC3976917 DOI: 10.1155/2014/965815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma evansi and Trypanosoma vivax, which are the major causative agents of animal trypanosomosis in Venezuela, have shown a very high immunological cross-reactivity. Since the production of T. vivax antigens is a limiting factor as this parasite is difficult to propagate in experimental animal models, our goal has been to identify and isolate antigens from T. evansi that cross-react with T. vivax. Here, we used the Venezuelan T. evansi TEVA1 isolate to prepare the total parasite lysate and its corresponding cytosolic and membranous fractions. In order to extract the T. evansi integral membrane proteins, the particulate portion was further extracted first with Triton X-100, and then with sodium dodecyl sulfate. After discarding the cytosolic and Triton X-100 solubilized proteins, we employed sedimentation by centrifugation on linear sucrose gradients to partially purify the sodium dodecyl sulfate-solubilized proteins from the Triton X-100 resistant particulate fraction of T. evansi. We obtained enriched pools containing polypeptide bands with apparent molecular masses of 27 kDa, 31 kDa, and 53 kDa, which were recognized by anti-T. vivax antibodies from experimentally and naturally infected bovines.
Collapse
|
16
|
A non-cytosolic protein of Trypanosoma evansi induces CD45-dependent lymphocyte death. PLoS One 2009; 4:e5728. [PMID: 19478957 PMCID: PMC2685979 DOI: 10.1371/journal.pone.0005728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/27/2009] [Indexed: 11/19/2022] Open
Abstract
In a recent study dealing with a mouse model of Trypanosoma evansi-associated disease, a remarkable synchrony between the parasitaemia peak and the white-blood-cell count nadir was noticed. The present study was designed to establish whether there is a direct causal link between the parasite load during its exponential phase of growth and the disappearance of peripheral blood leukocytes. In vitro experiments performed with trypanosomes and purified peripheral blood mononucleated cells revealed the existence of a lymphotoxin embedded in the T. evansi membrane: a protein sensitive to serine proteases, with a molecular mass of less than 30 kDa. Lymphocytes death induced by this protein was found to depend on the intervention of a lymphocytic protein tyrosine phosphatase. When lymphocytes were exposed to increasing quantities of a monoclonal antibody raised against the extracellular portion of CD45, a transmembrane protein tyrosine phosphatase covering over 10% of the lymphocyte surface, T. evansi membrane extracts showed a dose-dependent decrease in cytotoxicity. As the regulatory functions of CD45 concern not only the fate of lymphocytes but also the activation threshold of the TCR-dependent signal and the amplitude and nature of cytokinic effects, this demonstration of its involvement in T. evansi-dependent lymphotoxicity suggests that T. evansi might manipulate, via CD45, the host's cytokinic and adaptive responses.
Collapse
|
17
|
Osório ALAR, Madruga CR, Desquesnes M, Soares CO, Ribeiro LRR, Costa SCGD. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World--a review. Mem Inst Oswaldo Cruz 2008; 103:1-13. [PMID: 18368231 DOI: 10.1590/s0074-02762008000100001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/24/2008] [Indexed: 01/06/2024] Open
Abstract
The biology, epidemiology, pathogenesis, diagnostic techniques, and history of the introduction of Trypanosoma (Duttonella) vivax in the New World are reviewed. The two main immunological responses of trypanosome-infected animals - antibody production and immunodepression - are discussed in the context of how these responses play a role in disease tolerance or susceptibility. Isolation and purification of T. vivax are briefly discussed. The recent reports of bovine trypanosomiasis diagnosed in cattle on farms located in the Pantanal region of the states of Mato Grosso do Sul and Mato Grosso, Brazil, are also discussed.
Collapse
|
18
|
Anti-VSG antibodies induce an increase in Trypanosoma evansi intracellular Ca2+ concentration. Parasitology 2008; 135:1303-15. [PMID: 18752709 DOI: 10.1017/s0031182008004903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trypanosoma evansi and Trypanosoma vivax have shown a very high immunological cross-reactivity. Anti-T. vivax antibodies were used to monitor changes in the T. evansi intracellular Ca2+ concentration ([Ca2+]i) by fluorometric ratio imaging from single parasites. A short-time exposure of T. evansi parasites to sera from T. vivax-infected bovines induced an increase in [Ca2+]i, which generated their complete lysis. The parasite [Ca2+]i boost was reduced but not eliminated in the absence of extracellular Ca2+ or following serum decomplementation. Decomplemented anti-T. evansi VSG antibodies also produced an increase in the parasite [Ca2+]i, in the presence of extracellular Ca2+. Furthermore, this Ca2+ signal was reduced following blockage with Ni2+ or in the absence of extracellular Ca2+, suggesting that this response was a combination of an influx of Ca2+ throughout membrane channels and a release of this ion from intracellular stores. The observed Ca2+ signal was specific since (i) it was completely eliminated following pre-incubation of the anti-VSG antibodies with the purified soluble VSG, and (ii) affinity-purified anti-VSG antibodies also generated an increase in [Ca2+]i by measurements on single cells or parasite populations. We also showed that an increase of the T. evansi [Ca2+]i by the calcium A-23187 ionophore led to VSG release from the parasite surface. In addition, in vivo immunofluorescence labelling revealed that anti-VSG antibodies induced the formation of raft patches of VSG on the parasite surface. This is the first study to identify a ligand that is coupled to calcium flux in salivarian trypanosomes.
Collapse
|
19
|
Desquesnes M, Bosseno MF, Brenière SF. Detection of Chagas infections using Trypanosoma evansi crude antigen demonstrates high cross-reactions with Trypanosoma cruzi. INFECTION GENETICS AND EVOLUTION 2007; 7:457-62. [PMID: 17337255 DOI: 10.1016/j.meegid.2007.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 11/27/2022]
Abstract
Antigenic similarities between salivarian trypanosomes are known for a long time, but similarities between salivarian and stercorarian trypanosomes have been very little investigated. Phylogenetically, these genus and species appear to be far. However, in a preliminary work we had shown strong reactions of chagasic human sera using T. evansi antigens in Western-blotting and ELISA. In the current work an ELISA test using T. evansi crude antigens was probed with one hundred and two sera of chagasic Bolivian patients previously diagnosed which presented different pathologies. The sensitivity of the ELISA T. evansi was 92.6% similar to that of ELISA T. cruzi. The specificity evaluated using 20 sera of patients infected by Leishmania sp. reaches a comparable value of that obtained with the T. cruzi immunofluorescent assay. Finally, the sensitivity and the specificity of the ELISA T. evansi were not really different from conventional serology of Chagas. In spite of their taxonomic position in various sections and their old divergence, these observations prove a strong antigenic community between T. cruzi and T. evansi. Consequently, the common antigens which remain to be characterized, could be an alternative source of antigen for the detection of antibodies against T. cruzi. Given that T. evansi seems to have strong antigenic communities with the majority of the pathogenic current trypanosomoses of mammals, it is very attractive to identify and characterize these highly conserved antigens which could be suitable targets to develop tools for diagnosis, prophylaxy and chemotherapy against several human and animal trypanosomoses.
Collapse
Affiliation(s)
- Marc Desquesnes
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR 17 Trypanosomes, Campus de Baillarguet TA30/G, Montpellier F-34000, France.
| | | | | |
Collapse
|
20
|
Madruga CR, Araújo FR, Cavalcante-Goes G, Martins C, Pfeifer IB, Ribeiro LR, Kessler RH, Soares CO, Miguita M, Melo EPS, Almeida RFC, Lima MMSC. The development of an enzyme-linked immunosorbent assay for Trypanosoma vivax antibodies and its use in epidemiological surveys. Mem Inst Oswaldo Cruz 2006; 101:801-7. [PMID: 17160291 DOI: 10.1590/s0074-02762006000700016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/13/2006] [Indexed: 11/22/2022] Open
Abstract
There are data indicating that the distribution of Trypanosoma vivax in the Brazilian territory is expanding with potential to reach other areas, where the vectors are present. The detection of anti-trypanosomal antibodies in serum provides important information of the trypanosomal status in cattle herds. For this reason, an enzyme-linked immunosorbent assay (Tv-ELISA-Ab) with crude antigen from one Brazilian isolate of T. vivax was developed and evaluated. The sensitivity and specificity were respectively 97.6 and 96.9%. In the evaluation of cross-reactions, three calves inoculated with T. evansi trypimastigotes blood forms showed optical densities (OD) under the cut-off during the whole experimental period, except one at 45 days post-inoculation. With relation to Babesia bovis, B. bigemina, and Anaplasma marginale, which are endemic hemoparasites in the studied area, the cross-reactions were shown to be 5.7, 5.3, and 1.1%, respectively. The first serological survey of Pantanal and state of Pará showed that T. vivax is widespread, although regions within both areas had significantly different prevalences. Therefore, this Tv-ELISA-Ab may be a more appropriate test for epidemiological studies in developing countries because the diagnostic laboratories in most countries may be able to perform an ELISA, which is not true for polymerase chain reaction.
Collapse
Affiliation(s)
- Claudio R Madruga
- Laboratório de Hemoparasitologia, Embrapa Gado de Corte, 79002-970 Campo Grande, MS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Lima AR, Medina R, Uzcanga GL, Noris Suárez K, Contreras VT, Navarro MC, Arteaga R, Bubis J. Tight binding between a pool of the heterodimeric α/β tubulin and a protein kinase CK2 inTrypanosoma cruziepimastigotes. Parasitology 2005; 132:511-23. [PMID: 16332290 DOI: 10.1017/s0031182005009352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/28/2005] [Accepted: 09/28/2005] [Indexed: 01/23/2023]
Abstract
Tubulin is the predominant phosphoprotein inTrypanosoma cruziepimastigotes and is phosphorylated by a protein kinase CK2. Interestingly, the presence or absence of divalent cations affected the solubilization of a pool of the parasite tubulin and the CK2 responsible for its phosphorylation. This fraction of tubulin and its kinase co-eluted using phosphocellulose, DEAE-Sepharose and Sephacryl S-300 chromatographies. Anti-α tubulin antibodies co-immunoprecipitated both tubulin and the CK2 responsible for its phosphorylation, and anti-CK2 α-subunit antibodies immunoprecipitated radioactively labelled α and β tubulin from phosphorylated epimastigote homogenates. Additionally, native polyacrylamide gel electrophoresis of the purified and radioactively labelled fraction containing tubulin and its kinase demonstrated the phosphorylation of a unique band that reacted with both anti-CK2 α-subunit and anti-tubulin antibodies. Together, these results establish a strong interaction between a pool of the heterodimeric α/β tubulin and a CK2 in this parasite. Hydrodynamic measurements indicated that theT. cruzitubulin-CK2 complex is globular with an estimated size of 145·4–147·5 kDa.
Collapse
Affiliation(s)
- A R De Lima
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gupta S. Parasite immune escape: new views into host-parasite interactions. Curr Opin Microbiol 2005; 8:428-33. [PMID: 15993644 DOI: 10.1016/j.mib.2005.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/21/2005] [Indexed: 11/25/2022]
Abstract
For parasites of humans and animals that rely on vectors or on sexual contact for transmission, it is particularly important that infection does not to terminate before the occurrence of the crucial event that completes its lifecycle (e.g. another mosquito bite). For chronic infection to occur, it is essential that the parasite avoids clearance by the host immune system. Much progress has been made in elucidating the immunological interactions and the molecular mechanisms involved in the process of immune evasion. Mathematical models have also been invaluable in understanding these processes, particularly in the generation of new ideas about a complex form of immune evasion known as antigenic variation whereby a major target of the host immune response is varied during the course of a single infection to avoid recognition.
Collapse
Affiliation(s)
- Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom.
| |
Collapse
|
23
|
Ngaira JM, Olembo NK, Njagi ENM, Ngeranwa JJN. The detection of non-RoTat 1.2 Trypanosoma evansi. Exp Parasitol 2005; 110:30-8. [PMID: 15804376 DOI: 10.1016/j.exppara.2005.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 12/23/2004] [Accepted: 01/10/2005] [Indexed: 11/21/2022]
Abstract
The majority of Trypanosoma evansi can be detected using diagnostic tests based on the variant surface glycoprotein (VSG) of Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2. Exceptions are a number of T. evansi isolated in Kenya. To characterize T. evansi that are undetected by RoTat 1.2, we cloned and sequenced the VSG cDNA from T. evansi JN 2118Hu, an isolate devoid of the RoTat 1.2 VSG gene. A 273 bp DNA segment of the VSG gene was targeted in PCR amplification for the detection of non-RoTat 1.2 T. evansi. Genomic DNA samples from different trypanosomes were tested including 32 T. evansi, 10 Trypanosoma brucei, three Trypanosoma congolense, and one Trypanosoma vivax. Comparison was by PCR amplification of a 488 bp fragment of RoTat1.2 VSG gene. Results showed that the expected 273 bp amplification product was present in all five non-RoTat 1.2 T. evansi tested and was absent in all 27 RoTat 1.2-positive T. evansi tested. It was also absent in all other trypanosomes tested. The PCR test developed in this study is specific for non-RoTat 1.2 T. evansi.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Camelus/parasitology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Molecular Sequence Data
- RNA, Protozoan/chemistry
- RNA, Protozoan/isolation & purification
- Restriction Mapping/veterinary
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Sensitivity and Specificity
- Sequence Alignment/veterinary
- Trypanosoma/genetics
- Trypanosoma/immunology
- Trypanosoma/isolation & purification
- Trypanosomiasis, African/diagnosis
- Trypanosomiasis, African/parasitology
- Trypanosomiasis, African/veterinary
- Variant Surface Glycoproteins, Trypanosoma/genetics
Collapse
Affiliation(s)
- J M Ngaira
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O. Box 25530, Nairobi, Kenya.
| | | | | | | |
Collapse
|
24
|
Camargo RE, Uzcanga GL, Bubis J. Isolation of two antigens from Trypanosoma evansi that are partially responsible for its cross-reactivity with Trypanosoma vivax. Vet Parasitol 2004; 123:67-81. [PMID: 15265572 DOI: 10.1016/j.vetpar.2004.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 11/24/2022]
Abstract
In Venezuela, two non-tsetse transmitted trypanosomes, Trypanosoma evansi and Trypanosoma vivax, are the major etiological agents of animal trypanosomosis. Rodents can be experimentally infected with T. evansi in order to obtain enough parasites to prepare antigens for serological tests. On the contrary, the production of T. vivax antigens is a limiting factor in most laboratories. Since T. evansi and T. vivax have exhibited a very high immunological cross-reactivity, we have focused on the identification of antigens from T. evansi responsible for this phenomenon. The predominant 64 kDa glycosylated cross-reacting antigen was recently purified from the TEVA1 T. evansi Venezuelan isolate [Parasitology 124 (2002) 287]. Here, we purified two additional cross-reacting antigens with molecular masses of approximately 51 and 68 kDa from the cytosolic fraction of the same T. evansi isolate, by sequential chromatography on DEAE-sepharose and sephacryl S-300. Sera obtained from animals infected with T. evansi or T. vivax recognized both purified proteins, suggesting their potential use as diagnostic reagents.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Blotting, Western/veterinary
- Cattle
- Cattle Diseases/blood
- Cattle Diseases/diagnosis
- Cattle Diseases/immunology
- Cattle Diseases/parasitology
- Chromatography, DEAE-Cellulose/veterinary
- Chromatography, Gel/veterinary
- Cross Reactions
- Electrophoresis, Polyacrylamide Gel/veterinary
- Enzyme-Linked Immunosorbent Assay/veterinary
- Horse Diseases/blood
- Horse Diseases/diagnosis
- Horse Diseases/immunology
- Horse Diseases/parasitology
- Horses
- Trypanosoma vivax/immunology
- Trypanosomiasis, Bovine/blood
- Trypanosomiasis, Bovine/diagnosis
- Trypanosomiasis, Bovine/immunology
- Trypanosomiasis, Bovine/parasitology
- Variant Surface Glycoproteins, Trypanosoma/immunology
- Variant Surface Glycoproteins, Trypanosoma/isolation & purification
- Venezuela
Collapse
Affiliation(s)
- Rocío E Camargo
- Departamento de Química, Universidad Simón Bolívar, Caracas, Venezuela
| | | | | |
Collapse
|
25
|
Medina R, Perdomo D, Bubis J. The hydrodynamic properties of dark- and light-activated states of n-dodecyl beta-D-maltoside-solubilized bovine rhodopsin support the dimeric structure of both conformations. J Biol Chem 2004; 279:39565-73. [PMID: 15258159 DOI: 10.1074/jbc.m402446200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhodopsin (Rho) has been extracted in n-dodecyl beta-D-maltoside (DM) from bovine retinal rod outer segments and purified to homogeneity by affinity chromatography on concanavalin A-Sepharose. Because chemical cross-linking of Rho and photoactivated Rho (Rho*) provided initial evidence for the oligomeric nature of the photoreceptor protein, we carried out a hydrodynamic characterization of the native and activated conformations of detergent-solubilized Rho. The molecular weights of the complexes between dark and photoexcited states of Rho and DM were determined by gel filtration chromatography on Sephacryl S-300, in the presence of 0.1% DM. Subtracting the size of the corresponding detergent micelles resulted in molecular masses of 78 kDa for native Rho and 76 kDa for Rho*. The measured content of 0.97 g of detergent/g of protein resulted in a calculated partial specific volume of 0.765 cm(3)/g for the protein-detergent complex and a molar mass of 64-65 kDa for the protein moiety. The sizes of Rho.DM and Rho*.DM complexes were also evaluated by sedimentation on 10-30% sucrose gradients, in the presence of 0.1% DM, and molecular masses of about 60 kDa were estimated for both the dark- and light-activated states of the photoreceptor protein. The size of Rho was determined to be 65,300 and 69,800 Da, respectively, when the purified Rho.DM complex was either chromatographed on Sephacryl S-300 or ultracentrifuged on sucrose gradients in the absence of DM. All these results were consistent with a dimeric quaternary structure for both conformations of Rho. Additionally, the functional integrity of the purified photoreceptor protein following gel filtration chromatography and ultracentrifugation was demonstrated by three criteria as follows: (i) its characteristic UV-visible absorption spectra, (ii) its capability to photoactivate transducin, and (iii) its ability to serve as a substrate for rhodopsin kinase.
Collapse
Affiliation(s)
- Rafael Medina
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Caracas 1081-A, Venezuela
| | | | | |
Collapse
|