1
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
2
|
Pintscher S, Pietras R, Mielecki B, Szwalec M, Wójcik-Augustyn A, Indyka P, Rawski M, Koziej Ł, Jaciuk M, Ważny G, Glatt S, Osyczka A. Molecular basis of plastoquinone reduction in plant cytochrome b 6f. NATURE PLANTS 2024:10.1038/s41477-024-01804-x. [PMID: 39362993 DOI: 10.1038/s41477-024-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
A multi-subunit enzyme, cytochrome b6f (cytb6f), provides the crucial link between photosystems I and II in the photosynthetic membranes of higher plants, transferring electrons between plastoquinone (PQ) and plastocyanin. The atomic structure of cytb6f is known, but its detailed catalytic mechanism remains elusive. Here we present cryogenic electron microscopy structures of spinach cytb6f at 1.9 Å and 2.2 Å resolution, revealing an unexpected orientation of the substrate PQ in the haem ligand niche that forms the PQ reduction site (Qn). PQ, unlike Qn inhibitors, is not in direct contact with the haem. Instead, a water molecule is coordinated by one of the carbonyl groups of PQ and can act as the immediate proton donor for PQ. In addition, we identify water channels that connect Qn with the aqueous exterior of the enzyme, suggesting that the binding of PQ in Qn displaces water through these channels. The structures confirm large movements of the head domain of the iron-sulfur protein (ISP-HD) towards and away from the plastoquinol oxidation site (Qp) and define the unique position of ISP-HD when a Qp inhibitor (2,5-dibromo-3-methyl-6-isopropylbenzoquinone) is bound. This work identifies key conformational states of cytb6f, highlights fundamental differences between substrates and inhibitors and proposes a quinone-water exchange mechanism.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Grzegorz Ważny
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland.
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Lv Q, Li S, Du X, Fan Y, Wang M, Song C, Sui F, Liu Y. Transcriptomic response analysis of ultraviolet mutagenesis combined with high carbon acclimation to promote photosynthetic carbon assimilation in Euglena gracilis. Front Microbiol 2024; 15:1444420. [PMID: 39268527 PMCID: PMC11390635 DOI: 10.3389/fmicb.2024.1444420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
The potential of Euglena gracilis for carbon sequestration offers significant opportunities in the capture and utilization of carbon dioxide (CO2). In this study, a mutant LE-ZW of E. gracilis, capable of efficient growth and carbon sequestration, was obtained through ultraviolet mutagenesis combined with high carbon acclimation. Subsequently, the potential of LE-ZW for carbon assimilation was systematically analyzed. The results demonstrated that the cell density of the LE-ZW was 1.33 times that of the wild type and its carbon sequestration efficiency was 6.67 times that of the wild type when cultured at an optimal CO2 concentration of 5% until day 10. At this time, most key enzyme genes associated with the photosystem membrane protein complex, photosynthetic electron transport chain, antenna protein, and carbon fixation were up-regulated in mutant LE-ZW. Furthermore, after 10 days of culture under 10% CO2, the cell density and carbon sequestration efficiency of LE-ZW reached 1.10 times and 1.54 times of that under 5% CO2, respectively. Transcriptome analysis revealed significant up-regulation of key enzyme genes associated with carbon fixation, central carbon metabolism, and photosynthesis in LE-ZW under a 10% CO2 concentration. Physiological indices such as the amount of oxygen evolution, the values of Fv/Fm, the expression levels of photosynthetic protein genes and the enzyme activity of key enzymes related to photosynthetic carbon assimilation were corroborated by transcriptome data, elucidating that the mutant LE-ZW exhibited augmented photosynthetic carbon sequestration capacity and metabolic activity, thereby demonstrating robust adaptability to a high-carbon environment. This research contributes to a deeper understanding of the carbon assimilation mechanism in photosynthetic protists under elevated CO2 concentrations.
Collapse
Affiliation(s)
- Qi Lv
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Siping Li
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Xinxin Du
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Yawen Fan
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Mingshuo Wang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Chunhua Song
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Fengyang Sui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Yan Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| |
Collapse
|
5
|
Zheng W, Chai P, Zhu J, Zhang K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 2024; 631:232-239. [PMID: 38811722 PMCID: PMC11222160 DOI: 10.1038/s41586-024-07488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.
Collapse
Affiliation(s)
- Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Dubinin MV, Chulkov AV, Igoshkina AD, Cherepanova AA, Mikina NV. Effect of 2-aminoethoxydiphenyl borate on the functions of mouse skeletal muscle mitochondria. Biochem Biophys Res Commun 2024; 712-713:149944. [PMID: 38636302 DOI: 10.1016/j.bbrc.2024.149944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
This work examined the effect of 2-aminoethoxydiphenyl borate (2-APB) on the functioning of isolated mouse skeletal muscle mitochondria and modeled its putative interaction with mitochondrial proteins. We have shown that 2-APB is able to dose-dependently suppress mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. This effect of 2-APB was accompanied by a slight dose-dependent decrease in mitochondrial membrane potential and appears to be due to inhibition of complex I and complex III of the electron transport chain (ETC) with IC50 values of 200 and 120 μM, respectively. The results of molecular docking identified putative 2-APB interaction sites in these ETC complexes. 2-APB was shown to dose-dependently inhibit both mitochondrial Ca2+ uptake and Ca2+ efflux, which seems to be caused by a decrease in the membrane potential of the organelles. We have found that 2-APB has no significant effect on mitochondrial calcium retention capacity. On the other hand, 2-APB exhibited antioxidant effect by reducing mitochondrial hydrogen peroxide production but without affecting superoxide generation. It is concluded that the effect of 2-APB on mitochondrial targets should be taken into account when interpreting the results of cell and in vivo experiments.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | | | | | | | - Natalia V Mikina
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| |
Collapse
|
7
|
Wang D, Yuan C, Li Y, Bai S, Feng J, Wang Y, Fang Y, Zhang Z. Chelation of the Optimal Antifungal Pogostone Analogue with Copper(II) to Explore the Dual Antifungal and Antibacterial Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3894-3903. [PMID: 38366986 DOI: 10.1021/acs.jafc.3c07050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In an ongoing effort to explore more potent antifungal pogostone (Po) analogues, we maintained the previously identified 3-acetyl-4-hydroxy-2-pyrone core motif while synthesizing a series of Po analogues with variations in the alkyl side chain. The in vitro bioassay results revealed that compound 21 was the most potent antifungal analogue with an EC50 value of 1.1 μg/mL against Sclerotinia sclerotiorum (Lib.) de Bary. Meanwhile, its Cu(II) complex 34 manifested significantly enhanced antibacterial activity against Xanthomonas campestris pv campestris (Xcc) with a minimum inhibitory concentration (MIC) value of 300 μg/mL compared with 21 (MIC = 700 μg/mL). Complex 34 exhibited a striking preventive effect against S. sclerotiorum and Xcc in rape leaves, with control efficacies of 98.8% (50 μg/mL) and 80.7% (1000 μg/mL), respectively. The 3D-QSAR models generated using Topomer comparative molecular field analysis indicated that a shorter alkyl chain (carbon atom number <8), terminal rings, or electron-deficient groups on the alkyl side chain are beneficial for antifungal potency. Further, bioassay results revealed that the component of 21 in complex 34 dominated the antifungal activity, but the introduction of Cu(II) significantly enhanced its antibacterial activity. The toxicological observations demonstrated that 21 could induce abnormal mitochondrial morphology, loss of mitochondrial membrane potential, and reactive oxygen species (ROS) accumulation in S. sclerotiorum. The enzyme assay results showed that 21 is a moderate promiscuous inhibitor of mitochondrial complexes II and III. Besides, the introduction of Cu(II) to 34 could promote the disruption of the cell membrane and intracellular proteins and the ROS level in Xcc compared with 21. In summary, these results highlight the potential of 34 as a dual antifungal and antibacterial biocide for controlling rape diseases or as a promising candidate for further optimization.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yunpeng Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Shuhong Bai
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yali Fang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| |
Collapse
|
8
|
Dong Y, Li B, Yin MX, Liu Z, Niu Y, Wu QY, Zhu XL, Yang GF. The Interaction Mechanism of Picolinamide Fungicide Targeting on the Cytochrome bc1 Complex and Its Structural Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3755-3762. [PMID: 38346446 DOI: 10.1021/acs.jafc.3c05982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Picolinamide fungicides, structurally related to UK-2A and antimycin-A, bind into the Qi-site in the bc1 complex. However, the detailed binding mode of picolinamide fungicides remains unknown. In the present study, antimycin-A and UK-2A were selected to study the binding mode of picolinamide inhibitors with four protonation states in the Qi-site by integrating molecular dynamics simulation, molecular docking, and molecular mechanics Generalized Born surface area (MM/GBSA) calculations. Subsequently, a series of new picolinamide derivatives were designed and synthesized to further understand the effects of substituents on the tail phenyl ring. The computational results indicated that the substituted aromatic rings in antimycin-A and UK-2A were the pharmacophore fragments and made the primary contribution when bound to a protein. Compound 9g-hydrolysis formed H-bonds with Hie201 and Ash228 and showed an IC50 value of 6.05 ± 0.24 μM against the porcine bc1 complex. Compound 9c, with a simpler chemical structure, showed higher control effects than florylpicoxamid against cucumber downy mildew and expanded the fungicidal spectrum of picolinamide fungicides. The structural and mechanistic insights obtained from the present study will provide a valuable clue for the future designing of new promising Qi-site inhibitors.
Collapse
Affiliation(s)
- Ying Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Bo Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Mao-Xue Yin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yan Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Qiong-You Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Esser L, Xia D. Mitochondrial Cytochrome bc1 Complex as Validated Drug Target: A Structural Perspective. Trop Med Infect Dis 2024; 9:39. [PMID: 38393128 PMCID: PMC10892539 DOI: 10.3390/tropicalmed9020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial respiratory chain Complex III, also known as cytochrome bc1 complex or cyt bc1, is a validated target not only for antibiotics but also for pesticides and anti-parasitic drugs. Although significant progress has been made in understanding the mechanisms of cyt bc1 function and inhibition by using various natural and synthetic compounds, important issues remain in overcoming drug resistance in agriculture and in evading cytotoxicity in medicine. In this review, we look at these issues from a structural perspective. After a brief description of the essential and common structural features, we point out the differences among various cyt bc1 complexes of different organisms, whose structures have been determined to atomic resolution. We use a few examples of cyt bc1 structures determined via bound inhibitors to illustrate both conformational changes observed and implications to the Q-cycle mechanism of cyt bc1 function. These structures not only offer views of atomic interactions between cyt bc1 complexes and inhibitors, but they also provide explanations for drug resistance when structural details are coupled to sequence changes. Examples are provided for exploiting structural differences in evolutionarily conserved enzymes to develop antifungal drugs for selectivity enhancement, which offer a unique perspective on differential interactions that can be exploited to overcome cytotoxicity in treating human infections.
Collapse
Affiliation(s)
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2122C, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Gao X, Li W, Wang S, Xie B, Peng Q, Zhang C, Miao J, Dai T, Liu X. Attributes of Cyazofamid-Resistant Phytophthora litchii Mutants and Its Impact on Quality of Litchi Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:219-229. [PMID: 38131297 DOI: 10.1021/acs.jafc.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 μg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Shuai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Bowen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
11
|
Abdelmohsen UR, Bayoumi SAL, Mohamed NM, Mostafa YA, Ngwa CJ, Pradel G, Farag SF. Naturally occurring phenylethanoids and phenylpropanoids: antimalarial potential. RSC Adv 2023; 13:26804-26811. [PMID: 37692342 PMCID: PMC10483269 DOI: 10.1039/d3ra04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Malaria as an infectious disease is one of the world's most dangerous parasitic diseases. There is an urgent need for the development of new antimalarial drugs. Natural products are a very rich source of new bioactive compounds. Our research aims to shed light on the recent studies which demonstrated the antimalarial potential of phenylpropanoids as a major natural-products class. This study involves an in silico analysis of naturally-occurring phenylpropanoids and phenylethanoids which showed 25 compounds with moderate to strong binding affinity to various amino acid residues lining the active site; P. falciparum kinase (PfPK5), P. falciparum cytochrome bc1 complex (cyt bc1), and P. falciparum lysyl-tRNA synthetase (PfKRS1); of Plasmodium falciparum parasite, a unicellular protozoan which causes the most severe and life-threatening malaria. Furthermore, the study was augmented by the assessment of antiplasmodial activity of glandularin, a naturally occurring dibenzylbutyrolactolic lignan, against chloroquine-sensitive 3D7 strain of P. falciparum using SYBR green I-based fluorescence assay, which showed high antimalarial activity with IC50 value of 11.2 μM after 24 hours of incubation. Our results highlight phenylpropanoids and glandularin in particular as a promising chemical lead for development of antimalarial drugs.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Soad A L Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Salwa F Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
12
|
Kuleta P, Pietras R, Andrys-Olek J, Wójcik-Augustyn A, Osyczka A. Probing molecular interactions of semiquinone radicals at quinone reduction sites of cytochrome bc1 by X-band HYSCORE EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 2023; 25:21935-21943. [PMID: 37551546 DOI: 10.1039/d3cp02433d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Quinone redox reactions involve a semiquinone (SQ) intermediate state. The catalytic sites in enzymes stabilize the SQ state via various molecular interactions, such as hydrogen bonding to oxygens of the two carbonyls of the benzoquinone ring. To understand how these interactions contribute to SQ stabilization, we examined SQ in the quinone reduction site (Qi) of cytochrome bc1 using electron paramagnetic resonance (ESEEM, HYSCORE) at the X-band and quantum mechanical (QM) calculations. We compared native enzyme (WT) with a H217R mutant (replacement of histidine that interacts with one carbonyl of the occupant of Qi to arginine) in which the SQ stability has previously been shown to markedly increase. The 14N region of the HYSCORE 2D spectrum for SQi in WT had a shape typical of histidine residue, while in H217R, the spectrum shape changed significantly and appeared similar to the pattern described for SQ liganded natively by arginine in cytochrome bo3. Parametrization of hyperfine and quadrupolar interactions of SQi with surrounding magnetic nuclei (1H, 14N) allowed us to assign specific nitrogens of H217 or R217 as ligands of SQi in WT and H217R, respectively. This was further substantiated by qualitative agreement between the experimental (EPR-derived) and theoretical (QM-derived) parameters. The proton (1H) region of the HYSCORE spectrum in both WT and H217R was very similar and indicative of interactions with two protons, which in view of the QM calculations, were identified as directly involved in the formation of a H-bond with the two carbonyl oxygens of SQ (interaction of H217 or R217 with O4 and D252 with O1). In view of these assignments, we explain how different SQ ligands effectively influence SQ stability. We also propose that the characteristic X-band HYSCORE pattern and parameters of H217R are highly specific to the interaction of SQ with the nitrogen of arginine. These features can thus be considered as potential markers of the interaction of arginine with SQ in other proteins.
Collapse
Affiliation(s)
- Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Justyna Andrys-Olek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
13
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
14
|
Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat Commun 2023; 14:2542. [PMID: 37248254 DOI: 10.1038/s41467-023-38158-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Tetrahymena thermophila, a classic ciliate model organism, has been shown to possess tubular mitochondrial cristae and highly divergent electron transport chain involving four transmembrane protein complexes (I-IV). Here we report cryo-EM structures of its ~8 MDa megacomplex IV2 + (I + III2 + II)2, as well as a ~ 10.6 MDa megacomplex (IV2 + I + III2 + II)2 at lower resolution. In megacomplex IV2 + (I + III2 + II)2, each CIV2 protomer associates one copy of supercomplex I + III2 and one copy of CII, forming a half ring-shaped architecture that adapts to the membrane curvature of mitochondrial cristae. Megacomplex (IV2 + I + III2 + II)2 defines the relative position between neighbouring half rings and maintains the proximity between CIV2 and CIII2 cytochrome c binding sites. Our findings expand the current understanding of divergence in eukaryotic electron transport chain organization and how it is related to mitochondrial morphology.
Collapse
Affiliation(s)
- Fangzhu Han
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Yiqi Hu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Mengchen Wu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhaoxiang He
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Hongtao Tian
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Long Zhou
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
15
|
Gao X, Yuan K, Li X, Liao S, Peng Q, Miao J, Liu X. Resistance Risk and Resistance-Related Point Mutations in Target Protein Cyt b of the Quinone Inside Inhibitor Amisulbrom in Phytophthora litchii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6552-6560. [PMID: 37071710 DOI: 10.1021/acs.jafc.2c08860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amisulbrom is a novel quinone inside inhibitor, which exhibits excellent inhibitory activity against phytopathogenic oomycetes. However, the resistance risk and mechanism of amisulbrom in Phytophthora litchii are rarely reported. In this study, the sensitivity of 147 P. litchii isolates to amisulbrom was determined, with an average EC50 of 0.24 ± 0.11 μg/mL. The fitness of resistant mutants, obtained by fungicide adaption, was significantly lower than that of the parental isolates in vitro. Cross-resistance was detected between amisulbrom and cyazofamid. Amisulbrom could not inhibit the cytochrome bc1 complex activity with H15Y and G30E + F220L point mutations in cytochrome b (Cyt b) in vitro. Molecular docking indicated that the H15Y or G30E point mutation can decrease the binding energy between amisulbrom and P. litchii Cyt b. In conclusion, P. litchii might have a medium resistance risk to amisulbrom, and a novel point mutation H15Y or G30E in Cyt b could cause high amisulbrom resistance in P. litchii.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Kang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xinyue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shuailin Liao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
16
|
Mühleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Maréchal A, Sharma V, Amunts A. Structural basis of mitochondrial membrane bending by the I-II-III 2-IV 2 supercomplex. Nature 2023; 615:934-938. [PMID: 36949187 PMCID: PMC10060162 DOI: 10.1038/s41586-023-05817-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- School of Infection and Immunity, University of Glasgow, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Rozbeh Baradaran
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Thomas Gruhl
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, USA
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
17
|
Park H, Wang W, Min SH, Ren Y, Shin K, Han X. Artificial organelles for sustainable chemical energy conversion and production in artificial cells: Artificial mitochondrion and chloroplasts. BIOPHYSICS REVIEWS 2023; 4:011311. [PMID: 38510162 PMCID: PMC10903398 DOI: 10.1063/5.0131071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Sustainable energy conversion modules are the main challenges for building complex reaction cascades in artificial cells. Recent advances in biotechnology have enabled this sustainable energy supply, especially the adenosine triphosphate (ATP), by mimicking the organelles, which are the core structures for energy conversion in living cells. Three components are mainly shared by the artificial organelles: the membrane compartment separating the inner and outer parts, membrane proteins for proton translocation, and the molecular rotary machine for ATP synthesis. Depending on the initiation factors, they are further categorized into artificial mitochondrion and artificial chloroplasts, which use chemical nutrients for oxidative phosphorylation and light for photosynthesis, respectively. In this review, we summarize the essential components needed for artificial organelles and then review the recent progress on two different artificial organelles. Recent strategies, purified and identified proteins, and working principles are discussed. With more study on the artificial mitochondrion and artificial chloroplasts, they are expected to be very powerful tools, allowing us to achieve complex cascading reactions in artificial cells, like the ones that happen in real cells.
Collapse
Affiliation(s)
- Hyun Park
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Seo Hyeon Min
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
18
|
Rosell-Hidalgo A, Moore AL, Ghafourian T. Prediction of drug-induced mitochondrial dysfunction using succinate-cytochrome c reductase activity, QSAR and molecular docking. Toxicology 2023; 485:153412. [PMID: 36584908 DOI: 10.1016/j.tox.2022.153412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that links mitochondrial off-target effects with organ toxicities. For this reason, predictive strategies need to be developed to identify mitochondrial dysfunction early in the drug discovery process. In this study, as a major mechanism of mitochondrial toxicity, first, the inhibitory activity of 35 compounds against succinate-cytochrome c reductase (SCR) was investigated. This in vitro study led to the generation of consistent experimental data for a diverse range of compounds, including pharmaceutical drugs and fungicides. Next, molecular docking and protein-ligand interaction fingerprinting (PLIF) analysis were used to identify significant residues and protein-ligand interactions for the Qo site of complex III and Q site of complex II. Finally, this data was used for the development of QSAR models using a regression-based approach to highlight structural and chemical features that might be responsible for SCR inhibition. The statistically validated QSAR models from this work highlighted the importance of low aqueous solubility, low ionisation, fewer 6-membered rings and shorter hydrocarbon alkane chains in the molecular structure for increased inhibition of SCR, hence mitochondrial toxicity. PLIF analysis highlighted two key residues for inhibitory activity of the Qo site of complex III: His 161 as H-bond acceptor and Pro 270 for arene interactions. Currently, there are limited structure-activity models published in the scientific literature for the prediction of mitochondrial toxicity. We believe this study helps shed light on the chemical space for the inhibition of mitochondrial electron transport chain (ETC).
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Taravat Ghafourian
- NSU College of Pharmacy, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
19
|
In silico investigation of cytochrome bc1 molecular inhibition mechanism against Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0010545. [PMID: 36689459 PMCID: PMC9894551 DOI: 10.1371/journal.pntd.0010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/02/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Chagas' disease is a neglected tropical disease caused by the kinetoplastid protozoan Trypanosoma cruzi. The only therapies are the nitroheterocyclic chemicals nifurtimox and benznidazole that cause various adverse effects. The need to create safe and effective medications to improve medical care remains critical. The lack of verified T. cruzi therapeutic targets hinders medication research for Chagas' disease. In this respect, cytochrome bc1 has been identified as a promising therapeutic target candidate for antibacterial medicines of medical and agricultural interest. Cytochrome bc1 belongs to the mitochondrial electron transport chain and transfers electrons from ubiquinol to cytochrome c1 by the action of two catalytic sites named Qi and Qo. The two binding sites are highly selective, and specific inhibitors exist for each site. Recent studies identified the Qi site of the cytochrome bc1 as a promising drug target against T. cruzi. However, a lack of knowledge of the drug mechanism of action unfortunately hinders the development of new therapies. In this context, knowing the cause of binding site selectivity and the mechanism of action of inhibitors and substrates is crucial for drug discovery and optimization processes. In this paper, we provide a detailed computational investigation of the Qi site of T. cruzi cytochrome b to shed light on the molecular mechanism of action of known inhibitors and substrates. Our study emphasizes the action of inhibitors at the Qi site on a highly unstructured portion of cytochrome b that could be related to the biological function of the electron transport chain complex.
Collapse
|
20
|
Wieferig JP, Kühlbrandt W. Analysis of the conformational heterogeneity of the Rieske iron-sulfur protein in complex III 2 by cryo-EM. IUCRJ 2023; 10:27-37. [PMID: 36598500 PMCID: PMC9812224 DOI: 10.1107/s2052252522010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Movement of the Rieske domain of the iron-sulfur protein is essential for intramolecular electron transfer within complex III2 (CIII2) of the respiratory chain as it bridges a gap in the cofactor chain towards the electron acceptor cytochrome c. We present cryo-EM structures of CIII2 from Yarrowia lipolytica at resolutions up to 2.0 Å under different conditions, with different redox states of the cofactors of the high-potential chain. All possible permutations of three primary positions were observed, indicating that the two halves of the dimeric complex act independently. Addition of the substrate analogue decylubiquinone to CIII2 with a reduced high-potential chain increased the occupancy of the Qo site. The extent of Rieske domain interactions through hydrogen bonds to the cytochrome b and cytochrome c1 subunits varied depending on the redox state and substrate. In the absence of quinols, the reduced Rieske domain interacted more closely with cytochrome b and cytochrome c1 than in the oxidized state. Upon addition of the inhibitor antimycin A, the heterogeneity of the cd1-helix and ef-loop increased, which may be indicative of a long-range effect on the Rieske domain.
Collapse
Affiliation(s)
- Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J Biochem Cell Biol 2023; 154:106346. [PMID: 36538984 DOI: 10.1016/j.biocel.2022.106346] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Golovynska I, Golovynskyi S, Qu J. Comparing the Impact of NIR, Visible and UV Light on ROS Upregulation via Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochem Photobiol 2023; 99:106-119. [PMID: 35689798 DOI: 10.1111/php.13661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm-2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10-100 mW cm-2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Site-Differentiated Iron–Sulfur Cluster Ligation Affects Flavin-Based Electron Bifurcation Activity. Metabolites 2022; 12:metabo12090823. [PMID: 36144227 PMCID: PMC9503767 DOI: 10.3390/metabo12090823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Electron bifurcation is an elegant mechanism of biological energy conversion that effectively couples three different physiologically relevant substrates. As such, enzymes that perform this function often play critical roles in modulating cellular redox metabolism. One such enzyme is NADH-dependent reduced-ferredoxin: NADP+ oxidoreductase (NfnSL), which couples the thermodynamically favorable reduction of NAD+ to drive the unfavorable reduction of ferredoxin from NADPH. The interaction of NfnSL with its substrates is constrained to strict stoichiometric conditions, which ensures minimal energy losses from non-productive intramolecular electron transfer reactions. However, the determinants for this are not well understood. One curious feature of NfnSL is that both initial acceptors of bifurcated electrons are unique iron–sulfur (FeS) clusters containing one non-cysteinyl ligand each. The biochemical impact and mechanistic roles of site-differentiated FeS ligands are enigmatic, despite their incidence in many redox active enzymes. Herein, we describe the biochemical study of wild-type NfnSL and a variant in which one of the site-differentiated ligands has been replaced with a cysteine. Results of dye-based steady-state kinetics experiments, substrate-binding measurements, biochemical activity assays, and assessments of electron distribution across the enzyme indicate that this site-differentiated ligand in NfnSL plays a role in maintaining fidelity of the coordinated reactions performed by the two electron transfer pathways. Given the commonality of these cofactors, our findings have broad implications beyond electron bifurcation and mechanistic biochemistry and may inform on means of modulating the redox balance of the cell for targeted metabolic engineering approaches.
Collapse
|
24
|
Amporndanai K, Pinthong N, O’Neill PM, Hong WD, Amewu RK, Pidathala C, Berry NG, Leung SC, Ward SA, Biagini GA, Hasnain SS, Antonyuk SV. Targeting the Ubiquinol-Reduction (Q i) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials. BIOLOGY 2022; 11:biology11081109. [PMID: 35892964 PMCID: PMC9330653 DOI: 10.3390/biology11081109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.
Collapse
Affiliation(s)
- Kangsa Amporndanai
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Nattapon Pinthong
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Correspondence: (P.M.O.); (S.V.A.); Tel.: +44-(0)-1517955145 (S.V.A.); +44-(0)-1517943552 (P.M.O.)
| | - W. David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Richard K. Amewu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, Accra P.O. Box LG 586, Ghana
| | - Chandrakala Pidathala
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Composite Interceptive Med-Science Laboratories Pvt. Ltd., Bengaluru 60099, Karnataka, India
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Suet C. Leung
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Stephen A. Ward
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (S.A.W.); (G.A.B.)
| | - Giancarlo A. Biagini
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (S.A.W.); (G.A.B.)
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Correspondence: (P.M.O.); (S.V.A.); Tel.: +44-(0)-1517955145 (S.V.A.); +44-(0)-1517943552 (P.M.O.)
| |
Collapse
|
25
|
Gao X, Hu S, Liu Z, Zhu H, Yang J, Han Q, Fu Y, Miao J, Gu B, Liu X. Analysis of resistance risk and resistance-related point mutations in Cyt b of QioI fungicide ametoctradin in Phytophthora litchii. PEST MANAGEMENT SCIENCE 2022; 78:2921-2930. [PMID: 35419937 DOI: 10.1002/ps.6916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Litchi downy blight, caused by Phytophthora litchii, is one of the most important diseases of litchi. Ametoctradin, as the only QioI (quinone inside and outside inhibitor) fungicide, has been registered in China in 2019. However, the ametoctradin-resistance risk and molecular basis in Phytophthora litchii have not been reported. RESULTS In this study, the sensitivity profile of 144 Phytophthora litchii strains to ametoctradin was determined, with a mean median effective concentration (EC50 ) value of 0.1706 ± 0.091 μg mL-1 . Nine stable resistant Phytophthora litchii mutants [resistance factor (RF) > 400] were derived from sensitive isolates using fungicide adaption. The compound fitness index of three resistant-mutants (HN10-1-1, HN10-1-2 and HN10-2-1) was similar or higher than that of their parental isolates in vitro. All these ametoctradin-resistant mutants were sensitive to metalaxyl, dimethomorph, oxathiapiprolin and cyazofamid. Two point mutations, leading to the S33L and D228N changes in PlCyt b (cytochrome b) were found in ametoctradin-resistant mutants. Eight ametoctradin-resistant mutants containing S33L showed increased sensitivity to azoxystrobin and amisulbrom, and one mutant containing D228N exhibited increased sensitivity to cyazofamid. In vitro enzyme activity test showed that ametoctradin could not inhibit the activity of cytochrome bc1 complex with S33L and D228N point mutation. AS-PCR primers were designed based on the S33L change to detect the ametoctradin-resistant strains in the future. CONCLUSION These results suggest that Phytophthora litchii has a medium to high resistance risk to ametoctradin in the laboratory. Two changes, S33L and D228N, in PlCyt b are likely to be associated with the observed ametoctradin resistance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shiping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zeqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongwei Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jikun Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qingyu Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixin Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Young DH, Meunier B, Wang NX. Interaction of picolinamide fungicide primary metabolites UK-2A and CAS-649 with the cytochrome bc 1 complex Qi site: mutation effects and modelling in Saccharomyces cerevisiae. PEST MANAGEMENT SCIENCE 2022; 78:2657-2666. [PMID: 35355395 DOI: 10.1002/ps.6893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fenpicoxamid and florylpicoxamid are picolinamide fungicides targeting the Qi site of the cytochrome bc1 complex, via their primary metabolites UK-2A and CAS-649, respectively. We explore binding interactions and resistance mechanisms for picolinamides, antimycin A and ilicicolin H in yeast by testing effects of cytochrome b amino acid changes on fungicide sensitivity and interpreting results using molecular docking. RESULTS Effects of amino acid changes on sensitivity to UK-2A and CAS-649 were similar, with highest resistance associated with exchanges involving G37 and substitutions N31K and L198F. These changes, as well as K228M, also affected antimycin A, while ilicicolin H was affected by changes at G37 and L198, as well as Q22E. N31 substitution patterns suggest that a lysine at position 31 introduces an electrostatic interaction with neighbouring D229, causing disruption of a key salt-bridge interaction with picolinamides. Changes involving G37 and L198 imply resistance primarily through steric interference. G37 changes also showed differences between CAS-649 and UK-2A or antimycin A with respect to branched versus unbranched amino acids. N31K and substitution of G37 by large amino acids reduced growth rate substantially while L198 substitutions showed little effect on growth. CONCLUSION Binding of UK-2A and CAS-649 at the Qi site involves similar interactions such that general cross-resistance between fenpicoxamid and florylpicoxamid is anticipated in target pathogens. Some resistance mutations reduced growth rate and could carry a fitness penalty in pathogens. However, certain changes involving G37 and L198 carry little or no growth penalty and may pose the greatest risk for resistance development in the field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- David H Young
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nick X Wang
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| |
Collapse
|
27
|
Zhou L, Maldonado M, Padavannil A, Guo F, Letts JA. Structures of Tetrahymena's respiratory chain reveal the diversity of eukaryotic core metabolism. Science 2022; 376:831-839. [PMID: 35357889 PMCID: PMC9169680 DOI: 10.1126/science.abn7747] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiration is a core biological energy-converting process whose last steps are carried out by a chain of multisubunit complexes in the inner mitochondrial membrane. To probe the functional and structural diversity of eukaryotic respiration, we examined the respiratory chain of the ciliate Tetrahymena thermophila (Tt). Using cryo-electron microscopy on a mixed sample, we solved structures of a supercomplex between Tt complex I (Tt-CI) and Tt-CIII2 (Tt-SC I+III2) and a structure of Tt-CIV2. Tt-SC I+III2 (~2.3 megadaltons) is a curved assembly with structural and functional symmetry breaking. Tt-CIV2 is a ~2.7-megadalton dimer with more than 50 subunits per protomer, including mitochondrial carriers and a TIM83-TIM133-like domain. Our structural and functional study of the T. thermophila respiratory chain reveals divergence in key components of eukaryotic respiration, thereby expanding our understanding of core metabolism.
Collapse
Affiliation(s)
- Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - María Maldonado
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fei Guo
- BIOEM Facility, University of California, Davis, CA 95616, USA
| | - James A. Letts
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
29
|
Vasilevsky SF, Stepanov AA. Acetylene derivatives of quinones and their transformation products: methods of synthesis, reactivity and applied aspects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Schmitt F, Babylon L, Dieter F, Eckert GP. Effects of Pesticides on Longevity and Bioenergetics in Invertebrates-The Impact of Polyphenolic Metabolites. Int J Mol Sci 2021; 22:ijms222413478. [PMID: 34948274 PMCID: PMC8707434 DOI: 10.3390/ijms222413478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Environmentally hazardous substances such as pesticides are gaining increasing interest in agricultural and nutritional research. This study aims to investigate the impact of these compounds on the healthspan and mitochondrial functions in an invertebrate in vivo model and in vitro in SH-SY5Y neuroblastoma cells, and to investigate the potential of polyphenolic metabolites to compensate for potential impacts. Wild-type nematodes (Caenorhabditis elegans, N2) were treated with pesticides such as pyraclostrobin (Pyr), glyphosate (Gly), or fluopyram (Fluo). The lifespans of the nematodes under heat stress conditions (37 °C) were determined, and the chemotaxis was assayed. Energetic metabolites, including adenosine triphosphate (ATP), lactate, and pyruvate, were analyzed in lysates of nematodes and cells. Genetic expression patterns of several genes associated with lifespan determination and mitochondrial parameters were assessed via qRT-PCR. After incubation with environmentally hazardous substances, nematodes were incubated with a pre-fermented polyphenol mixture (Rechtsregulat®Bio, RR) or protocatechuic acid (PCA) to determine heat stress resistance. Treatment with Pyr, Glyph and Fluo leads to dose-dependently decreased heat stress resistance, which was significantly improved by RR and PCA. The chemotaxes of the nematodes were not affected by pesticides. ATP levels were not significantly altered by the pesticides, except for Pyr, which increased ATP levels after 48 h leads. The gene expression of healthspan and mitochondria-associated genes were diversely affected by the pesticides, while Pyr led to an overall decrease of mRNA levels. Over time, the treatment of nematodes leads to a recovery of the nematodes on the mitochondrial level but not on stress resistance on gene expression. Fermented extracts of fruits and vegetables and phenolic metabolites such as PCA seem to have the potential to recover the vitality of C. elegans after damage caused by pesticides.
Collapse
|
31
|
Takazaki H, Kusumoto T, Ishibashi W, Yasunaga T, Sakamoto J. Extended supercomplex contains type-II NADH dehydrogenase, cytochrome bcc complex, and aa 3 oxidase in the respiratory chain of Corynebacterium glutamicum. J Biosci Bioeng 2021; 133:76-82. [PMID: 34753673 DOI: 10.1016/j.jbiosc.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
To clarify the precise subunit composition of the respiratory supercomplex of Corynebacterium glutamicum, several wash conditions were examined. MEGA (9 + 10) wash-buffer (0.5%) was used for this purpose and two-step column chromatography was performed. Almost equal amounts of cytochrome c, b, and a were observed in the purified fraction, estimated by their different absorption spectra. The 833 kDa and 685 kDa bands were observed in the clear native polyacrylamide gel electrophoresis (CN-PAGE) of the purified fraction. Both bands were stained using N,N',N',N-tetramethyl-p-phenylenediamine (TMPD) oxidase dye, and the 833 kDa band was also stained using NADH oxidase dye. The 3D map reconstructed from the 833 kDa band indicated that the bcc complex and aa3 oxidase are heterodimers. Lastly, electron transfer from NADH to the bcc-aa3 supercomplex was observed. The 833 kDa band is the supercomplex, which includes the heterodimer cytochrome bcc complex and cytochrome aa3 oxidase, as well as the monomer NDH-II. Hence, we termed the 833 kDa band the extended supercomplex (ESC).
Collapse
Affiliation(s)
- Hiroko Takazaki
- Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Wataru Ishibashi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Takuo Yasunaga
- Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
32
|
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII 2CIV 2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). eLife 2021; 10:e71959. [PMID: 34590581 PMCID: PMC8523172 DOI: 10.7554/elife.71959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than 50 years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.
Collapse
Affiliation(s)
- David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rana Abdelaziz
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | | | - Peter Imming
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
- Department of Biochemistry, The University of TorontoTorontoCanada
| |
Collapse
|
33
|
Alderman SL, Riggs CL, Bullingham OMN, Gillis TE, Warren DE. Cold acclimation induces life stage-specific responses in the cardiac proteome of western painted turtles (Chrysemys picta bellii): implications for anoxia tolerance. J Exp Biol 2021; 224:271114. [PMID: 34328184 DOI: 10.1242/jeb.242387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis. The relative abundance of 1316 identified proteins was compared between temperatures and developmental stages. The effect of cold acclimation on the cardiac proteome was only evident in the context of an interaction with life stage, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope with age that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of the life stage- and temperature-induced changes to the cardiac proteome, including reduced Complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stage-specific anoxia tolerance in turtles.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Claire L Riggs
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
34
|
Capitanio G, Papa F, Papa S. The allosteric protein interactions in the proton-motive function of mammalian redox enzymes of the respiratory chain. Biochimie 2021; 189:1-12. [PMID: 34097987 DOI: 10.1016/j.biochi.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Insight into mammalian respiratory complexes defines the role of allosteric protein interactions in their proton-motive activity. In cytochrome c oxidase (CxIV) conformational change of subunit I, caused by O2 binding to heme a32+-CuB+ and reduction, and stereochemical transitions coupled to oxidation/reduction of heme a and CuA, combined with electrostatic effects, determine the proton pumping activity. In ubiquinone-cytochrome c oxidoreductase (CxIII) conformational movement of Fe-S protein between cytochromes b and c1 is the key element of the proton-motive activity. In NADH-ubiquinone oxidoreductase (CxI) ubiquinone binding and reduction result in conformational changes of subunits in the quinone reaction structure which initiate proton pumping.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy.
| |
Collapse
|
35
|
Bondareva OV, Potapova NA, Konovalov KA, Petrova TV, Abramson NI. Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia). BMC Ecol Evol 2021; 21:92. [PMID: 34016058 PMCID: PMC8136191 DOI: 10.1186/s12862-021-01819-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01819-4.
Collapse
Affiliation(s)
| | - Nadezhda A Potapova
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | | | | | | |
Collapse
|
36
|
Zaidieh T, Smith JR, Ball KE, An Q. Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. BMC Cancer 2021; 21:427. [PMID: 33865346 PMCID: PMC8053302 DOI: 10.1186/s12885-021-08155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells’ response to ROS-stimulating therapy. Methods Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. Results Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. Conclusions Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08155-2.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK. .,Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
37
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
38
|
Maldonado M, Guo F, Letts JA. Atomic structures of respiratory complex III 2, complex IV, and supercomplex III 2-IV from vascular plants. eLife 2021; 10:e62047. [PMID: 33463523 PMCID: PMC7815315 DOI: 10.7554/elife.62047] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial complex III (CIII2) and complex IV (CIV), which can associate into a higher-order supercomplex (SC III2+IV), play key roles in respiration. However, structures of these plant complexes remain unknown. We present atomic models of CIII2, CIV, and SC III2+IV from Vigna radiata determined by single-particle cryoEM. The structures reveal plant-specific differences in the MPP domain of CIII2 and define the subunit composition of CIV. Conformational heterogeneity analysis of CIII2 revealed long-range, coordinated movements across the complex, as well as the motion of CIII2's iron-sulfur head domain. The CIV structure suggests that, in plants, proton translocation does not occur via the H channel. The supercomplex interface differs significantly from that in yeast and bacteria in its interacting subunits, angle of approach and limited interactions in the mitochondrial matrix. These structures challenge long-standing assumptions about the plant complexes and generate new mechanistic hypotheses.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
- BIOEM Facility, University of California DavisDavisUnited States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| |
Collapse
|
39
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
40
|
Wise CE, Ledinina AE, Yuly JL, Artz JH, Lubner CE. The role of thermodynamic features on the functional activity of electron bifurcating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148377. [PMID: 33453185 DOI: 10.1016/j.bbabio.2021.148377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.
Collapse
Affiliation(s)
| | | | | | - Jacob H Artz
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
41
|
Fisher N, Meunier B, Biagini GA. The cytochrome bc 1 complex as an antipathogenic target. FEBS Lett 2020; 594:2935-2952. [PMID: 32573760 DOI: 10.1002/1873-3468.13868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome bc1 complex is a key component of the mitochondrial respiratory chains of many eukaryotic microorganisms that are pathogenic for plants or humans, such as fungi responsible for crop diseases and Plasmodium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme that contains two (ubi)quinone/quinol-binding sites, which can be exploited for the development of fungicidal and chemotherapeutic agents. Here, we review recent progress in determination of the structure and mechanism of action of cytochrome bc1 , and the associated development of antimicrobial agents (and associated resistance mechanisms) targeting its activity.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Brigitte Meunier
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Giancarlo A Biagini
- Parasitology Department, Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
42
|
Wang X, Wang J, Liu J, Liu A, He X, Xiang Q, Li Y, Yin H, Luo J, Guan G. Insights into the phylogenetic relationships and drug targets of Babesia isolates infective to small ruminants from the mitochondrial genomes. Parasit Vectors 2020; 13:378. [PMID: 32727571 PMCID: PMC7391622 DOI: 10.1186/s13071-020-04250-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background Babesiosis, a tick-borne disease caused by protozoans of the genus Babesia, is widespread in subtropical and tropical countries. Mitochondria are essential organelles that are responsible for energy transduction and metabolism, calcium homeostasis and cell signaling. Mitochondrial genomes could provide new insights to help elucidate and investigate the biological features, genetic evolution and classification of the protozoans. Nevertheless, there are limited data on the mitochondrial genomes of ovine Babesia spp. in China. Methods Herein, we sequenced, assembled and annotated the mitochondrial genomes of six ovine Babesia isolates; analyzed the genome size, gene content, genome structure and cytochrome b (cytb) amino acid sequences and performed comparative mitochondrial genomics and phylogenomic analyses among apicomplexan parasites. Results The mitochondrial genomes range from 5767 to 5946 bp in length with a linear form and contain three protein-encoding genes, cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 3 (cox3) and cytb, six large subunit rRNA genes (LSU) and two terminal inverted repeats (TIR) on both ends. The cytb gene sequence analysis indicated the binding site of anti-Babesia drugs that targeted the cytochrome bc1 complex. Babesia microti and Babesia rodhaini have a dual flip-flop inversion of 184–1082 bp, whereas other Babesia spp. and Theileria spp. have one pair of TIRs, 25–1563 bp. Phylogenetic analysis indicated that the six ovine Babesia isolates were divided into two clades, Babesia sp. and Babesia motasi. Babesia motasi isolates were further separated into two small clades (B. motasi Hebei/Ningxian and B. motasi Tianzhu/Lintan). Conclusions The data provided new insights into the taxonomic relationships and drug targets of apicomplexan parasites. ![]()
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Quanjia Xiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
43
|
van der Stel W, Carta G, Eakins J, Darici S, Delp J, Forsby A, Bennekou SH, Gardner I, Leist M, Danen EHJ, Walker P, van de Water B, Jennings P. Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals. Arch Toxicol 2020; 94:2707-2729. [PMID: 32607615 PMCID: PMC7395062 DOI: 10.1007/s00204-020-02792-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1. Cells were exposed to a broad range of concentrations of 20 ETC-inhibiting agrochemicals and capsaicin, consisting of inhibitors of NADH dehydrogenase (Complex I, CI), succinate dehydrogenase (Complex II, CII) and cytochrome bc1 complex (Complex III, CIII). A battery of tests was utilised, including viability assays, lactate production, mitochondrial membrane potential (MMP) and the Seahorse bioanalyser, which simultaneously measures extracellular acidification rate [ECAR] and oxygen consumption rate [OCR]. CI inhibitors caused a potent decrease in OCR, decreased mitochondrial membrane potential, increased ECAR and increased lactate production in both cell types. Twenty-fourhour exposure to CI inhibitors decreased viability of RPTEC/TERT1 cells and 3D spheroid-cultured HepG2 cells in the presence of glucose. CI inhibitors decreased 2D HepG2 viability only in the absence of glucose. CII inhibitors had no notable effects in intact cells up to 10 µM. CIII inhibitors had similar effects to the CI inhibitors. Antimycin A was the most potent CIII inhibitor, with activity in the nanomolar range. The proposed CIII inhibitor cyazofamid demonstrated a mitochondrial uncoupling signal in both cell types. The study presents a comprehensive example of a mitochondrial assessment workflow and establishes measurable key events of ETC inhibition.
Collapse
Affiliation(s)
- Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De
Boelelaan, 1108, 1081 HZ Amsterdam, The Netherlands
| | - Julie Eakins
- Cyprotex Discovery Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Salihanur Darici
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | - Erik H. J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Paul Walker
- Cyprotex Discovery Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De
Boelelaan, 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Xiong MQ, Chen T, Wang YX, Zhu XL, Yang GF. Design and synthesis of potent inhibitors of bc 1 complex based on natural product neopeltolide. Bioorg Med Chem Lett 2020; 30:127324. [PMID: 32631529 DOI: 10.1016/j.bmcl.2020.127324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Neopeltolide, a natural product isolated from deep-water sponge specimen of the family neopeltidae, has been proven to be a novel inhibitor of cytochrome bc1. In this study, a series of neopeltolide derivatives was designed by replacing the 14-membered macrolactone with indole ring and confirmed by 1H NMR, 13C NMR, and HRMS. Based on the binding mode of 12h with bc1 complex, the IC50 values of compounds 16a-f (ranging from 0.70 to 1.46 μM) were improved significantly than the ester derivatives 12a-u by replacing the ester with amide linker. Subsequently, the molecular docking results indicated that compound 16e could form a π-π interaction with Phe274 and two H-bonds with Glu271 and His161 and the latter H-bond was found to account for its high activity. The present work accelerates the discovery of novel bc1 complex inhibitors to deal with the resistance that the existing bc1 complex inhibitors are facing and provides a valuable idea for the design of new fungicides.
Collapse
Affiliation(s)
- Mao-Qian Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, PR China
| | - Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, PR China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, PR China.
| |
Collapse
|
45
|
Pintscher S, Wójcik-Augustyn A, Sarewicz M, Osyczka A. Charge polarization imposed by the binding site facilitates enzymatic redox reactions of quinone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148216. [PMID: 32387188 DOI: 10.1016/j.bbabio.2020.148216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Quinone reduction site (Qi) of cytochrome bc1 represents one of the canonical sites used to explore the enzymatic redox reactions involving semiquinone (SQ) states. However, the mechanism by which Qi allows the completion of quinone reduction during the sequential transfers of two electrons from the adjacent heme bH and two protons to C1- and C4-carbonyl remains unclear. Here we established that the SQ coupled to an oxidized heme bH is a dominant intermediate of catalytic forward reaction and, contrary to the long-standing assumption, represents a significant population of SQ detected across pH 5-9. The pH dependence of its redox midpoint potential implicated proton exchange with histidine. Complementary quantum mechanical calculations revealed that the SQ anion formed after the first electron transfer undergoes charge and spin polarization imposed by the electrostatic field generated by histidine and the aspartate/lysine pair interacting with the C4- and C1-carbonyl, respectively. This favors a barrierless proton exchange between histidine and the C4-carbonyl, which continues until the second electron reaches the SQi. Inversion of charge polarization facilitates the uptake of the second proton by the C1-carbonyl. Based on these findings we developed a comprehensive scheme for electron and proton transfers at Qi featuring the equilibration between the anionic and neutral states of SQi as means for a leak-proof stabilization of the radical intermediate. The key catalytic role of the initial charge/spin polarization of the SQ anion at the active site, inherent to the proposed mechanism, may also be applicable to the other quinone oxidoreductases.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| |
Collapse
|
46
|
Song Z, Hu Y, Iorga BI, Vallières C, Fisher N, Meunier B. Mutational analysis of the Q i-site proton pathway in yeast cytochrome bc 1 complex. Biochem Biophys Res Commun 2020; 523:615-619. [PMID: 31941609 DOI: 10.1016/j.bbrc.2019.12.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
The respiratory cytochrome bc1 complex functions as a protonmotive ubiquinol:cytochrome c oxidoreductase. Lysine 228 (K228) located within the quinol reduction (Qi) site of the bc1 complex, has been reported as a key residue for proton transfer during the redox chemistry cycle to substrate quinone at Qi. In yeast, while single mutations had no effect, the combination of K228L and F225L resulted in a severe respiratory growth defect and inhibition of O2 consumption in intact cells. The inhibition was overcome by uncoupling the mitochondrial membrane or by suppressor mutations in the region of K228L-F225L. We propose that the K228L mutation introduces energetic (and kinetic) barriers into normal electron- and proton transfer chemistry at Qi, which are relieved by dissipation of the opposing protonmotive force or through the restoration of favourable intraprotein proton transfer networks via suppressor mutation.
Collapse
Affiliation(s)
- Zehua Song
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Yangfeng Hu
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
47
|
Borrero-Landazabal MA, Duque JE, Mendez-Sanchez SC. Model to design insecticides against Aedes aegypti using in silico and in vivo analysis of different pharmacological targets. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108664. [PMID: 31707089 DOI: 10.1016/j.cbpc.2019.108664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023]
Abstract
Compounds having insecticidal activity can be used to control Aedes aegypti mosquitoes, a major worldwide vector, and several plants have a source of such molecules. A principal component analysis (PCA) was carried out to determine the criterion to select larvicidal metabolites. The insecticidal activity of seven selected metabolites by PCA was validated by determining its lethal concentrations 50 (LC50) by probit analysis. Six of the seven evaluated molecules presented LC50 values <100 ppm. The effects of these six molecules on acetylcholinesterase and the respiratory chain complexes of the mitochondria of Ae. aegypti were evaluated. Four metabolites presenting the highest inhibition effects on these targets were mixed in 11 different combinations, and the percentage of mortality of each mixture on Ae. aegypti larvae were determined. Secondary metabolites such as geranyl acetate, α-humulene, β-caryophyllene, geraniol, nerol, and n-octanol presented LC50 values under 100 ppm (44, 41, 48, 84, 87, and 98 ppm, respectively), whereas 1,8-cineole presented a LC50 value of 183 ppm. We found that, geranyl acetate, α-humulene, β-caryophyllene, nerol, n-octanol, and geraniol inhibited at least one of the six targets with an efficiency between 25 and 41%. Overall, the evaluation of the different mixtures revealed a synergistic effect between geranyl acetate and geraniol, and an antagonistic effect between α-humulene and β-caryophyllene compounds.
Collapse
Affiliation(s)
- Mayra A Borrero-Landazabal
- Grupo de Investigaciones en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia; Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander Parque Tecnológico y de Investigaciones Guatiguara, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander Parque Tecnológico y de Investigaciones Guatiguara, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia.
| | - Stelia C Mendez-Sanchez
- Grupo de Investigaciones en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A. 678, Colombia.
| |
Collapse
|
48
|
Kim JH, Choi JY, Park DH, Park DJ, Park MG, Kim SY, Ju YJ, Kim JY, Wang M, Kim CJ, Je YH. Isolation and characterization of the insect growth regulatory substances from actinomycetes. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108651. [PMID: 31678310 DOI: 10.1016/j.cbpc.2019.108651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Insect growth regulators (IGRs) are attractive alternatives to chemical insecticides. Since it has been reported that secondary metabolites from actinomycetes show insecticidal activities against various insect pests, actinomycetes could be a potential source of novel IGR compounds. In the present study, insect juvenile hormone antagonists (JHANs) were identified from actinomycetes and their insect growth regulatory and insecticidal activities were investigated. A total of 363 actinomycetes were screened for their insect growth regulatory and insecticidal activities against Aedes albopictus and Plutella xylostella. Among them, Streptomyces sp. AN120537 showed the highest JHAN and insecticidal activities. Five antimycins were isolated as active compounds by assay-guided fractionation and showed high JHAN activities. These antimycins also exhibited significant insecticidal activities against A. albopictus, P. xylostella, F. occidentalis, and T. urticae. Moreover, dead larvae treated with these antimycins displayed morphological deformities that are similar to those of JH-based IGR-treated insects. This is the first report demonstrating that the insecticidal activities of antimycins resulted from their possible JHAN activity. Based on our results, it is expected that novel JHAN compounds potentially derived from actinomycetes could be efficiently applied as IGR insecticides with a broad insecticidal spectrum.
Collapse
Affiliation(s)
- Jong Hoon Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Young Choi
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jin Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Gu Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - So Young Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yoon Jung Ju
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Young Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Jin Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
49
|
Respiratory complex I - Mechanistic insights and advances in structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148153. [PMID: 31935361 DOI: 10.1016/j.bbabio.2020.148153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.
Collapse
|
50
|
Zhu G, Zeng H, Zhang S, Juli J, Pang X, Hoffmann J, Zhang Y, Morgner N, Zhu Y, Peng G, Michel H, Sun F. A 3.3 Å‐Resolution Structure of Hyperthermophilic Respiratory Complex III Reveals the Mechanism of Its Thermal Stability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoliang Zhu
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100101 China
| | - Hui Zeng
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Shuangbo Zhang
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Jana Juli
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | | | - Jan Hoffmann
- Institute of Physical and Theoretical Chemistry Goethe University Max-von Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Yan Zhang
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry Goethe University Max-von Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Yun Zhu
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Guohong Peng
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Fei Sun
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|