1
|
Székely E, Molnár M, Lihi N, Várnagy K. Characterization of Copper(II) and Zinc(II) Complexes of Peptides Mimicking the CuZnSOD Enzyme. Molecules 2024; 29:795. [PMID: 38398547 PMCID: PMC10892282 DOI: 10.3390/molecules29040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides are short cationic peptides that are present on biological surfaces susceptible to infection, and they play an important role in innate immunity. These peptides, like other compounds with antimicrobial activity, often have significant superoxide dismutase (SOD) activity. One direction of our research is the characterization of peptides modeling the CuZnSOD enzyme and the determination of their biological activity, and these results may contribute to the development of novel antimicrobial peptides. In the framework of this research, we have synthesized 10, 15, and 16-membered model peptides containing the amino acid sequence corresponding to the Cu(II) and Zn(II) binding sites of the CuZnSOD enzyme, namely the Zn(II)-binding HVGD sequence (80-83. fragments), the Cu(II)-binding sequence HVH (fragments 46-48), and the histidine (His63), which links the two metal ions as an imidazolate bridge: Ac-FHVHEGPHFN-NH2 (L1(10)), Ac-FHVHAGPHFNGGHVG-NH2 (L2(15)), and Ac-FHVHEGPHFNGGHVGD-NH2 (L3(16)). pH-potentiometric, UV-Vis-, and CD-spectroscopy studies of the Cu(II), Zn(II), and Cu(II)-Zn(II) mixed complexes of these peptides were performed, and the SOD activity of the complexes was determined. The binding sites preferred by Cu(II) and Zn(II) were identified by means of CD-spectroscopy. From the results obtained for these systems, it can be concluded that in equimolar solution, the -(NGG)HVGD- sequence of the peptides is the preferred binding site for copper(II) ion. However, in the presence of both metal ions, according to the native enzyme, the -HVGD- sequence offers the main binding site for Zn(II), while the majority of Cu(II) binds to the -FHVH- sequence. Based on the SOD activity assays, complexes of the 15- and 16-membered peptide have a significant SOD activity. Although this activity is smaller than that of the native CuZnSOD enzyme, the complexes showed better performance in the degradation of superoxide anion than other SOD mimics. Thus, the incorporation of specific amino acid sequences mimicking the CuZnSOD enzyme increases the efficiency of model systems in the catalytic decomposition of superoxide anion.
Collapse
Affiliation(s)
| | | | | | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Abdille AA, Kitimu SR, Ndubi MM, Kimani J, Maina EN, Bulimo W, Gavamukulya Y, Wamunyokoli F. Sub-acute and sub-chronic toxicity assessment of the antimicrobial peptide Dermaseptin B2 on biochemical, haematological and histopathological parameters in BALB/c mice and Albino Wistar rats. Heliyon 2022; 8:e12124. [PMID: 36561696 PMCID: PMC9764173 DOI: 10.1016/j.heliyon.2022.e12124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dermaseptins (Drs) are peptides found in the skin secretions of a variety of Hylid frogs, particularly those belonging to the Agalychnis and Phyllomedusa families. Dermaseptin B2 (Drs B2), an amphipathic, α-helical polypeptide was reported as the most active of the Dermaseptin B family. We have previously shown that Drs B2 has strong anti-proliferative activities against RD cells in vitro and thus required further evaluations for future medical applications. Aim The aim the study was to evaluate the 14-day sub-acute and 90-day sub-chronic toxicities Drs B2 in vivo. Materials and Methods BALB/c mice were treated with increasing concentrations of 5-25 mg/kg of Drs B2. Rats were treated with 2, 4 and 10-fold concentrations of the calculated LD50 of Drs B2 following OECD recommendations. At the end of the experimentation periods, the animals were sacrificed and dissected to collect blood and selected organs for analysis of any effects caused by Drs B2 treatment on the biochemical, haematological, and histological parameters. Results The 14-day sub-acute toxicity tests did not cause significant alteration in the biochemical, hematological and histological parameters. The 90-day sub-chronic toxicity study showed lower ALT and AST than control at doses 1.9 mg/kg and 4.6 mg/kg, respectively. Their haematology results also showed higher platelet count than the controls but the differences were not statistically significant. Histological analysis showed increased megakaryocytes in the spleen for both the mice and the rats. Conclusion The results of this study indicate that short term treatment of Drs B2 could be safe to the animals, however, long-term treatment can have mild effects on the liver parameters and cause an inflammatory response in the spleen.
Collapse
Affiliation(s)
- Ahmed A. Abdille
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya
- Corresponding author.
| | - Shedrack Reuben Kitimu
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya
| | - Mark M. Ndubi
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya
| | - Josephine Kimani
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Esther N. Maina
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya
- Department of Biochemistry, College of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Wallace Bulimo
- Centre for Public Health Research, Kenya Medical Research Institute, P.O. Box 62000-00200, Nairobi, Kenya
| | - Yahaya Gavamukulya
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Fred Wamunyokoli
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Recent Advances in Multifunctional Antimicrobial Peptides as Immunomodulatory and Anticancer Therapy: Chromogranin A-Derived Peptides and Dermaseptins as Endogenous versus Exogenous Actors. Pharmaceutics 2022; 14:pharmaceutics14102014. [PMID: 36297449 PMCID: PMC9608009 DOI: 10.3390/pharmaceutics14102014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all living organisms exhibiting antimicrobial activities and representing the first line of innate defense against pathogens. In this context, AMPs are suggested as an alternative to classical antibiotics. However, several researchers reported their involvement in different processes defining them as Multifunctional AMPs (MF-AMPs). Interestingly, these agents act as the endogenous responses of the human organism against several dangerous stimuli. Still, they are identified in other organisms and evaluated for their anticancer therapy. Chromogranin A (CgA) is a glyco-phosphoprotein discovered for the first time in the adrenal medulla but also produced in several cells. CgA can generate different derived AMPs influencing numerous physiological processes. Dermaseptins (DRSs) are a family of α-helical-shaped polycationic peptides isolated from the skin secretions of several leaf frogs from the Phyllomedusidae family. Several DRSs were identified as AMPs and, until now, more than 65 DRSs have been classified. Recently, these exogenous molecules were characterized for their anticancer activity. In this review, we summarize the role of these two classes of MF-AMPs as an example of endogenous molecules for CgA-derived peptides, able to modulate inflammation but also as exogenous molecules for DRSs, exerting anticancer activities.
Collapse
|
4
|
Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs). Antibiotics (Basel) 2021; 10:antibiotics10080990. [PMID: 34439040 PMCID: PMC8388958 DOI: 10.3390/antibiotics10080990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) can be used as alternative therapeutic agents to traditional antibiotics. These peptides have abundant natural template sources and can be isolated from animals, plants, and microorganisms. They are amphiphilic and mostly net positively charged, and they have a broad-spectrum inhibitory effect on bacteria, fungi, and viruses. AMPs possess significant rapid killing effects and do not interact with specific receptors on bacterial surfaces. As a result, drug resistance is rarely observed with treatments. AMPs, however, have some operational problems, such as a susceptibility to enzymatic (protease) degradation, toxicity in vivo, and unclear pharmacokinetics. However, nanodelivery systems loaded with AMPs provide a safe mechanism of packaging such peptides before they exert their antimicrobial actions, facilitate targeted delivery to the sites of infection, and control the release rate of peptides and reduce their toxic side effects. However, nanodelivery systems using AMPs are at an early stage of development and are still in the laboratory phase of development. There are also some challenges in incorporating AMPs into nanodelivery systems. Herein, an insight into the nanotechnology challenges in delivering AMPs, current advances, and remaining technological challenges are discussed in depth.
Collapse
|
5
|
Ajingi YS, Muhammad A, Khunrae P, Rattanarojpong T, Pattanapanyasat K, Sutthibutpong T, Jongruja N. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Curr Pharm Biotechnol 2021; 22:1216-1227. [PMID: 33081682 DOI: 10.2174/1389201021666201020161428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
6
|
Belaid A, Braiek A, Alibi S, Hassen W, Beltifa A, Nefzi A, Mansour HB. Evaluating the effect of dermaseptin S4 and its derivatives on multidrug-resistant bacterial strains and on the colon cancer cell line SW620. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40908-40916. [PMID: 33774792 DOI: 10.1007/s11356-021-13683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Dermaseptins are peptides found in the skin secretions of Phyllomedusinae frogs. These peptides exert a lytic action on various microorganisms and have no considerable hemolytic effect except dermaseptin S4 (DS4) which exhibits a powerful cytotoxic effect. Therefore, we synthesized several analogs of DS4 in an attempt to find molecules with a weak hemolytic effect and significant bioactivities. In this study, we performed the synthesis of truncated peptides by introducing C-terminal and N-terminal amino acid deletions of the native sequence. All peptide analogs, in comparison with parental peptide, were tested firstly on human red blood cells to work out their cytotoxicity, secondly on the multidrug-resistant bacteria by trying to find MICs, and finally on colon cancer tumor cell line SW620 using the MTT test so as to investigate the anti-proliferative effect. Our results showed that, on the one hand, the N terminus of the native peptide was necessary for the antibacterial activity and the anti-proliferative effect of the peptide. On the other hand, the hemolytic activity was more notable in the sequences broken down on the C-terminal side.
Collapse
Affiliation(s)
- Afifa Belaid
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia.
| | - Afef Braiek
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| | - Sana Alibi
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| | - Asma Beltifa
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| | - Adel Nefzi
- Florida International University, Port St. Lucie, FL, 34987, USA
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Zai Y, Xi X, Ye Z, Ma C, Zhou M, Chen X, Siu SWI, Chen T, Wang L, Kwok HF. Aggregation and Its Influence on the Bioactivities of a Novel Antimicrobial Peptide, Temporin-PF, and Its Analogues. Int J Mol Sci 2021; 22:4509. [PMID: 33925935 PMCID: PMC8123395 DOI: 10.3390/ijms22094509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Temporin is an antimicrobial peptide (AMP) family discovered in the skin secretion of ranid frog that has become a promising alternative for conventional antibiotic therapy. Herein, a novel temporin peptide, Temporin-PF (TPF), was successfully identified from Pelophylax fukienensis. It exhibited potent activity against Gram-positive bacteria, but no effect on Gram-negative bacteria. Additionally, TPF exhibited aggregation effects in different solutions. Three analogs were further designed to study the relationship between the aggregation patterns and bioactivities, and the MD simulation was performed for revealing the pattern of the peptide assembly. As the results showed, all peptides were able to aggregate in the standard culture media and salt solutions, especially CaCl2 and MgCl2 buffers, where the aggregation was affected by the concentration of the salts. MD simulation reported that all peptides were able to form oligomers. The parent peptide assembly depended on the hydrophobic interaction via the residues in the middle domain of the sequence. However, the substitution of Trp/D-Trp resulted in an enhanced inter-peptide interaction in the zipper-like domain and eliminated overall biological activities. Our study suggested that introducing aromaticity at the zipper-like domain for temporin may not improve the bioactivities, which might be related to the formation of aggregates via the inter-peptide contacts at the zipper-like motif domain, and it could reduce the binding affinity to the lipid membrane of microorganisms.
Collapse
Affiliation(s)
- Yu Zai
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Univesidade, Taipa, Macau, China;
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
- Jiangsu Key Laboratory of Biofunctional Molecule, College of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Zhuming Ye
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Shirley W. I. Siu
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Z.Y.); (C.M.); (M.Z.); (X.C.); (T.C.); (L.W.)
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Univesidade, Taipa, Macau, China;
| |
Collapse
|
8
|
Mandal P, Molla AR. Solvent Perturbation of Protein Structures - A Review Study with Lectins. Protein Pept Lett 2020; 27:538-550. [PMID: 31682206 DOI: 10.2174/0929866526666191104145511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Use of organic molecules as co-solvent with water, the ubiquitous biological solvent, to perturb the structure of proteins is popular in the research area of protein structure and folding. These organic co-solvents are believed to somehow mimic the environment near the cell membrane. Apart from that they induce non-native states which can be present in the protein folding pathway or those states also may be representative of the off pathway structures leading to amyloid formation, responsible for various fatal diseases. In this review, we shall focus on organic co-solvent induced structure perturbation of various members of lectin family. Lectins are excellent model systems for protein folding study because of its wide occurrence, diverse structure and versatile biological functions. Lectins were mainly perturbed by two fluoroalcohols - 2,2,2- trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol whereas glycerol, ethylene glycol and polyethylene glycols were used in some cases. Overall, all native lectins were denatured by alcohols and most of the denatured lectins have predominant helical secondary structure. But characterization of the helical states and the transition pathway for various lectins revealed diverse result.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal-741101, India
| | - Anisur R Molla
- Department of Chemistry, Bidhannagar College, Salt Lake, Kolkata -700 064, India
| |
Collapse
|
9
|
Mazzoleni A, Real-Fernandez F, Larregola M, Nuti F, Lequin O, Papini AM, Mallet JM, Rovero P. Hyperglucosylated adhesin-derived peptides as antigenic probes in multiple sclerosis: Structure optimization and immunological evaluation. J Pept Sci 2020; 26:e3281. [PMID: 32790009 DOI: 10.1002/psc.3281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides mimicking antigenic epitopes targeted by antibodies can be powerful tools to be used as antigen surrogates for the specific diagnosis and treatment of autoimmune diseases. Obtaining structural insights about the nature of peptide-antibody interaction in complex mixtures such as sera is a critical goal. In multiple sclerosis (MS), we previously demonstrated that the N-linked β-d-glucopyranosyl moieties (N-Glc) containing epitopes in nontypeable Haemophilus influenzae adhesin C-terminal portion HMW1(1205-1526) were essential for high-affinity antibody binding in a subpopulation of MS patients. With the aim of developing peptide probes and assessing their binding properties to antibodies from sera of representative patients, we performed the systematic analysis of synthetic peptides based on HMW1(1347-1354) fragment bearing one or two N-Glc respectively on Asn-1349 and/or Asn-1352. The N-glucosylated nonapeptides efficiently bind to IgG antibodies, displaying IC50 in the range 10-8 -10-10 M by competitive indirect enzyme-linked immunosorbent assay (ELISA) in three representative MS patient sera. We selected the di-N-glucosylated adhesin peptide Ac-KAN (Glc)VTLN (Glc)TT-NH2 as the shortest sequence able to inhibit high-avidity interaction with N-Glc targeting IgM antibodies. Nuclear magnetic resonance (NMR)- and circular dichroism (CD)-based characterization showed that the binding properties of these antigens could not be ascribed to structural differences induced by the presence of up to two N-glucosyl moieties. Therefore, the antibody binding is not easily correlated to the position of the sugar or to a determined conformation in water.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.,Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Maud Larregola
- UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Dermaseptin-PH: A Novel Peptide with Antimicrobial and Anticancer Activities from the Skin Secretion of the South American Orange-Legged Leaf Frog, Pithecopus (Phyllomedusa) hypochondrialis. Molecules 2017; 22:molecules22101805. [PMID: 29064402 PMCID: PMC6151546 DOI: 10.3390/molecules22101805] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/17/2022] Open
Abstract
The dermaseptin peptides, mainly derived from the skin secretions of Hylidae frogs, belong to a superfamily of antimicrobial peptides and exhibit diverse antimicrobial and anticancer activities with low cytotoxicity. Here, we reported a novel dermaseptin peptide, from the South American orange-legged leaf frogs, Pithecopus (Phyllomedusa) hypochondrialis, processing the shortest peptide length, namely Dermaseptin-PH. The complementary DNA (cDNA) encoding biosynthetic precursor of Dermaseptin-PH was initially identified by the rapid amplification of cDNA ends PCR (RACE-PCR) technique from the skin secretion. The predicted primary structure was confirmed by a combination of reverse-phase high performance liquid chromatography (RP-HPLC) and MS/MS fragmentation from the skin secretion. Chemically-synthetic Dermaseptin-PH was investigated using a range of bioactivity assessment assays to evaluate the biological activities and cytotoxicity of Dermaseptin-PH. Dermaseptin-PH inhibited the growth of Gram-negative bacteria, Gram-positive bacteria, and pathogenic yeast Candida albicans. In addition, Dermaseptin-PH showed a broad-spectrum of anticancer activities against several cancer cell lines including MCF-7, H157, U251MG, MDA-MB-435S, and PC-3. The potent antimicrobial and anticancer activities of Dermaseptin-PH make it a promising candidate in the discovery of new drugs for clinical applications, and the relatively short sequence of Dermaseptin-PH can provide new insight for the research and structural modification of new peptide drugs.
Collapse
|
11
|
Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 2017; 12:e0174024. [PMID: 28319176 PMCID: PMC5358776 DOI: 10.1371/journal.pone.0174024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10−8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs.
Collapse
|
12
|
Abstract
The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of "brain-gut-skin" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the production techniques by chemical or recombinant synthesis offer an innovative potential for the development of molecules with pharmacological or therapeutic purposes.
Collapse
|
13
|
North SH, Taitt CR. Application of circular dichroism for structural analysis of surface-immobilized cecropin A interacting with lipoteichoic acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10791-10798. [PMID: 26362347 DOI: 10.1021/acs.langmuir.5b02600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of biomaterials integrating antimicrobial peptides (AMPs) for improved pathogen detection or use as therapeutic agents requires an understanding of how a peptide may behave once immobilized. Here, we use a combination of circular dichroism and capture assays to assess the structure-function relationship of the cationic amphipathic AMP, cecropin A (cecA), upon interaction with Gram-positive lipoteichoic acids (LTAs). In solution, cecA peptides underwent a change from a largely unstructured conformation in water to structures with significant α-helical content in the presence of both Bacillus subtilis and Staphylococcus aureus LTAs. After surface immobilization, cecA peptides attached by either C- or N-terminus were able to capture both LTAs as well as to undergo conformational changes in the presence of SDS similar to those observed in solution. However, in spite of demonstrated LTA binding activity and the ability to undergo conformational changes (i.e., with SDS), no structural changes were observed when cecA immobilized by its N-terminus was treated with either LTA preparation. On the other hand, cecA immobilized by its C-terminus underwent a conformational change in the presence of S. aureus, but not B. subtilis, LTA. These results indicate that after immobilization recognition of different targets by cationic AMPs may occur by mechanisms quite different from those in solution and that selectivity of these mechanisms is further dependent on the orientation of the immobilized peptide.
Collapse
Affiliation(s)
- Stella H North
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Chris R Taitt
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
14
|
López-Abarrategui C, McBeth C, Mandal SM, Sun ZJ, Heffron G, Alba-Menéndez A, Migliolo L, Reyes-Acosta O, García-Villarino M, Nolasco DO, Falcão R, Cherobim MD, Dias SC, Brandt W, Wessjohann L, Starnbach M, Franco OL, Otero-González AJ. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). FASEB J 2015; 29:3315-25. [PMID: 25921828 DOI: 10.1096/fj.14-269860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability.
Collapse
Affiliation(s)
- Carlos López-Abarrategui
- Center for Protein Studies, Faculty of Biology, Havana University, Branch of Parasitology, Institute of Tropical Medicine "Pedro Kourí," and Laboratory of Peptide Analysis and Synthesis, Center of Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carlier L, Joanne P, Khemtémourian L, Lacombe C, Nicolas P, El Amri C, Lequin O. Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides. Biophys Chem 2015; 196:40-52. [DOI: 10.1016/j.bpc.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022]
|
16
|
Raja Z, André S, Piesse C, Sereno D, Nicolas P, Foulon T, Oury B, Ladram A. Structure, antimicrobial activities and mode of interaction with membranes of novel [corrected] phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii. PLoS One 2013; 8:e70782. [PMID: 23967105 PMCID: PMC3742671 DOI: 10.1371/journal.pone.0070782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023] Open
Abstract
Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge = +1) and -S5 (net charge = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins.
Collapse
Affiliation(s)
- Zahid Raja
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE), Paris, France
| | - Sonia André
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE), Paris, France
| | - Christophe Piesse
- UPMC Univ Paris 06, IFR 83 Plate-forme Ingénierie des Protéines et Synthèse Peptidique, Paris, France
| | - Denis Sereno
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD 224-CNRS 5290-Univ Montpellier 1 et 2, Maladies infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MiVegec), Montpellier, France
| | - Pierre Nicolas
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE), Paris, France
| | - Thierry Foulon
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE), Paris, France
| | - Bruno Oury
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD 224-CNRS 5290-Univ Montpellier 1 et 2, Maladies infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MiVegec), Montpellier, France
| | - Ali Ladram
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE), Paris, France
- * E-mail:
| |
Collapse
|
17
|
Garro AD, Olivella MS, Bombasaro JA, Lima B, Tapia A, Feresin G, Perczel A, Somlai C, Penke B, López Cascales J, Rodríguez AM, Enriz RD. Penetratin and Derivatives Acting as Antibacterial Agents. Chem Biol Drug Des 2013; 82:167-77. [DOI: 10.1111/cbdd.12143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mónica S. Olivella
- Departamento de Química; Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis; Chacabuco 917; 5700; San Luis; Argentina
| | - José A. Bombasaro
- Departamento de Química; Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis; Chacabuco 917; 5700; San Luis; Argentina
| | - Beatriz Lima
- Instituto de Biotecnología; Facultad de Ingeniería; Universidad Nacional de San Juan; Av. Libertador General San Martín 1109 (O); CP 5400; San Juan; Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología; Facultad de Ingeniería; Universidad Nacional de San Juan; Av. Libertador General San Martín 1109 (O); CP 5400; San Juan; Argentina
| | - Gabriela Feresin
- Instituto de Biotecnología; Facultad de Ingeniería; Universidad Nacional de San Juan; Av. Libertador General San Martín 1109 (O); CP 5400; San Juan; Argentina
| | - Andras Perczel
- Protein Modeling Group HAS-ELTE; Institute of Chemistry; Eötvös Loránd University; Pázmány Péter sétány 1/A; H-1117; Budapest; Hungary
| | - Csaba Somlai
- Department of Medical Chemistry; University of Szeged; H-6720, Dóm tér 8; Szeged; Hungary
| | - Botond Penke
- Department of Medical Chemistry; University of Szeged; H-6720, Dóm tér 8; Szeged; Hungary
| | - Javier López Cascales
- Grupo de Bioinformática y Macromoléculas (BioMac) Aulario II; Universidad Politécnica de Cartagena; Campus de Alfonso XIII; 30203; Cartagena; Murcia; Spain
| | | | | |
Collapse
|
18
|
Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 2013; 18:7407-35. [PMID: 23799448 PMCID: PMC6269851 DOI: 10.3390/molecules18077407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022] Open
Abstract
Many peptides and proteins are attached to or immersed in a biological membrane. In order to understand their function not only the structure but also their topology in the membrane is important. Solution NMR spectroscopy is one of the most often used approaches to determine the orientation and localization of membrane-bound peptides and proteins. Here we give an application-oriented overview on the use of paramagnetic probes for the investigation of membrane-bound peptides and proteins. The examples discussed range from the large pool of antimicrobial peptides, bacterial toxins, cell penetrating peptides to domains of larger proteins or the calcium regulating protein phospholamban. Topological information is obtained in all these examples by the use of either attached or freely mobile paramagnetic tags. For some examples information obtained from the paramagnetic probes was included in the structure determination.
Collapse
|
19
|
Bahnsen JS, Franzyk H, Sandberg-Schaal A, Nielsen HM. Antimicrobial and cell-penetrating properties of penetratin analogs: Effect of sequence and secondary structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:223-32. [DOI: 10.1016/j.bbamem.2012.10.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
20
|
Abbassi F, Raja Z, Oury B, Gazanion E, Piesse C, Sereno D, Nicolas P, Foulon T, Ladram A. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie 2012; 95:388-99. [PMID: 23116712 DOI: 10.1016/j.biochi.2012.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/14/2012] [Indexed: 01/18/2023]
Abstract
Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.
Collapse
Affiliation(s)
- Feten Abbassi
- UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques, F-75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51:149-77. [DOI: 10.1016/j.plipres.2011.12.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J 2010; 98:2702-11. [PMID: 20513415 DOI: 10.1016/j.bpj.2010.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/04/2010] [Accepted: 02/26/2010] [Indexed: 01/05/2023] Open
Abstract
Eosinophil cationic protein (ECP) is a highly stable, cytotoxic ribonuclease with the ability to enter and disrupt membranes that participates in innate immune defense against parasites but also kills human cells. We have used NMR spectroscopy to characterize the binding of ECP to membrane and heparin mimetics at a residue level. We believe we have identified three Arg-rich surface loops and Trp(35) as crucial for membrane binding. Importantly, we have provided evidence that the interaction surface of ECP with heparin mimetics is extended with respect to that previously described (fragment 34-38). We believe we have identified new sites involved in the interaction for the first time, and shown that the N-terminal alpha-helix, the third loop, and the first and last beta-strands are key for heparin binding. We have also shown that a biologically active ECP N-terminal fragment comprising the first 45 residues (ECP1-45) retains the capacity to bind membrane and heparin mimetics, thus neither the ECP tertiary structure nor its high conformational stability are required for cytotoxicity.
Collapse
|
23
|
Azevedo Calderon LD, Silva ADAE, Ciancaglini P, Stábeli RG. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 2010; 40:29-49. [PMID: 20526637 DOI: 10.1007/s00726-010-0622-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator-prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a "treasure store" of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.
Collapse
Affiliation(s)
- Leonardo de Azevedo Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Medicina "Professor Dr. José Roberto Giglio" (CEBio), Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), Porto Velho, RO, 76800-000, Brazil
| | | | | | | |
Collapse
|
24
|
Abbassi F, Lequin O, Piesse C, Goasdoué N, Foulon T, Nicolas P, Ladram A. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 2010; 285:16880-92. [PMID: 20308076 DOI: 10.1074/jbc.m109.097204] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of Phe residues of any known peptide or protein. Moreover, it is the smallest natural linear antimicrobial peptide found to date, with only eight residues. Despite its small size and hydrophobicity, temporin-SHf has broad-spectrum microbicidal activity against Gram-positive and Gram-negative bacteria and yeasts, with no hemolytic activity. CD and NMR spectroscopy combined with restrained molecular dynamics calculations showed that the peptide adopts a well defined non-amphipathic alpha-helical structure from residue 3 to 8, when bound to zwitterionic dodecyl phosphocholine or anionic SDS micelles. Relaxation enhancement caused by paramagnetic probes showed that the peptide adopts nearly parallel orientations to the micelle surface and that the helical structure is stabilized by a compact hydrophobic core on one face that penetrates into the micelle interior. Differential scanning calorimetry on multilamellar vesicles combined with membrane permeabilization assays on bacterial cells indicated that temporin-SHf disrupts the acyl chain packing of anionic lipid bilayers, thereby triggering local cracks and microbial membrane disintegration through a detergent-like effect probably via the carpet mechanism. The short length, compositional simplicity, and broad-spectrum activity of temporin-SHf make it an attractive candidate to develop new antibiotic agents.
Collapse
Affiliation(s)
- Feten Abbassi
- ER3 Biogenèse des Signaux Peptidiques, Université Pierre et Marie Curie, University of Paris 06, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Auvynet C, Joanne P, Bourdais J, Nicolas P, Lacombe C, Rosenstein Y. Dermaseptin DA4, although closely related to dermaseptin B2, presents chemotactic and Gram-negative selective bactericidal activities. FEBS J 2009; 276:6773-86. [DOI: 10.1111/j.1742-4658.2009.07392.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1772-81. [DOI: 10.1016/j.bbamem.2009.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/02/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
|
27
|
Nicolas P, El Amri C. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1537-50. [DOI: 10.1016/j.bbamem.2008.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/14/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
28
|
Sperstad SV, Haug T, Vasskog T, Stensvåg K. Hyastatin, a glycine-rich multi-domain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. Mol Immunol 2009; 46:2604-12. [DOI: 10.1016/j.molimm.2009.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/01/2009] [Accepted: 05/02/2009] [Indexed: 11/25/2022]
|
29
|
Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Biochemistry 2009; 48:313-27. [PMID: 19113844 DOI: 10.1021/bi802025a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dermaseptin B2 (Drs B2) is a 33-residue-long cationic, alpha-helical antimicrobial peptide endowed with membrane-damaging activity against a broad spectrum of microorganisms, including bacteria, yeasts, fungi, and protozoa, but its precise mechanism of action remained ill-defined. A detailed characterization of peptide-membrane interactions of Drs B2 was undertaken in comparison with a C-terminal truncated analogue, [1-23]-Drs B2, that was virtually inactive on bacteria despite retaining the cationic charge of the full-length peptide. Both peptides were tested on living cells using membrane permeabilization assays and on large unilamellar and multilamellar phospholipid vesicles composed of binary lipid mixtures by dye leakage assay, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry and also on SDS micelles using NMR spectroscopy. The results indicate that Drs B2 induces a strong perturbation of anionic lipid bilayers, resides at the hydrocarbon core-water interface, parallel to the plane of the membrane, and interacts preferentially with the polar head groups and glycerol backbone region of the anionic phospholipids, as well as the region of the lipid acyl chain near the bilayer surface. The interfacial location of Drs B2 induces a positive curvature of the bilayer and clustering of anionic lipids, consistent with a carpet mechanism, that may lead to the formation of mixed peptide-phospholipid toroidal, transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. In constrast, the truncated [1-23]-Drs B2 analogue interacts at the head group level without penetrating and perturbing the hydrophobic core of the bilayer. NMR study in SDS micelles showed that [1-23]-Drs B2 adopts a well-defined helix encompassing residues 2-20, whereas Drs B2 was previously found to adopt helical structures interrupted around the Val(9)-Gly(10) segment. Thus the antibacterial activity of Drs B2 depends markedly on a threshold number of hydrophobic residues to be present on both extremities of the helix. In a membrane environment with a strong positive curvature strain, Drs B2 can adopt a flexible helix-hinge-helix structure that facilitates the concomitant insertion of the strongly hydrophobic N- and C-termini of the peptide into the acyl core of the membrane.
Collapse
Affiliation(s)
- Cécile Galanth
- Peptidome de la Peau des Amphibiens, UPMC Universite Paris 06, CNRS FRE 2852, F-75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Haney EF, Hunter HN, Matsuzaki K, Vogel HJ. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1639-55. [PMID: 19272309 DOI: 10.1016/j.bbamem.2009.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/19/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
Abstract
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic alpha-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.
Collapse
Affiliation(s)
- Evan F Haney
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
31
|
Leite JRSA, Brand GD, Silva LP, Kückelhaus SAS, Bento WRC, Araújo ALT, Martins GR, Lazzari AM, Bloch C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: Secondary structure, antimicrobial activity, and mammalian cell toxicity. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:336-343. [PMID: 17442605 DOI: 10.1016/j.cbpa.2007.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The present study reports the structural characteristics, the biological activities, and preliminary clinical investigations of three synthetic members of the dermaseptin family of antimicrobial peptides. The three peptides showed similar tendencies to form alpha-helical structures in non-polar media. The antimicrobial activity towards bacteria and fungi was determined in the micromolar concentration and the peptides did not influenced peritoneal cells viability. One of the peptides was intravenously administered in mice at concentrations similar to those of antibiotics employed in bacterial/fungal infections and it did not cause any detectable changes in cells and tissues.
Collapse
Affiliation(s)
- José Roberto S A Leite
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Campus Ministro Reis Velloso, Universidade Federal do Piauí - UFPI, Parnaíba, Piauí, 64202-020, PI, Brazil.
| | - Guilherme D Brand
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Luciano P Silva
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil
| | | | | | | | | | | | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
32
|
Zangger K, Gößler R, Khatai L, Lohner K, Jilek A. Structures of the glycine-rich diastereomeric peptides bombinin H2 and H4. Toxicon 2008; 52:246-54. [DOI: 10.1016/j.toxicon.2008.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/26/2022]
|
33
|
Auvynet C, El Amri C, Lacombe C, Bruston F, Bourdais J, Nicolas P, Rosenstein Y. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9. FEBS J 2008; 275:4134-51. [DOI: 10.1111/j.1742-4658.2008.06554.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
|
35
|
Janiszewska J, Urbanczyk-Lipkowska Z. Amphiphilic Dendrimeric Peptides as Model Non-Sequential Pharmacophores with Antimicrobial Properties. J Mol Microbiol Biotechnol 2007; 13:220-5. [PMID: 17827972 DOI: 10.1159/000104751] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A concept of application of dendrimer chemistry for construction of 'non-sequential pharmacophore', mimicking active conformation of linear antimicrobial peptides, is introduced. It resulted in the synthesis of a family of low- molecular-weight basic peptide dendrimers with antimicrobial properties against Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and Candida albicans.
Collapse
Affiliation(s)
- Jolanta Janiszewska
- Industrial Chemistry Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
36
|
Fázio MA, Jouvensal L, Vovelle F, Bulet P, Miranda MTM, Daffre S, Miranda A. Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers 2007; 88:386-400. [PMID: 17183513 DOI: 10.1002/bip.20660] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gomesin (Gm) is a potent antimicrobial peptide isolated from the spider Acanthoscurria gomesiana. The two disulfide bridges Cys(2,15) and Cys(6,11) facilitate the folding of the molecule in a beta-hairpin structure, conferring on the peptide a high stability in human plasma. We report herein biological and structural features of new linear Gm analogues, obtained by combining the removal of both disulfide bridges and the incorporation of a D- or L-proline. Regarding their biological properties, two analogues, namely, [D-Thr(2,6,11,15), Pro(9)]-D-Gm and [Thr(2,6,11,15), D-Pro(9)]-Gm, are as potent as Gm against Candida albicans and only fourfold less against Staphylococcus aureus and Escherichia coli. In addition, at 100 microM they are approximately threefold less hemolytic than Gm. The best therapeutic indices were found for [D-Thr(2,6,11,15), Pro(9)]-D-Gm and for [(Des-pGlu(1), -Thr(2), -Arg(3)), Thr(6,11,15), D-Pro(9)]-Gm with a 32-fold increase of their activity against bacteria, and from 128- to 512-fold against yeast when compared with Gm. Regarding the stability, [D-Thr(2,6,11,15), Pro(9)]-D-Gm appeared to be the most resistant in human serum, along with [D-Thr(2,6,11,15), Pro(8)]-D-Gm and [Thr(2,6,11,15), D-Arg(4,16), D-Pro(9)]-Gm. When evaluating their conformation by CD spectroscopy in sodium dodecyl sulfate (SDS), most linear analogues display beta-conformation characteristics. Moreover, considering its high therapeutic index and stability in serum, [D-Thr(2,6,11,15), Pro(9)]-D-Gm was further analyzed by NMR spectroscopy. (1)H NMR experiments in SDS micelles demonstrated that [D-Thr(2,6,11,15), Pro(9)]-D-Gm presents a conformation very similar to that of Gm. In our search for Gm analogues with enhanced potential for drug development, we demonstrated that designing cysteine-free analogues can improve the therapeutic index of Gm derivatives.
Collapse
Affiliation(s)
- Marcos A Fázio
- Department of Biophysics, UNIFESP, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Machado A, Sforça ML, Miranda A, Daffre S, Pertinhez TA, Spisni A, Miranda MTM. Truncation of amidated fragment 33-61 of bovine α-hemoglobin: Effects on the structure and anticandidal activity. Biopolymers 2007; 88:413-26. [PMID: 17245752 DOI: 10.1002/bip.20688] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptides derived from endogenous hemoglobin play important biological roles in a variety of living systems. In previous works we showed that the fragment 33-61 of bovine alpha-hemoglobin (Hb33-61) and its C-terminus amidated analogue (Hb33-61a) exhibit antimicrobial activity and we determined the 3D structure of Hb33-61a bound to sodium dodecyl sulfate micelles. Here we report that Hb33-61a is lethal to Candida albicans at 6.25 microM probably through disruption of its plasma membrane. In addition, we show that, even when used at 50 microM, Hb33- 61a produces low hemolysis (16% +/- 3.0%). Recognizing that one of the key steps to study new compounds with potential pharmaceutical application is to identify the structural elements essential to express biological activity, we also investigated the anticandidal activity of Hb33- 61a fragments. The results indicated that Hb40-61a exhibits the same minimal inhibitory concentration as Hb33-61a, whereas Hb33-52a and Hb48-61a are significantly less active. Noteworthy, for all the peptides tested, we observed that C-terminus amidation produces a potentiation of their anticandidal activity and we associate that increased biological activity to a preferred structural and spatial organization of the C-terminal region favored by amidation. Finally, the data show that the most active peptides (Hb33-61a and Hb40-61a) are characterized by a central hinge joining the C-terminal region that presents, containing a beta-turn, followed by and a helical element, to the N-terminal region that presents only a beta-turn. We hypothesize that these two structured regions, by fluctuating independently in the lipid environment, may act in a coordinated fashion disrupting the yeast plasma membrane.
Collapse
Affiliation(s)
- Alessandra Machado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, PO Box 26077, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Antimicrobial peptides are ancient components of the innate immune system and have been isolated from organisms spanning the phylogenetic spectrum. Over an evolutionary time span, these peptides have retained potency, in the face of highly mutable target microorganisms. This fact suggests important coevolutionary influences in the host-pathogen relationship. Despite their diverse origins, the majority of antimicrobial peptides have common biophysical parameters that are likely essential for activity, including small size, cationicity, and amphipathicity. Although more than 900 different antimicrobial peptides have been characterized, most can be grouped as belonging to one of three structural classes: (1) linear, often of alpha-helical propensity; (2) cysteine stabilized, most commonly conforming to beta-sheet structure; and (3) those with one or more predominant amino acid residues, but variable in structure. Interestingly, these biophysical and structural features are retained in ribosomally as well as nonribosomally synthesized peptides. Therefore, it appears that a relatively limited set of physicochemical features is required for antimicrobial peptide efficacy against a broad spectrum of microbial pathogens. During the past several years, a number of themes have emerged within the field of antimicrobial peptide immunobiology. One developing area expands upon known microbicidal mechanisms of antimicrobial peptides to include targets beyond the plasma membrane. Examples include antimicrobial peptide activity involving structures such as extracellular polysaccharide and cell wall components, as well as the identification of an increasing number of intracellular targets. Additional areas of interest include an expanding recognition of antimicrobial peptide multifunctionality, and the identification of large antimicrobial proteins, and antimicrobial peptide or protein fragments derived thereof. The following discussion highlights such recent developments in antimicrobial peptide immunobiology, with an emphasis on the biophysical aspects of host-defense polypeptide action and mechanisms of microbial resistance.
Collapse
Affiliation(s)
- Nannette Y Yount
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | |
Collapse
|
39
|
Conceição K, Konno K, Richardson M, Antoniazzi MM, Jared C, Daffre S, Camargo ACM, Pimenta DC. Isolation and biochemical characterization of peptides presenting antimicrobial activity from the skin of Phyllomedusa hypochondrialis. Peptides 2006; 27:3092-9. [PMID: 16963159 DOI: 10.1016/j.peptides.2006.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/22/2022]
Abstract
Amphibian antimicrobial peptides have been known for many decades and several of them have been isolated from anuran species. Dermaseptins are among the most studied antimicrobial peptides and are found in the skin secretion of tree frogs from the Phyllomedusinae subfamily. These peptides exert a lytic action on bacteria, protozoa, yeast, and filamentous fungi at micromolar concentrations, but unlike polylysines, present little hemolytic activity. In this work, two antimicrobial peptides were isolated from the crude skin secretion of Phyllomedusa hypochondrialis and tested against Gram-positive and Gram-negative bacteria, presenting no hemolytic activity at the tested concentrations. One of them was identified with the recently reported peptide PS-7 belonging to the phylloseptin family, and another was a novel peptide, named DPh-1, which was fully purified, sequenced by 'de novo' mass spectrometry and grouped into Dermaseptins (DPh-1).
Collapse
Affiliation(s)
- Katia Conceição
- LETA (Laboratório Especial de Toxinologia Aplicada), Center for Applied Toxinology (CAT/CEPID), Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP, 05503-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ. Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 2006; 23:368-93. [PMID: 16741585 DOI: 10.1039/b512118n] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tara L Pukala
- Department of Chemistry, The University of Adelaide, South Australia
| | | | | | | | | |
Collapse
|
42
|
Quinn GAP, Heymans R, Rondaj F, Shaw C, de Jong-Brink M. Schistosoma mansoni dermaseptin-like peptide: structural and functional characterization. J Parasitol 2006; 91:1340-51. [PMID: 16539015 DOI: 10.1645/ge-540r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Analysis of the Schistosoma mansoni peptidome for immunomodulatory molecules by solvent extraction and reverse-phase HPLC revealed a 27-amino-acid residue peptide from an extract of cercariae. Using matrix-assisted, laser desorption-ionization, time-of-flight mass spectrometry, the peptide yielded a protonated molecular ion [M + H]+ of m/z 2789. The unequivocal sequence was deduced by automated Edman degradation as: DLWNSIKDMAAAAGRAALNAVTGMVNQ. The peptide exhibited an 80.76% identity with dermaseptin 3.1 from the leaf frog Agalychnis annae, and was therefore named Schistosoma mansoni dermaseptin-like peptide (SmDLP). Immunocytochemical staining using a primary antidermaseptin B2 antibody located SmDLP in acetabular glands of cercariae, in and around schistosomula, and in adult worms and their eggs. Dot-blotting confirmed its presence in extracts (cercariae and worms) and excretion/secretion (E/S) products (transforming cercariae and eggs). This was corroborated by use of a MALDI-ToF spectra database of E/S products from cercariae. Functional characterization of the peptide indicated that SmDLP had typical amphipathic antimicrobial peptide properties, i.e., the ability to lyse human erythrocytes causing a decrease in the levels of nitric oxide produced by monocytic cells. This last function strongly suggests that SmDLP plays a vital role in the parasite's immunoevasion strategy. The possibility that schistosomes acquired this gene from amphibians has been discussed by constructing a phylogenetic tree.
Collapse
Affiliation(s)
- Gerry A P Quinn
- Department of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland
| | | | | | | | | |
Collapse
|
43
|
Duclohier H. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:401-9. [PMID: 16477458 DOI: 10.1007/s00249-006-0047-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/17/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.
Collapse
Affiliation(s)
- Hervé Duclohier
- Institut de Physiologie et de Biologie Cellulaires (Pôle Biologie Santé), UMR 6187 CNRS-Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers, France.
| |
Collapse
|
44
|
Auvynet C, Seddiki N, Dunia I, Nicolas P, Amiche M, Lacombe C. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands. Eur J Cell Biol 2005; 85:25-34. [PMID: 16373172 DOI: 10.1016/j.ejcb.2005.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/05/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022] Open
Abstract
The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.
Collapse
Affiliation(s)
- Constance Auvynet
- Peptidome de la peau d'amphibiens, FRE 2852, CNRS-Université Paris-6, Tour 43, Institut Jacques Monod, 2 Place Jussieu, F-75251 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
45
|
Hsu CH, Chen C, Jou ML, Lee AYL, Lin YC, Yu YP, Huang WT, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 2005; 33:4053-64. [PMID: 16034027 PMCID: PMC1179735 DOI: 10.1093/nar/gki725] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indolicidin, a l3-residue antimicrobial peptide-amide, which is unusually rich in tryptophan and proline, is isolated from the cytoplasmic granules of bovine neutrophils. In this study, the structures of indolicidin in 50% D3-trifluoroethanol and in the absence and presence of SDS and D38-dodecylphosphocholine were determined using NMR spectroscopy. Multiple conformations were found and were shown to be due to different combinations of contact between the two WPW motifs. Although indolicidin is bactericidal and able to permeabilize bacterial membranes, it does not lead to cell wall lysis, showing that there is more than one mechanism of antimicrobial action. The structure of indolicidin in aqueous solution was a globular and amphipathic conformation, differing from the wedge shape adopted in lipid micelles, and these two structures were predicted to have different functions. Indolicidin, which is known to inhibit DNA synthesis and induce filamentation of bacteria, was shown to bind DNA in gel retardation and fluorescence quenching experiments. Further investigations using surface plasmon resonance confirmed the DNA-binding ability and showed the sequence preference of indolicidin. Based on our biophysical studies and previous results, we present a diagram illustrating the DNA-binding mechanism of the antimicrobial action of indolicidin and explaining the roles of the peptide when interacting with lipid bilayers at different concentrations.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Institute of Biological Chemistry, Academia SinicaTaipei, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Maou-Lin Jou
- Institute of Biochemical Sciences, National Taiwan UniversityTaipei, Taiwan
| | | | - Yu-Ching Lin
- Institute of Biological Chemistry, Academia SinicaTaipei, Taiwan
| | - Yi-Ping Yu
- Institute of Biological Chemistry, Academia SinicaTaipei, Taiwan
| | - Wei-Ting Huang
- Institute of Biological Chemistry, Academia SinicaTaipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia SinicaTaipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan UniversityTaipei, Taiwan
- To whom correspondence should be addressed. Tel: +886 2 2785 5696, ext. 7101; Fax: +886 2 2653 9142;
| |
Collapse
|
46
|
Castiglione-Morelli MA, Cristinziano P, Pepe A, Temussi PA. Conformation-activity relationship of a novel peptide antibiotic: Structural characterization of dermaseptin DS 01 in media that mimic the membrane environment. Biopolymers 2005; 80:688-96. [PMID: 15690410 DOI: 10.1002/bip.20244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dermaseptins, small polycationic peptides synthesized by amphibians, exert a lytic action on bacteria, protozoa, yeast, and filamentous fungi at micromolar concentrations, but unlike polylysines, show little hemolytic activity. Dermaseptins S are active only against bacteria and form aggregates at high peptide/lipid ratios, whereas dermaseptins B are active also against fungi and form aggregates at low peptide/lipid ratios. A new dermaseptin, named DS 01, from the skin secretion of Phyllomedusa oreades, showed not only strong antibacterial properties against Gram-positive and Gram-negative bacteria but also antiprotozoan activity in the microM range. An analysis of the sequences of all dermaseptins only shows a common tendency to adopt amphipathic helical conformations but does not hint at significant differences. In order to rationalize the biological differences among dermaseptins, it is necessary to analyze their conformational properties in greater detail. A structural characterization in media that mimic the membrane environment shows that the surface properties of DS 01, as compared to those of dermaseptins S1 and B2, are intermediate, in agreement with its peculiar pharmacological profile. The regular alternation of positive and negative patches on the surface suggests a plausible aggregation mechanism.
Collapse
|
47
|
Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 2004; 35:503-42. [PMID: 15219899 DOI: 10.1016/j.micron.2004.04.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a major component of the myelin sheath in the central nervous system of higher vertebrates, and a member of a larger family of proteins with a multiplicity of forms and post-translational modifications (PTMs). The 18.5 kDa protein is the exemplar of the family, being most abundant in adult myelin, and thus the most-studied. It is peripherally membrane-associated, but has generally been investigated in isolated form. MBP is an 'intrinsically unstructured' protein with a high proportion (approximately 75%) of random coil, but postulated to have core elements of beta-sheet and alpha-helix. We review here the properties of the MBP family, especially of the 18.5 kDa isoform, and discuss how its three-dimensional (3D) structure may be resolved by direct techniques available to us, viz., X-ray and electron crystallography, and solution and solid-state NMR spectrometry. In particular, we emphasise that creating an appropriate environment in which the protein can adopt a physiologically relevant fold is crucial to such endeavours. By solving the 3D structure of 18.5 kDa MBP and the effects of PTMs, we will attain a better understanding of myelin architecture, and of the molecular mechanisms that transpire in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular Biology and Genetics, Biophysics Interdepartmental Group, University of Guelph, Room 230, Axelrod Building, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
48
|
Whitehead TL, Jones LM, Hicks RP. PFG-NMR Investigations of the Binding of Cationic Neuropeptides to Anionic and Zwitterionic Micelles. J Biomol Struct Dyn 2004; 21:567-76. [PMID: 14692800 DOI: 10.1080/07391102.2004.10506949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The mechanism by which peptides bind to micelles is believed to be a two-phase process, involving (i). initial electrostatic interactions between the peptide and micelle surface, followed by (ii). hydrophobic interactions between peptide side chains and the micelle core. To better characterize the electrostatic portion of this process, a series of pulse field gradient nuclear magnetic resonance (PFG-NMR) spectroscopic experiments were conducted on a group of neuropeptides with varying net cationic charges (+1 to +3) and charge location to determine both their diffusion coefficients and partition coefficients when in the presence of detergent micelles. Two types of micelles were chosen for the study, namely anionic sodium dodecylsulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles. Results obtained from this investigation indicate that in the case of the anionic SDS micelles, peptides with a larger net positive charge bind to a greater extent than those with a lesser net positive charge (bradykinin > substance P > neurokinin A > Met-enkephalin). In contrast, when in the presence of zwitterionic DPC micelles, the degree of mixed-charge nature of the peptide affects binding (neurokinin A > substance P > Met-enkephalin > bradykinin). Partition coefficients between the peptides and the micelles follow similar trends for both micelle types. Diffusion coefficients for the peptides in SDS micelles, when ranked from largest to smallest, follow a trend where increasing net positive charge results in the smallest diffusion coefficient: Met-enkephalin > neurokinin A > bradykinin > substance P. Diffusion coefficients when in the presence of DPC micelles, when ranked from largest to smallest, follow a trend where the presence of negatively-charged side chains results in the smallest diffusion coefficient: bradykinin > Met-enkephalin > substance P > neurokinin A.
Collapse
Affiliation(s)
- Tracy L Whitehead
- Department of Chemistry, Mail Stop 9573, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | | | |
Collapse
|