1
|
Langley J, Purchase R, Viola S, Fantuzzi A, Davis GA, Shen JR, Rutherford AW, Krausz E, Cox N. Simulating the low-temperature, metastable electrochromism of Photosystem I: Applications to Thermosynechococcus vulcanus and Chroococcidiopsis thermalis. J Chem Phys 2022; 157:125103. [DOI: 10.1063/5.0100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Low-temperature, metastable electrochromism has been used as a tool to assign pigments in Photosystem I (PS I) from Thermosynechococcus vulcanus and both the white light (WL) and far-red light (FRL) forms of Chroococcidiopsis thermalis. We find a minimum of seven pigments is required to satisfactorily model the electrochromism of PS I. Using our model, we provide a short list of candidates for the chlorophyll f pigment in FRL C. thermalis that absorbs at 756 nm, whose identity to date has proven to be controversial. Specifically, we propose the linker pigments A40 and B39, and two antenna pigments A26 and B24 as defined by crystal structure 1JB0. The pros and cons of these assignments are discussed, and we propose further experiments to better understand the functioning of FRL C. thermalis.
Collapse
Affiliation(s)
- Julien Langley
- Australian National University Research School of Chemistry, Australia
| | - Robin Purchase
- Australian National University Research School of Chemistry, Australia
| | | | | | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Japan
| | | | - Elmars Krausz
- Australian National University, Australian National University Research School of Chemistry, Australia
| | | |
Collapse
|
2
|
Banu S, Yadav PP. Chlorophyll: the ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Org Biomol Chem 2022; 20:8584-8598. [DOI: 10.1039/d2ob01473d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The emergence of chlorophyll, the principal photoacceptor of green plants, as an organo-photocatalyst.
Collapse
Affiliation(s)
- Saira Banu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| | - Prem P. Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
3
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
4
|
Mitsuhashi K, Tamura H, Saito K, Ishikita H. Nature of Asymmetric Electron Transfer in the Symmetric Pathways of Photosystem I. J Phys Chem B 2021; 125:2879-2885. [DOI: 10.1021/acs.jpcb.0c10885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Koji Mitsuhashi
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Chestnut MM, Milikisiyants S, Chatterjee R, Kern J, Smirnov AI. Electronic Structure of the Primary Electron Donor P700+• in Photosystem I Studied by Multifrequency HYSCORE Spectroscopy at X- and Q-Band. J Phys Chem B 2021; 125:36-48. [PMID: 33356277 DOI: 10.1021/acs.jpcb.0c09000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary electron donor P700 of the photosystem I (PSI) is a heterodimer consisting of two chlorophyll molecules. A series of electron-transfer events immediately following the initial light excitation leads to a stabilization of the positive charge by its cation radical form, P700+•. The electronic structure of P700+• and, in particular, its asymmetry with respect to the two chlorophyll monomers is of fundamental interest and is not fully understood up to this date. Here, we apply multifrequency X- (9 GHz) and Q-band (35 GHz) hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the electron spin density distribution in the cation radical P700+• of PSI from a thermophilic cyanobacterium Thermosynechococcus elongatus. Six 14N and two 1H distinct nuclei have been resolved in the HYSCORE spectra and parameters of the corresponding nuclear hyperfine and quadrupolar hyperfine interactions were obtained by combining the analysis of HYSCORE spectral features with direct numerical simulations. Based on a close similarity of the nuclear quadrupole tensor parameters, all of the resolved 14N nuclei were assigned to six out of total eight available pyrrole ring nitrogen atoms (i.e., four in each of the chlorophylls), providing direct evidence of spin density delocalization over the both monomers in the heterodimer. Using the obtained experimental values of the 14N electron-nuclear hyperfine interaction parameters, the upper limit of the electron spin density asymmetry parameter is estimated as RA/Bupper = 7.7 ± 0.5, while a tentative assignment of 14N observed in the HYSCORE spectra yields RB/A = 3.1 ± 0.5.
Collapse
Affiliation(s)
- Melanie M Chestnut
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
6
|
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 146:55-73. [PMID: 32144697 DOI: 10.1007/s11120-020-00731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Vladimir A Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
SUN YUMING, DAI ZHENHONG, WANG WEITIAN, SUN YUANPING. A DFT STUDY ON THE ELECTRONIC CHARACTER OF P700+. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633606002751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This density functional study is devoted to the long debated electronic nature of P700+. We found that P700+ is intrinsically a dimer of chlorophyll molecules. The unpaired electron spin distributes equally over two chlorophyll molecule halves in the bare P700+, while the dressed P700+ shows the spin density asymmetry mainly coming from the H-bond donated to 131-keto-O of one half. The experimental contradictions on the electronic nature of P700+ are also discussed.
Collapse
Affiliation(s)
- YUMING SUN
- Department of Physics, Yantai University, 30 St Qingquon, Yantai 264005, China
| | - ZHENHONG DAI
- Department of Physics, Yantai University, 30 St Qingquon, Yantai 264005, China
| | - WEITIAN WANG
- Department of Physics, Yantai University, 30 St Qingquon, Yantai 264005, China
| | - YUANPING SUN
- Department of Physics, Yantai University, 30 St Qingquon, Yantai 264005, China
| |
Collapse
|
8
|
Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, Evans MCW. Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model. J Phys Chem B 2010; 114:15158-71. [PMID: 20977227 DOI: 10.1021/jp1044018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Santabarbara
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Ilya Kuprov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Oleg Poluektov
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Antonio Casal
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Charlotte A. Russell
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Saul Purton
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| | - Michael C. W. Evans
- Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, Scotland, United Kingdom; Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States; and School of Biological
| |
Collapse
|
9
|
Moomaw EW, Angerhofer A, Moussatche P, Ozarowski A, García-Rubio I, Richards NGJ. Metal dependence of oxalate decarboxylase activity. Biochemistry 2009; 48:6116-25. [PMID: 19473032 PMCID: PMC2801813 DOI: 10.1021/bi801856k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate. The enzyme is composed of two cupin domains, each of which contains a Mn(II) ion. Although there is general agreement that Mn(II) in the N-terminal domain mediates OxDC-catalyzed decarboxylation, legitimate questions have been raised concerning the function (if any) of the Mn(II) bound in the C-terminal cupin domain. We have investigated this problem using a series of OxDC mutants in which Mn(II) binding is perturbed by mutagenesis of Glu-101 and Glu-280, which coordinate the metal in the N-terminal and C-terminal domains, respectively. We now demonstrate that decarboxylase activity and total manganese content are sensitive to modifications in either metal-binding glutamate residue. These findings, in combination with EPR measurements, raise the possibility that the C-terminal Mn(II) center can catalyze the decarboxylation reaction. Further support for this conclusion has been provided from a combination of in vivo and in vitro strategies for preparing wild-type OxDC in which Mn(II) is incorporated to a variety of extents. Kinetic characterization of these variants shows that OxDC activity is linearly correlated with manganese content, as might be expected if both sites can catalyze the breakdown of oxalate into formate and CO(2). These studies also represent the first unequivocal demonstration that OxDC activity is uniquely mediated by manganese.
Collapse
Affiliation(s)
- Ellen W. Moomaw
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | - Patricia Moussatche
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-3706
| | - Inés García-Rubio
- Laboratorium fur Physikalische Chemie, ETH Zurich, CH-8043 Zurich-Hönggerberg, Switzerland
| | | |
Collapse
|
10
|
Stoll S, Gunn A, Brynda M, Sughrue W, Kohler AC, Ozarowski A, Fisher AJ, Lagarias JC, Britt RD. Structure of the biliverdin radical intermediate in phycocyanobilin:ferredoxin oxidoreductase identified by high-field EPR and DFT. J Am Chem Soc 2009; 131:1986-95. [PMID: 19159240 DOI: 10.1021/ja808573f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two-step four-electron reduction of biliverdin IXalpha to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrrole rings are protonated. This experimentally confirms the reaction mechanism recently proposed (Tu, et al. Biochemistry 2007, 46, 1484).
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yin S, Dahlbom MG, Canfield PJ, Hush NS, Kobayashi R, Reimers JR. Assignment of the Qy absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. J Phys Chem B 2007; 111:9923-30. [PMID: 17672486 DOI: 10.1021/jp070030p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Qy absorption spectrum of Photosystem-I from Thermosynecochoccus elongatus (formerly Synecochoccus elongatus) is calculated using the CAM-B3LYP density functional and INDO schemes based on a quantum-mechanically refined structure for the entire photosystem obtained using the PW91 density functional. These methods present a priori predictions of the absorption and linear dichroism spectra and include protein electrostatic effects, short range inductive effects, long-range and short-range exciton couplings, and superexchange effects involving aromatic residues and carotenes. CAM-B3LYP is used as it is the only known density functional that correctly describes the Q bands of chlorophylls, all other methods contaminating them with erroneous charge-transfer excitations. A critical feature is found to be the use of fully optimized heavy-atom coordinates, with those obtained from just X-ray crystallography providing a poor description of the electronic properties of the chromophores. The result is a realistic first-principles prediction of the observed absorption band that identifies the nature of the red-shifted chlorophylls as well as the energies of the reaction-center chlorophylls and the exciton couplings acting between them. The "special pair" appears more like a dimer of dimers than a self-contained functional unit, with the exciton couplings between its members and the accessory chlorophylls exceeding the internal coupling.
Collapse
Affiliation(s)
- Shiwei Yin
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Santabarbara S, Kuprov I, Hore PJ, Casal A, Heathcote P, Evans MCW. Analysis of the Spin-Polarized Electron Spin Echo of the [P700+A1-] Radical Pair of Photosystem I Indicates That Both Reaction Center Subunits Are Competent in Electron Transfer in Cyanobacteria, Green Algae, and Higher Plants. Biochemistry 2006; 45:7389-403. [PMID: 16752928 DOI: 10.1021/bi060330h] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decay of the light-induced spin-correlated radical pair [P700+ A1-] and the associated electron spin echo envelope modulation (ESEEM) have been studied in either thylakoid membranes, cellular membranes, or purified photosystem I prepared from the wild-type strains of Synechocystis sp. PCC 6803, Chlamydomonas reinhardtii, and Spinaceae oleracea. The decay of the spin-correlated radical pair is described in the wild-type membrane by two exponential components with lifetimes of 2-4 and 16-25 micros. The proportions of the two components can be altered by preillumination of the membranes in the presence of reductant at temperatures lower than 220 K, which leads to the complete reduction of the iron-sulfur electron acceptors F(A), F(B), and F(X) and partial photoaccumulation of the reduced quinone electron acceptor A1A-. The "out-of-phase" (OOP) ESEEM attributed to the [P700+ A1-] radical pair has been investigated in the three species as a function of the preillumination treatment. Values of the dipolar (D) and the exchange (J) interactions were extracted by time-domain fitting of the OOP-ESEEM. The results obtained in the wild-type systems are compared with two site-directed mutants of C. reinhardtii [Santabarbara et al. (2005) Biochemistry 44, 2119-2128], in which the spin-polarized signal on either the PsaA- or PsaB-bound electron transfer pathway is suppressed so that the radical pair formed on each electron transfer branch could be monitored selectively. This comparison indicates that when all of the iron-sulfur centers are oxidized, only the echo modulation associated with the A branch [P700+ A1A-] radical pair is observed. The reduction of the iron-sulfur clusters and the quinone A1 by preillumination treatment induces a shift in the ESEEM frequency. In all of the systems investigated this observation can be interpreted in terms of different proportions of the signal associated with the [P700+ A1A-] and [P700+ A1B-] radical pairs, suggesting that bidirectionality of electron transfer in photosystem I is a common feature of all species rather than being confined to green algae.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 2006; 90:552-65. [PMID: 16258055 PMCID: PMC1367060 DOI: 10.1529/biophysj.105.059824] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the PA and PB reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to approximately 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899-3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903-59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type (>>350 ns(-1)), which implies an intrinsic rate constant of charge separation of <1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of approximately 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl PA, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the PA Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the PA and PB pair, constituting what is traditionally called the "primary electron donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578).
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
14
|
Rappaport F, Diner BA, Redding K. Optical Measurements of Secondary Electron Transfer in Photosystem I. PHOTOSYSTEM I 2006. [DOI: 10.1007/978-1-4020-4256-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Bencini A, Beni A, Costantino F, Dei A, Gatteschi D, Sorace L. The influence of ligand field effects on the magnetic exchange of high-spin Co(ii)-semiquinonate complexes. Dalton Trans 2006:722-9. [PMID: 16429177 DOI: 10.1039/b508769d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Co(Me(4)cyclam)(tropolonate)](PF(6)) was synthesised and structurally characterised. Its electronic and W-band EPR spectra have been analysed by means of the angular overlap calculation of the Spin Hamiltonian parameters that provided also a satisfactory reproduction of the temperature dependence of the magnetic susceptibility. The present results can be interpreted assuming a pseudo-octahedral character for the Co(II) center. This prompted us to reconsider the model formerly used for the analysis of the magnetic coupling between hs-Co(II) and the paramagnetic o-semiquinonate ligand in the corresponding derivatives [Co(Me(4)cyclam)(PhenSQ)](PF(6)) and [Co(Me(4)cyclam)(DTBSQ)](PF(6)). These results indicate that the effect of the magnetic coupling is active only below 50 K and that a more refined model of exchange coupling between Co(II) and semiquinonato ligands is needed to quantitatively analyze the magnetic behaviour of this class of systems.
Collapse
Affiliation(s)
- Alessandro Bencini
- UdR INSTM and Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Proton ENDOR study of the primary donor P740+, a special pair of chlorophyll d in photosystem I reaction center of Acaryochloris marina. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Sacksteder CA, Bender SL, Barry BA. Role for bound water and CH-pi aromatic interactions in photosynthetic electron transfer. J Am Chem Soc 2005; 127:7879-90. [PMID: 15913378 DOI: 10.1021/ja050659a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI) is one of two photosynthetic reaction centers present in plants, algae, and cyanobacteria and catalyzes the reduction of ferredoxin and the oxidation of cytochrome c or plastocyanin. The PSI primary chlorophyll donor, which is oxidized in the primary electron-transfer events, is a heterodimer of chl a and a' called P700. It has been suggested that protein relaxation accompanies light-induced electron transfer in this reaction center (Dashdorj, N.; Xu, W.; Martinsson, P.; Chitnis, P. R.; Savikhin, S. Biophys. J. 2004, 86, 3121. Kim, S.; Sacksteder, C. A.; Bixby, K. A.; Barry, B. A. Biochemistry 2001, 40, 15384). To investigate the details of electron transfer and relaxation events in PSI, we have employed several experimental approaches. First, we report a pH-dependent viscosity effect on P700+ reduction; this result suggests a role for proton transfer in the PSI electron-transfer reactions. Second, we find that changes in hydration alter the rate of P700+ reduction and the interactions of P700 with the protein environment. This result suggests a role for bound water in electron transfer to P700+. Third, we present evidence that deuteration of the tyrosine aromatic side chain perturbs the vibrational spectrum, associated with P700+ reduction. We attribute this result to a linkage between CH-pi interactions and electron transfer to P700+.
Collapse
Affiliation(s)
- Colette A Sacksteder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
18
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
19
|
The influence of the structure of the radical cation dimer pair of aromatic molecules on the principal values of a g-tensor: DFT predictions. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Santabarbara S, Kuprov I, Fairclough WV, Purton S, Hore PJ, Heathcote P, Evans MCW. Bidirectional Electron Transfer in Photosystem I: Determination of Two Distances between P700+ and A1- in Spin-Correlated Radical Pairs. Biochemistry 2005; 44:2119-28. [PMID: 15697238 DOI: 10.1021/bi048445d] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spin-correlated radical pair [P(700)(+)A(1)(-)] gives rise to a characteristic "out-of-phase" electron spin-echo signal. The electron spin-echo envelope modulation (ESEEM) of these signals has been studied in thylakoids prepared from the wild-type strain of Chlamydomonas reinhardtii and in two site-directed mutants, in which the methionine residue which acts as the axial ligand to the chlorin electron acceptor A(0) has been substituted with a histidine either on the PsaA (PsaA-M684H) or the PsaB (PsaB-M664H) reaction center subunits. The analysis of the time domain ESEEM provides information about the spin-spin interaction in the [P(700)(+)A(1)(-)] radical pair, and the values of the dipolar (D) and the exchange (J) interaction can be extracted. From the distance dependence of the dipolar coupling term, the distance between the unpaired electron spin density clouds of the primary donor P(700)(+) and the phyllosemiquinone A(1)(-) can be determined. The [P(700)(+)A(1)(-)] ESEEM spectrum obtained in wild-type thylakoids can be reconstructed using a linear combination of the spectra measured in the PsaA and PsaB A(0) mutants, demonstrating that electron transfer resulting in charge separation is occurring on both the PsaA and PsaB branches. The [P(700)(+)A(1B)(-)] distance in the point dipole approximation in the PsaA-M684H mutant is 24.27 +/- 0.02 A, and the [P(700)(+)A(1A)(-)] distance in the PsaB-M664H mutant is 25.43 +/- 0.01 A. An intermediate value of 25.01 +/- 0.02 A is obtained in the wild-type membranes which exhibit both spin-polarized pairs.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
|