1
|
Wnętrzak A, Chachaj-Brekiesz A, Kobierski J, Dynarowicz-Latka P. The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure-Activity Relationships. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:3-29. [PMID: 38036872 DOI: 10.1007/978-3-031-43883-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The presence of an additional polar group in the cholesterol backbone increases the hydrophilicity of resulting compounds (oxysterols), determines their arrangement at the phase boundary, and interactions with other lipids and proteins. As a result, physicochemical properties of biomembranes (i.e., elasticity, permeability, and ability to bind proteins) are modified, which in turn may affect their functioning. The observed effect depends on the type of oxysterol and its concentration and can be both positive (e.g., antiviral activity) or negative (disturbance of cholesterol homeostasis, signal transduction, and protein segregation). The membrane activity of oxysterols has been successfully studied using membrane models (vesicles, monolayers, and solid supported films). Membrane models, in contrast to the natural systems, provide the possibility to selectively examine the specific aspect of biomolecule-membrane interactions. Moreover, the gradual increase in the complexity of the used model allows to understand the molecular phenomena occurring at the membrane level. The interest in research on artificial membranes has increased significantly in recent years, mainly due to the development of modern and sophisticated physicochemical methods (static and dynamic) in both the micro- and nanoscale, which are applied with the assistance of powerful theoretical calculations. This review provides an overview of the most important findings on this topic in the current literature.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
2
|
Cámara CI, Crosio MA, Juarez AV, Wilke N. Dexamethasone and Dexamethasone Phosphate: Effect on DMPC Membrane Models. Pharmaceutics 2023; 15:pharmaceutics15030844. [PMID: 36986705 PMCID: PMC10053563 DOI: 10.3390/pharmaceutics15030844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Dexamethasone (Dex) and Dexamethasone phosphate (Dex-P) are synthetic glucocorticoids with high anti-inflammatory and immunosuppressive actions that gained visibility because they reduce the mortality in critical patients with COVID-19 connected to assisted breathing. They have been widely used for the treatment of several diseases and in patients under chronic treatments, thus, it is important to understand their interaction with membranes, the first barrier when these drugs get into the body. Here, the effect of Dex and Dex-P on dimyiristoylphophatidylcholine (DMPC) membranes were studied using Langmuir films and vesicles. Our results indicate that the presence of Dex in DMPC monolayers makes them more compressible and less reflective, induces the appearance of aggregates, and suppresses the Liquid Expanded/Liquid Condensed (LE/LC) phase transition. The phosphorylated drug, Dex-P, also induces the formation of aggregates in DMPC/Dex-P films, but without disturbing the LE/LC phase transition and reflectivity. Insertion experiments demonstrate that Dex induces larger changes in surface pressure than Dex-P, due to its higher hydrophobic character. Both drugs can penetrate membranes at high lipid packings. Vesicle shape fluctuation analysis shows that Dex-P adsorption on GUVs of DMPC decreases membrane deformability. In conclusion, both drugs can penetrate and alter the mechanical properties of DMPC membranes.
Collapse
Affiliation(s)
- Candelaria Ines Cámara
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
- Correspondence: ; Tel.: +54-9-351-5353570
| | - Matías Ariel Crosio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Ana Valeria Juarez
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| |
Collapse
|
3
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Barrantes FJ. Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London's Methodological Approaches. J Membr Biol 2022; 255:563-574. [PMID: 35534578 DOI: 10.1007/s00232-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Wnętrzak A, Chachaj-Brekiesz A, Stępniak A, Kobierski J, Dynarowicz-Latka P. Different effects of oxysterols on a model lipid raft - Langmuir monolayer study complemented with theoretical calculations. Chem Phys Lipids 2022; 244:105182. [PMID: 35182569 DOI: 10.1016/j.chemphyslip.2022.105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
Three oxysterols (7β-hydroxycholesterol; 7β-OH, 7-ketocholesterol; 7-K and 25-hydroxycholesterol, 25-OH) differing in the site of oxidation (ring system versus chain) and kind of polar group (hydroxyl versus carbonyl) were studied in lipid raft environment using the Langmuir monolayer technique complemented with theoretical calculations. Experiments were performed for the unmodified raft system, composed of sphingomyelin (SM) and cholesterol (Chol), and in the next step the raft was modified by the incorporation of oxysterol in different proportions. In the examined three-component system (Chol:SM:oxysterol), apart from interactions between the lipid raft components, the affinity of Chol to its oxidized derivatives also plays an important role. 25-OH was found to enhance interactions between SM and Chol and thus stabilize the raft, contrary to 7β-OH and 7-K, which exterted the fluidizing effect as well as the destabilization of the raft. Different action of oxysterols on model raft was observed. 7β-OH and 7-K, which are highly potent inducers of cell dath caused raft destabilization, while 25-OH, which is the least toxic of the investigated oxysterols, was found to stabilize the raft.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Alicja Stępniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | |
Collapse
|
6
|
Crowley J, Withana M, Deplazes E. The interaction of steroids with phospholipid bilayers and membranes. Biophys Rev 2022; 14:163-179. [PMID: 35340606 PMCID: PMC8921366 DOI: 10.1007/s12551-021-00918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Steroids are critical for various physiological processes and used to treat inflammatory conditions. Steroids act by two distinct pathways. The genomic pathway is initiated by the steroid binding to nuclear receptors while the non-genomic pathway involves plasma membrane receptors. It has been proposed that steroids might also act in a more indirect mechanism by altering biophysical properties of membranes. Yet, little is known about the effect of steroids on membranes, and steroid-membrane interactions are complex and challenging to characterise. The focus of this review is to outline what is currently known about the interactions of steroids with phospholipid bilayers and illustrate the complexity of these systems using cortisone and progesterone as the main examples. The combined findings from current work demonstrate that the hydrophobicity and planarity of the steroid core does not provide a consensus for steroid-membrane interactions. Even small differences in the substituents on the steroid core can result in significant changes in steroid-membrane interactions. Furthermore, steroid-induced changes in phospholipid bilayer properties are often dependent on steroid concentration and lipid composition. This complexity means that currently there is insufficient information to establish a reliable structure-activity relationship to describe the effect of steroids on membrane properties. Future work should address the challenge of connecting the findings from studying the effect of steroids on phospholipid bilayers to cell membranes. Insights from steroid-membrane interactions will benefit our understanding of normal physiology and assist drug development.
Collapse
Affiliation(s)
- Jackson Crowley
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Minduli Withana
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
7
|
Lee JH, Han JH, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med 2022; 179:252-265. [PMID: 34808332 DOI: 10.1016/j.freeradbiomed.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Acute microglial activation plays an important role in neuroprotection. However, dysregulated, prolonged microgliosis exacerbates neurodegeneration through excessive release of pro-inflammatory cytokines and cytotoxic factors. Interferon-gamma (IFN-γ), an inflammatory cytokine, exacerbates the detrimental microglial response. Although various anti-inflammatory drugs have been evaluated as interventions for microglia-mediated neuroinflammation, no anti-inflammatories are in clinical use for microgliosis. The present study evaluated the anti-inflammatory mechanisms of oxysterols, blood brain barrier (BBB) penetrable bioactive lipids, revealing that this intervention suppresses neuroinflammation by disrupting membrane lipid raft formation and caveolae-mediated endosomal IFN-γ signaling. We find that 25-hydroxycholesterol (25-HC) rapidly repressed IFN-γ receptor trafficking to lipid rafts in microglia by disrupting raft formation, thereby suppressing microglial inflammatory response. IFN-γ treatment upregulated expression of Cav-1, a major component of caveolae, and IFN-γ signaling was sustained through Cav-1+ signaling endosomes. 25-HC repressed IFN-γ induction of Cav-1 expression in microglia, and subsequently suppressed the chronic inflammatory response. Taken together, these findings demonstrated that 25-HC effectively regulate the inflammatory status of microglia by mediating the formation of rafts and caveolae-dependent signaling endosomes. Given the important roles of IFN-γ and microglia in the pathology of neurodegenerative brain diseases, a novel anti-inflammatory mechanism of 25-HC that is not receptor-dependent, but rather is related to the regulation of membrane rafts and caveolae, suggests a new therapeutic target for inflammatory neurodegenerations.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | - Ji-Hye Han
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Joo Hong Woo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
8
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Anderson RH, Sochacki KA, Vuppula H, Scott BL, Bailey EM, Schultz MM, Kerkvliet JG, Taraska JW, Hoppe AD, Francis KR. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep 2021; 37:110008. [PMID: 34788623 PMCID: PMC8620193 DOI: 10.1016/j.celrep.2021.110008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3′ polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism. Anderson et al. demonstrate that sterol abundance and identity play a dominant role in facilitating clathrin-mediated endocytosis. Detailed analyses of clathrin-coated pits under sterol depletion support a requirement for sterol-mediated membrane bending during multiple stages of endocytosis, implicating endocytic dysfunction within the pathogenesis of disorders of cholesterol metabolism.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA; Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harika Vuppula
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Brandon L Scott
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Maycie M Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
10
|
Influence of steroids on hydrogen bonds in membranes assessed by near infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183553. [PMID: 33422482 DOI: 10.1016/j.bbamem.2021.183553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
The covalent OH bonds of water vibrate and absorb radiation in the near infrared (NIR) region at wavelengths that vary according to the strength of the bonds which, at the same time, are sensitive to the number and/or strength of hydrogen bonds. By means of multivariate analytical tools, such spectral shift was exploited to study the effect of temperature, 25-hydroxycholesterol and progesterone on the H-bonded network of water in DMPA membranes. Temperature was found as the dominating factor altering the NIR spectra of water and then the H-bonds. Increasing temperatures disrupt the H-bonds network, strengthening the OH covalent bonds. The disruption of the H-bonds along the 13-58 °C range was noticeably greater than that caused by lipids or steroids at 500 μM. The H-bonded network of the interfacial water in DMPA membranes was disrupted by the presence of 25-hydroxycholesterol, but no significant disruption was observed in the presence of progesterone. The reduction of the H-bonds entails a reduction in the aggregation of the interfacial water by a reduction in the number of H-bonded molecules. It is proposed that the number of water molecules bonded with two H-bonds diminishes and the number of molecules with no H-bond increases roughly at similar proportions, with a constant population of molecules with one H-bond. The opposed effects of steroids are discussed in the context of their opposed effects on the phase state of membranes, the membrane water content and the steroid molecular structure.
Collapse
|
11
|
Impact of Quercetin Encapsulation with Added Phytosterols on Bilayer Membrane and Photothermal-Alteration of Novel Mixed Soy Lecithin-Based Liposome. NANOMATERIALS 2020; 10:nano10122432. [PMID: 33291386 PMCID: PMC7762074 DOI: 10.3390/nano10122432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
Collapse
|
12
|
Ozolina NV, Nesterkina IS, Gurina VV, Nurminsky VN. Non-detergent Isolation of Membrane Structures from Beet Plasmalemma and Tonoplast Having Lipid Composition Characteristic of Rafts. J Membr Biol 2020; 253:479-489. [PMID: 32954443 DOI: 10.1007/s00232-020-00137-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Vacuolar and plasma membranes were isolated by a detergent-free method from beet roots (Beta vulgaris L.), and were fractionated in a sucrose density gradient of 15-60% by high-speed centrifugation at 200,000×g during 18 h. The membrane material distributed over the sucrose density gradient was analyzed for the presence of lipids characteristic of raft structures in different zones of the gradient. The quantitative and qualitative content of lipids and sterols, and the composition of fatty acids were analyzed. Some membrane structures differing in their biochemical characteristics were revealed to be located in different zones of the sucrose gradient. The results of the analysis allowed us to identify three zones in the sucrose gradient after the vacuolar membrane fractionation and two zones in the plasma membrane where membrane structures, which may be defined as rafts for their lipid composition, were presented.
Collapse
Affiliation(s)
- Natalia V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Irina S Nesterkina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Veronika V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Vadim N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia.
| |
Collapse
|
13
|
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J Lipid Res 2020; 61:758-766. [PMID: 31964764 DOI: 10.1194/jlr.ra119000565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.
Collapse
Affiliation(s)
- Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Qing Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215. mailto:
| |
Collapse
|
14
|
Sun S, Adyshev D, Dudek S, Paul A, McColloch A, Cho M. Cholesterol-dependent Modulation of Stem Cell Biomechanics: Application to Adipogenesis. J Biomech Eng 2019; 141:2729412. [PMID: 30901381 DOI: 10.1115/1.4043253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/08/2022]
Abstract
Cell mechanics has been shown to regulate stem cell differentiation. We have previously reported that altered cell stiffness of mesenchymal stem cells can delay or facilitate biochemically directed differentiation. One of the factors that can affect the cell stiffness is cholesterol. However, the effect of cholesterol on differentiation of human mesenchymal stem cells (hMSCs) remains elusive. In this paper, we demonstrate that cholesterol is involved in the modulation of the cell stiffness and subsequent adipogenic differentiation. Rapid cytoskeletal actin reorganization was evident and correlated with the cell's Young's modulus measured using atomic force microscopy (AFM). In addition, the level of membrane-bound cholesterol was found to increase during adipogenic differentiation and inversely varied with the cell stiffness. Furthermore, cholesterol played a key role in the regulation of the cell morphology and biomechanics, suggesting its crucial involvement in mechanotransduction. To better understand the underlying mechanisms, we investigated the effect of cholesterol on the membrane-cytoskeleton linker proteins (ezrin and moesin). Cholesterol depletion was found to up-regulate the ezrin expression which promoted cell spreading, increased Young's modulus, and hindered adipogenesis. In contrast, cholesterol enrichment increased the moesin expression, decreased Young's modulus, and induced cell rounding and facilitated adipogenesis. Taken together, cholesterol appears to regulate the stem cell mechanics and adipogenesis through the membrane-associated linker proteins.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Steve Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Amit Paul
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|
15
|
Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1112-1122. [PMID: 30904407 DOI: 10.1016/j.bbamem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.
Collapse
|
16
|
Mozhdehi D, Luginbuhl KM, Dzuricky M, Costa SA, Xiong S, Huang FC, Lewis MM, Zelenetz SR, Colby CD, Chilkoti A. Genetically Encoded Cholesterol-Modified Polypeptides. J Am Chem Soc 2019; 141:945-951. [PMID: 30608674 DOI: 10.1021/jacs.8b10687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biological systems use post-translational modifications (PTMs) to control the structure, location, and function of proteins after expression. Despite the ubiquity of PTMs in biology, their use to create genetically encoded recombinant biomaterials is limited. We have utilized a natural lipidation PTM (hedgehog-mediated cholesterol modification of proteins) to create a class of hybrid biomaterials called cholesterol-modified polypeptides (CHaMPs) that exhibit programmable self-assembly at the nanoscale. To demonstrate the biomedical utility of CHaMPs, we used this approach to append cholesterol to biologically active peptide exendin-4 that is an approved drug for the treatment of type II diabetes. The exendin-cholesterol conjugate self-assembled into micelles, and these micelles activate the glucagon-like peptide-1 receptor with a potency comparable to that of current gold standard treatments.
Collapse
Affiliation(s)
- Davoud Mozhdehi
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Kelli M Luginbuhl
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Michael Dzuricky
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Simone A Costa
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Fred C Huang
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Mae M Lewis
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Stephanie R Zelenetz
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Christian D Colby
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
17
|
Biophysical methods: Complementary tools to study the influence of human steroid hormones on the liposome membrane properties. Biochimie 2018; 153:13-25. [DOI: 10.1016/j.biochi.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 11/21/2022]
|
18
|
Kaddah S, Khreich N, Kaddah F, Khrouz L, Charcosset C, Greige-Gerges H. Corticoids modulate liposome membrane fluidity and permeability depending on membrane composition and experimental protocol design. Biochimie 2018; 153:33-45. [PMID: 29935242 DOI: 10.1016/j.biochi.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Given that literature data may give inconsistent results on the effect of a drug on lipid membrane properties, this work aims to investigate the impact of the liposome composition and experimental protocol design on glucocorticoids (GRs: cortisol, cortisone, fludrocortisone acetate, methylprednisolone, prednisolone and prednisone)-modulating membrane fluidity and permeability. GRs-loaded liposomes consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) were prepared by reverse phase evaporation technique (REV) at DPPC:CHOL:GR molar ratios of 100:100:2.5, and 100:100:10. The formulations were characterized for their size and homogeneity, encapsulation efficiency and loading rates of GRs, incorporation rates and loading rates of DPPC and CHOL. Changes in DPPC membrane fluidity (CHOL% 0, 10, 20, 30 and 100) after exposure to methylprednisolone were monitored by using 5- and 16-doxyl stearic acids (DSA) as spin probes. For permeability studies, the above-mentioned GRs-loaded liposomes and the preformed liposomes exposed to GRs (2.5 mol%) were compared for the leakage of an encapsulated fluorescent dye, sulforhodamine B (SRB), at 37 °C in buffer (pH 7.5) containing NaCl. The SRB release kinetics were analyzed by the Higuchi model for two release phases (from 0 to 10 h, and from 10 to 48 h). All formulations exhibited a monodispersed size distribution of liposomes with a mean particle value close to 0.4 μm, also the DPPC and CHOL were highly incorporated (>95%). High loading rate values of DPPC and CHOL were also obtained. Except for fludrocortisone acetate (51%) and prednisolone (77%), high loading rate values of GRs were obtained (>81%). Fluidity and permeability studies showed that the GR concentration, CHOL content, experimental protocol design including the period of incubation represent critical parameters to be considered in analyzing the effect of drugs on the membrane properties.
Collapse
Affiliation(s)
- Samar Kaddah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés (LAGEP), Université Claude Bernard, Lyon 1, France
| | - Nathalie Khreich
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Fouad Kaddah
- École Supérieure d'ingénieurs de Beyrouth, Université Saint Joseph, Beyrouth, Mar Roukoz-Dekwaneh, Lebanon
| | - Lhoussain Khrouz
- Laboratoire de Chimie, École Normale Supérieure de Lyon (ENS), Université Claude Bernard, Lyon 1, France
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), Université Claude Bernard, Lyon 1, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon.
| |
Collapse
|
19
|
Zhang X, London E, Raleigh DP. Sterol Structure Strongly Modulates Membrane-Islet Amyloid Polypeptide Interactions. Biochemistry 2018; 57:1868-1879. [PMID: 29373018 DOI: 10.1021/acs.biochem.7b01190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid formation has been implicated in a wide range of human diseases, and the interaction of amyloidogenic proteins with membranes are believed to be important for many of them. In type-2 diabetes, human islet amyloid polypeptide (IAPP) forms amyloids, which contribute to β-cell death and dysfunction in the disease. IAPP-membrane interactions are potential mechanisms of cytotoxicity. In vitro studies have shown that cholesterol significantly modulates the ability of model membranes to induce IAPP amyloid formation and IAPP-mediated membrane damage. It is not known if this is due to the general effects of cholesterol on membranes or because of specific sterol-IAPP interactions. The effects of replacing cholesterol with eight other sterols/steroids on IAPP binding to model membranes, membrane disruption, and membrane-mediated amyloid formation were examined. The primary effect of the sterols/steroids on the IAPP-membrane interactions was found to reflect their effect upon membrane order as judged by fluorescence anisotropy measurements. Specific IAPP-sterol/steroid interactions have smaller effects. The fraction of vesicles that bind IAPP was inversely correlated with the sterols/steroids' effect on membrane order, as was the extent of IAPP-induced membrane leakage and the time to form amyloids. The correlation between the fraction of vesicles binding IAPP and membrane leakage was particularly tight, suggesting the restriction of IAPP to a subset of vesicles is responsible for incomplete leakage.
Collapse
|
20
|
Loiseau C, Cayetanot F, Joubert F, Perrin-Terrin AS, Cardot P, Fiamma MN, Frugiere A, Straus C, Bodineau L. Current Perspectives for the use of Gonane Progesteronergic Drugs in the Treatment of Central Hypoventilation Syndromes. Curr Neuropharmacol 2018; 16:1433-1454. [PMID: 28721821 PMCID: PMC6295933 DOI: 10.2174/1570159x15666170719104605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Central alveolar hypoventilation syndromes (CHS) encompass neurorespiratory diseases resulting from congenital or acquired neurological disorders. Hypercapnia, acidosis, and hypoxemia resulting from CHS negatively affect physiological functions and can be lifethreatening. To date, the absence of pharmacological treatment implies that the patients must receive assisted ventilation throughout their lives. OBJECTIVE To highlight the relevance of determining conditions in which using gonane synthetic progestins could be of potential clinical interest for the treatment of CHS. METHODS The mechanisms by which gonanes modulate the respiratory drive were put into the context of those established for natural progesterone and other synthetic progestins. RESULTS The clinical benefits of synthetic progestins to treat respiratory diseases are mixed with either positive outcomes or no improvement. A benefit for CHS patients has only recently been proposed. We incidentally observed restoration of CO2 chemosensitivity, the functional deficit of this disease, in two adult CHS women by desogestrel, a gonane progestin, used for contraception. This effect was not observed by another group, studying a single patient. These contradictory findings are probably due to the complex nature of the action of desogestrel on breathing and led us to carry out mechanistic studies in rodents. Our results show that desogestrel influences the respiratory command by modulating the GABAA and NMDA signaling in the respiratory network, medullary serotoninergic systems, and supramedullary areas. CONCLUSION Gonanes show promise for improving ventilation of CHS patients, although the conditions of their use need to be better understood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurence Bodineau
- Address correspondence to this author at the Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France; Tel: 33 1 40 77 97 15; Fax: 33 1 40 77 97 89; E-mail:
| |
Collapse
|
21
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Gaibelet G, Tercé F, Allart S, Lebrun C, Collet X, Jamin N, Orlowski S. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Raghunathan K, Wong TH, Chinnapen DJ, Lencer WI, Jobling MG, Kenworthy AK. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains. Biophys J 2016; 111:2547-2550. [PMID: 27914621 DOI: 10.1016/j.bpj.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tiffany H Wong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel J Chinnapen
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Wayne I Lencer
- Harvard Medical School and the Harvard Digestive Diseases Center, Boston, Massachusetts
| | - Michael G Jobling
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
24
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
25
|
Wenz JJ. Molecular properties of steroids involved in their effects on the biophysical state of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2448-59. [DOI: 10.1016/j.bbamem.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
|
26
|
Filomenko R, Fourgeux C, Bretillon L, Gambert-Nicot S. Oxysterols: Influence on plasma membrane rafts microdomains and development of ocular diseases. Steroids 2015; 99:259-65. [PMID: 25683893 DOI: 10.1016/j.steroids.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
Abstract
Oxidation of cholesterol into oxysterols is a major way of elimination of cholesterol from the liver and extrahepatic tissues, including the brain and the retina. Oxysterols are involved in various cellular processes. Numerous links have been established between oxysterols and several disorders such as neurodegenerative pathologies, retinopathies and atherosclerosis. Different components of the lipid layer such as sphingolipids, sterols and proteins participate to membrane fluidity and forme lipid rafts microdomains. Few data are available on the links between lipids rafts and oxysterols. The purpose of this review is to suggest the potential role of lipid rafts microdomains in the development of retinopathies with special emphasis and opening perspectives of their interactions with oxysterols. Actually cholesterol oxidation mechanism may have deleterious effect on its ability to support rafts formation .This review suggest that the effect of oxysterols of lipid rafts would probably depend on the oxysterol molecule and cell type.
Collapse
Affiliation(s)
- Rodolphe Filomenko
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Equipe Œil, Nutrition et Signalisation Cellulaire, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Cynthia Fourgeux
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Equipe Œil, Nutrition et Signalisation Cellulaire, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Lionel Bretillon
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Equipe Œil, Nutrition et Signalisation Cellulaire, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.
| | - Ségolène Gambert-Nicot
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Equipe Œil, Nutrition et Signalisation Cellulaire, F-21000 Dijon, France; CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France; CHU Dijon, Service de Biochimie Clinique, F-21000 Dijon, France
| |
Collapse
|
27
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
28
|
Janeczko A, Oklestkova J, Novak O, Śniegowska-Świerk K, Snaczke Z, Pociecha E. Disturbances in production of progesterone and their implications in plant studies. Steroids 2015; 96:153-63. [PMID: 25676788 DOI: 10.1016/j.steroids.2015.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/08/2015] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Progesterone is a mammalian hormone that has also been discovered in plants but its physiological function in plants is not explained. Experiments using inhibitors of progesterone synthesis and binding would be useful in studies on the significance of this compound in plants. Until now, trilostane and mifepristone have been used in medical sciences as progesterone biosynthesis and binding inhibitors, respectively. We tested these synthetic steroids for the first time in plants and found that they reduced the content of progesterone in wheat. The aim of further experiments was to answer whether the potential disturbances in the production/binding of progesterone, influence resistance to environmental stress (drought) and the development of wheat. Inhibitors and progesterone were applied to plants via roots in a concentration of 0.25-0.5mg/l water. Both inhibitors lowered the activity of CO2 binding enzyme (Rubisco) in wheat exposed to drought stress and trilostane additionally lowered the chlorophyll content. However, trilostane-treated plants were rescued by treatment with exogenous progesterone. The inhibitors also modulated the development of winter wheat, which indicated the significance of steroid regulators and their receptors in this process. In this study, in addition to progesterone and its inhibitors, brassinosteroid (24-epibrassinolide) and an inhibitor of biosynthesis of brassinosteroids were also applied. Mifepristone inhibited the generative development of wheat (like 24-epibrassinolide), while trilostane (like progesterone and an inhibitor of biosynthesis of brassinosteroids) stimulated the development. We propose a model of steroid-induced regulation of the development of winter wheat, where brassinosteroids act as inhibitors of generative development, while progesterone or other pregnane derivatives act as stimulators.
Collapse
Affiliation(s)
- Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | - Zuzanna Snaczke
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Krakow, Poland
| | - Ewa Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Krakow, Poland
| |
Collapse
|
29
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
30
|
Barrantes FJ. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1796-805. [PMID: 25839355 DOI: 10.1016/j.bbamem.2015.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
31
|
Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids 2015; 50:721-34. [PMID: 25804641 DOI: 10.1007/s11745-015-4007-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
Ordered membrane lipid domains rich in sphingolipids and sterols ("lipid rafts") are thought to be important in many biological processes. However, it is often difficult to distinguish domain-dependent biological functions from ones that have a specific dependence on sterol, e.g. are dependent upon a protein with a function that is dependent upon its binding to sterol. Removing cholesterol and replacing it with various sterols with varying abilities to form membrane domains or otherwise alter membrane properties has the potential to help distinguish these cases. This review describes this strategy, and how it has been applied by various investigators to understand cellular functions.
Collapse
|
32
|
Benesch MG, Lewis RN, Mannock DA, McElhaney RN. A DSC and FTIR spectroscopic study of the effects of the epimeric 4,6-cholestadien-3-ols and 4,6-cholestadien-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2014; 183:142-58. [DOI: 10.1016/j.chemphyslip.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
33
|
Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Müller P, Herrmann A, Huster D. Cholesterol's aliphatic side chain modulates membrane properties. Angew Chem Int Ed Engl 2013; 52:12848-51. [PMID: 24382636 PMCID: PMC4011182 DOI: 10.1002/anie.201306753] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/06/2022]
Abstract
The influence of cholesterol's alkyl side chain on membrane properties was studied using a series of synthetic cholesterol derivatives without a side chain or with a branched side chain consisting of 5 to 14 carbon atoms. Cholesterol's side chain is crucial for all membrane properties investigated and therefore essential for the membrane properties of eukaryotic cells.
Collapse
Affiliation(s)
- Holger A. Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Thomas Meyer
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Jörg Nikolaus
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Dong Jae Baek
- Department of Chemistry and Biochemistry, Queens College of CUNY,
Flushing, NY 11367-1597, USA
| | - Ivan Haralampiev
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Lars Thomas
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY,
Flushing, NY 11367-1597, USA
| | - Peter Müller
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Andreas Herrmann
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of
Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
34
|
Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Müller P, Herrmann A, Huster D. Die aliphatische Seitenkette von Cholesterol bestimmt essenzielle Membraneigenschaften. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Habib L, Jraij A, Khreich N, Fessi H, Charcosset C, Greige-Gerges H. Morphological and physicochemical characterization of liposomes loading cucurbitacin E, an anti-proliferative natural tetracyclic triterpene. Chem Phys Lipids 2013; 177:64-70. [PMID: 24291009 DOI: 10.1016/j.chemphyslip.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022]
Abstract
Cucurbitacin E (Cuc E), an oxygenated triterpene molecule, has demonstrated anti-proliferative effect on various cancer cells. Here, we examined the effect of Cuc E on the membrane morphology and properties using differential scanning calorimetry, transmission electron microscopy and atomic force microscopy techniques. Dipalmitoylphosphatidylcholine vesicles were prepared by the thin film hydration method in the absence and presence of Cuc E at molar ratios 100:12 and 100:20. The loading efficiency of Cuc E was found to be higher than 98% upon HPLC analysis. The thermodynamic parameters suggest that Cuc E does not penetrate into the bilayers and interacts with the polar/apolar interface of the lipid membranes. Blank and Cuc E loaded liposomes prepared from a mixture of DPPC/DPPE/DPPG/Cho were imaged by TEM and AFM. Images obtained by TEM revealed unilamellar liposomes for blank and Cuc E loaded liposomes. AFM images showed that the size and the height of Cuc E loaded liposomes were respectively smaller and higher than blank ones. Results suggest that Cuc E produces modifications in the lipid membrane structures.
Collapse
Affiliation(s)
- Lamice Habib
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Alia Jraij
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon
| | - Nathalie Khreich
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon
| | - Hatem Fessi
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon.
| |
Collapse
|
36
|
Son M, London E. The dependence of lipid asymmetry upon polar headgroup structure. J Lipid Res 2013; 54:3385-93. [PMID: 24101657 DOI: 10.1194/jlr.m041749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effect of lipid headgroup structure upon the stability of lipid asymmetry was investigated. Using methyl-β-cyclodextrin -induced lipid exchange, sphingomyelin (SM) was introduced into the outer leaflets of lipid vesicles composed of phosphatidylglycerol, phosphatidylserine (PS), phosphatidylinositol, or cardiolipin, in mixtures of all of these lipids with phosphatidylethanolamine (PE), and in a phosphatidylcholine/phosphatidic acid mixture. Efficient SM exchange (>85% of that expected for complete replacement of the outer leaflet) was obtained for every lipid composition studied. Vesicles containing PE mixed with anionic lipids showed nearly complete asymmetry which did not decay after 1 day of incubation. However, vesicles containing anionic lipids without PE generally only exhibited partial asymmetry, which further decayed after 1 day of incubation. Vesicles containing the anionic lipid PS were an exception, showing nearly complete and stable asymmetry. It is likely that the combination of multiple charged groups on PE and PS inhibit transverse diffusion of these lipids across membranes relative to those lipids that only have one anionic group. Possible explanations of this behavior are discussed. The asymmetry properties of PE and PS may explain some of their functions in plasma membranes.
Collapse
Affiliation(s)
- Mijin Son
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | | |
Collapse
|
37
|
Bishop CV. Progesterone inhibition of oxytocin signaling in endometrium. Front Neurosci 2013; 7:138. [PMID: 23966904 PMCID: PMC3735988 DOI: 10.3389/fnins.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 11/13/2022] Open
Abstract
Expression of the oxytocin receptor (OXTR) in the endometrium of ruminant species is regulated by the ovarian steroids progesterone (P) and estradiol (E). Near the end of the estrous cycle, long-term exposure of endometrial epithelial cells to P results in loss of genomic P receptors (PGRs), leading to an increase in E receptors (ERs). Genomic regulation of the OXTR is mediated via suppression of ER signaling by P. Upon OT binding at the plasma membrane of endometrial cells, a signaling cascade is generated stimulating release of prostaglandin F2α (PGF2α). Transport of PGF2α to the ovary results in release of OT by luteal cells in a positive feedback loop leading to luteal regression. This signaling cascade can be rapidly blocked by exposing endometrial cells to physiologic levels of P. This mini review will focus on the mechanisms by which P may act to block OXTR signaling and the luteolytic cascade in the ruminant endometrium, with special focus on both non-genomic signaling pathways and non-receptor actions of P at the level of the plasma membrane. While this review focuses on ruminant species, non-classical blockage of OXTR signaling may be important for fertility in women.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University Beaverton, OR, USA
| |
Collapse
|
38
|
Son M, London E. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. J Lipid Res 2012; 54:223-31. [PMID: 23093551 DOI: 10.1194/jlr.m032722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains.
Collapse
Affiliation(s)
- Mijin Son
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
39
|
Wenz JJ. Predicting the effect of steroids on membrane biophysical properties based on the molecular structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:896-906. [DOI: 10.1016/j.bbamem.2011.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/26/2023]
|
40
|
Pathak P, London E. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 2011; 101:2417-25. [PMID: 22098740 DOI: 10.1016/j.bpj.2011.08.059] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/15/2022] Open
Abstract
Mixtures of unsaturated lipids, sphingolipids, and cholesterol form coexisting liquid-disordered and sphingolipid and cholesterol-rich liquid-ordered (Lo) phases in water. The detergent Triton X-100 does not readily solubilize Lo domains, but does solubilize liquid-disordered domains, and is commonly used to prepare detergent-resistant membranes from cells and model membranes. However, it has been proposed that in membranes with mixtures of sphingomyelin (SM), 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC), and cholesterol Triton X-100 may induce Lo domain formation, and therefore detergent-resistant membranes may not reflect the presence of preexisting domains. To examine this hypothesis, the effect of Triton on Lo domain formation was measured in SM/POPC/cholesterol vesicles. Nitroxide quenching methods that can detect ordered nanodomains with radii >12 Å showed that in the absence of Triton X-100 this mixture formed ordered state domains that melt with a midpoint (= T(mid)) at ∼45°C. However, T(mid) was lower when detected using various fluorescence resonance energy transfer (FRET) pairs. Furthermore, the T(mid) value was Ro dependent, and decreased as Ro increased. Because FRET can only readily detect domains with radii >Ro, this result can be explained by domain radii that are close to Ro and decrease as temperature increases. An analysis of FRET and quenching data suggests that nanodomain radius gradually decreases from ≥150 Å to <40 Å as temperature increases from 10 to 45°C. Interestingly, the presence of Triton X-100 or a transmembrane-type peptide did not stabilize ordered state formation when detected by nitroxide quenching, i.e., did not increase T(mid). However, FRET-detected T(mid) did increase in the presence of Triton X-100 or a transmembrane peptide, indicating that both increased domain size. Controls showed that the results could not be accounted for by probe-induced perturbations. Thus, SM/POPC/cholesterol, a mixture similar to that in the outer leaflet of plasma membranes, forms nanodomains at physiological temperatures, and TX-100 does not induce domain formation or increase the fraction of the bilayer in the ordered state, although it does increase domain size by coalescing preexisting domains.
Collapse
Affiliation(s)
- Priyadarshini Pathak
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | | |
Collapse
|
41
|
Cheng HT, London E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J 2011; 100:2671-8. [PMID: 21641312 DOI: 10.1016/j.bpj.2011.04.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/11/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022] Open
Abstract
Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80-100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs.
Collapse
Affiliation(s)
- Hui-Ting Cheng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
42
|
Wesołowska O, Michalak K, Hendrich AB. Direct visualization of phase separation induced by phenothiazine-type antipsychotic drugs in model lipid membranes. Mol Membr Biol 2010; 28:103-14. [PMID: 21190429 DOI: 10.3109/09687688.2010.533706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid rafts constitute dynamic assemblies within a bilayer, engaged in, e.g., signal transduction, membrane trafficking and cell polarization. Despite wide interest in the process of domain formation in binary or ternary lipid model systems, only a limited number of papers are devoted to the influence of different additives on this process. In particular, works devoted to the role of drugs in raft formation are missing. In the present study, the influence of trifluoperazine, thioridazine and chlorpromazine on domain organization in raft-mimicking model membranes was investigated. Using giant unilamellar vesicles formed from an equimolar DOPC:sphingomyelin:cholesterol mixture, we found that phenothiazines elevated the number of domains, decreased their area and markedly increased the total length of the domain border. The impact of studied drugs on phase separation in the raft lipid mixture was also confirmed by Laurdan generalized polarization measurements. Alteration of domain organization induced by antipsychotic drugs was very likely to arise from selective accumulation of phenothiazines in interfacial regions between liquid ordered and liquid disordered domains. Interpretation of the results allowed us to demonstrate new aspects underlaying mechanisms of action of phenothiazine-type antipsychotic drugs. To the best of our knowledge, this is the first report demonstrating the influence of drugs on domain morphology directly visualized in giant unilamellar vesicles.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | | |
Collapse
|
43
|
Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem Phys Lipids 2010; 163:586-93. [DOI: 10.1016/j.chemphyslip.2010.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 02/03/2023]
|
44
|
Staneva G, Chachaty C, Wolf C, Quinn PJ. Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith-Lemli-Opitz syndrome. J Lipid Res 2010; 51:1810-22. [PMID: 20147702 DOI: 10.1194/jlr.m003467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phase behavior of egg sphingomyelin (ESM) mixtures with cholesterol or 7-dehydrocholesterol (7-DHC) has been investigated by independent methods: fluorescence microscopy, X-ray diffraction, and electron spin resonance spectroscopy. In giant vesicles, cholesterol-enriched domains appeared as large and clearly delineated domains assigned to a liquid-ordered (Lo) phase. The domains containing 7-DHC were smaller and had more diffuse boundaries. Separation of a gel phase assigned by X-ray examination to pure sphingomyelin domains coexisting with sterol-enriched domains was observed at temperatures less than 38 degrees C in binary mixtures containing 10-mol% sterol. At higher sterol concentrations, the coexistence of liquid-ordered and liquid-disordered phases was evidenced in the temperature range 20 degrees -50 degrees C. Calculated electron density profiles indicated the location of 7-DHC was more loosely defined than cholesterol, which is localized precisely at a particular depth along the bilayer normal. ESR spectra of spin-labeled fatty acid partitioned in the liquid-ordered component showed a similar, high degree of order for both sterols in the center of the bilayer, but it was higher in the coexisting disordered phase for 7-DHC. The differences detected in the models of the lipid membrane matrix are said to initiate the deleterious consequences of the Smith-Lemli-Opitz syndrome.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
45
|
Davis TL, Bott RC, Slough TL, Bruemmer JE, Niswender GD. Progesterone inhibits oxytocin- and prostaglandin F2alpha-stimulated increases in intracellular calcium concentrations in small and large ovine luteal cells. Biol Reprod 2010; 82:282-8. [PMID: 19812299 PMCID: PMC2809223 DOI: 10.1095/biolreprod.109.079970] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/25/2009] [Accepted: 09/16/2009] [Indexed: 11/01/2022] Open
Abstract
There is increasing evidence that the corpus luteum has an important role in regulating its own demise. A series of experiments was performed to study the effects of luteal concentrations of progesterone on the functions of steroidogenic luteal cells. In the first experiment, steroidogenic small luteal cells (SLCs) were separated from endothelial cells, and it was determined that it was the SLCs that contained receptors for oxytocin. Treatment with progesterone (95 muM) for as little as 1 h decreased (P < 0.05) the percentage of SLCs responding to oxytocin (10 muM) with an increase in intracellular concentrations of calcium, and this effect continued for the duration of the experiment. In a second experiment, the response to oxytocin was increased (P < 0.05) by 3 h (but not 1 h) following progesterone removal, with a further increase by 16 h. The ability of 1 muM prostaglandin F(2 alpha) (PGF(2 alpha)) to increase intracellular concentrations of calcium was also decreased (P < 0.05) by progesterone treatment. By 3 h following removal of progesterone, the percentage of steroidogenic large luteal cells (LLCs) responding to PGF(2 alpha) was increased and not different from that observed in cells 16 h after progesterone removal. Finally, cyclodextrins (methyl-beta cyclodextrin [M beta CD]) were used to remove cholesterol from the plasma membrane of luteal cells, and M beta CD loaded with cholesterol was used to put cholesterol back into the plasma membrane of progesterone-treated cells. Treatment with M beta CD reduced (P < 0.05) the responsiveness of SLCs to oxytocin and LLCs to PGF(2 alpha). Use of cholesterol-loaded M beta CD returned the responsiveness of both SLCs and LLCs treated with progesterone to that observed in vehicle (no progesterone)-treated controls. In summary, intraluteal concentrations of progesterone inhibit the ability of oxytocin to increase intracellular concentrations of calcium in SLCs and the ability of PGF(2 alpha) to increase intracellular concentrations of calcium in LLCs. The highest concentration of progesterone appears to act by influencing cholesterol content of the luteal cell membranes.
Collapse
Affiliation(s)
- Tracy L Davis
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | |
Collapse
|
46
|
Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 2009; 284:6079-92. [PMID: 19129198 DOI: 10.1074/jbc.m806077200] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A methyl-beta-cyclodextrin-induced lipid exchange technique was devised to prepare small unilamellar vesicles with stable asymmetric lipid compositions. Asymmetric vesicles that mimic biological membranes were prepared with sphingomyelin (SM) or SM mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) as the predominant lipids in the outer leaflet and dioleoylphosphatidylcholine (DOPC), POPC, 1-palmitoyl-2-oleoyl-phosphatidyl-L-serine (POPS), or POPS mixed with 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) in the inner leaflet. Fluorescence-based assays were developed to confirm lipid asymmetry. Cholesterol was introduced into these vesicles using a second methyl-beta-cyclodextrin exchange step. In asymmetric vesicles composed of SM outside, DOPC inside (SMo/DOPCi) or SM outside, 2:1 mol:mol POPE:POPS inside (SMo/2:1 POPE:POPSi) the outer leaflet SM formed an ordered state with a thermal stability similar to that in pure SM vesicles and significantly greater than that in symmetric vesicles with the same overall lipid composition. Analogous behavior was observed in vesicles containing cholesterol. This shows that an asymmetric lipid distribution like that in eukaryotic plasma membranes can be conducive to ordered domain (raft) formation. Furthermore asymmetric vesicles containing approximately 25 mol % cholesterol formed ordered domains more thermally stable than those in asymmetric vesicles lacking cholesterol, showing that the crucial ability of cholesterol to stabilize ordered domain formation is likely to contribute to ordered domain formation in cell membranes. Additional studies demonstrated that hydrophobic helix orientation is affected by lipid asymmetry with asymmetry favoring formation of the transmembrane configuration. The ability to form asymmetric vesicles represents an important improvement in model membrane studies and should find many applications in the future.
Collapse
Affiliation(s)
- Hui-Ting Cheng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
47
|
A photo-responsive cholesterol capable of inducing a morphological transformation of the liquid-ordered microdomain in lipid bilayers. Colloid Polym Sci 2008. [DOI: 10.1007/s00396-008-1936-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Stormshak F, Bishop CV. BOARD-INVITED REVIEW: Estrogen and progesterone signaling: Genomic and nongenomic actions in domestic ruminants. J Anim Sci 2008; 86:299-315. [DOI: 10.2527/jas.2007-0489] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. Biophys J 2008; 94:3935-44. [PMID: 18234811 DOI: 10.1529/biophysj.107.123224] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the concentration and temperature dependent influence of cholesterol, stigmasterol, and sitosterol on the global structure and the bending fluctuations of fluid dimyristoyl phosphatidylcholine and palmitoyl oleoyl phosphatidylcholine bilayers applying small-angle x-ray scattering, as well as dilatometry and ultrasound velocimetry. Independent of the lipid matrix, cholesterol was found to be most efficient in modulating bilayer thickness and elasticity, followed by sitosterol and stigmasterol. This can be attributed to the additional ethyl groups and double bond at the C(17) alkyl side-chain of the two plant sterols. Hence, it seems that some flexibility of the sterol hydrocarbon chain is needed to accommodate within the lipid bilayer. In addition, we did not observe two populations of membranes within the putative liquid-ordered/liquid-disordered phase coexistence regime of binary sterol/lipid mixtures. Instead, the diffraction patterns could be interpreted in terms of a uniform phase. This lends further support to the idea of compositional fluctuations of unstable sterol rich domains recently brought up by fluorescence microscopy experiments, which contrasts the formation of stable domains within the miscibility gap of binary lipid/sterol mixtures.
Collapse
|
50
|
Bakht O, Delgado J, Amat-Guerri F, Acuña AU, London E. The phenyltetraene lysophospholipid analog PTE-ET-18-OMe as a fluorescent anisotropy probe of liquid ordered membrane domains (lipid rafts) and ceramide-rich membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2213-21. [PMID: 17573036 PMCID: PMC2034443 DOI: 10.1016/j.bbamem.2007.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/13/2007] [Accepted: 05/07/2007] [Indexed: 12/29/2022]
Abstract
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15'-phenylpentadeca-8',10',12',14'-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine) is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333-5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997-10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.
Collapse
Affiliation(s)
- Omar Bakht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|