1
|
Ahmed MZ, Alqahtani AS. Cell surface expression of Ribophorin I, an endoplasmic reticulum protein, over different cell types. Int J Biol Macromol 2024; 264:130278. [PMID: 38373565 DOI: 10.1016/j.ijbiomac.2024.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ribophorin-1 serves as one of the subunits of the oligosaccharyltransferase (OST) complex located in the endoplasmic reticulum (ER). Until now, RPN-1 was considered an ER protein. However, our findings reveal that a minor fraction of RPN-1 escapes from the lumen of the ER and is ectopically expressed on the surface of different cell lines. The precise mechanism of protein translocation is unknown. The expression of RPN-1 was demonstrated through the isolation of membrane proteins using surface biotinylation and sucrose density gradient techniques. The confirmation of RPN-1 was obtained through surface staining using a specific antibody, revealing its expression on various cell lines. Additionally, we examined the expression of RPN-1 in different populations of PBMCs and observed a differential regulation of RPN-1 within PBMC subpopulations. Notably, there was a significant expression of RPN-1 on monocytes and B cells, but there was little to no population of T cells expressing RPN-1. We confirmed the expression of RPN-1 on THP-1, U937, and Jurkat cells. We also confirmed their surface expression through si-RNA knockdown. Our study shows RPN-1 expression on various cell surfaces, suggesting varied regulation among cell types. In the future, we may uncover its roles in immune function, signaling, and differentiation/proliferation.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Wang T, Wang C, Wang J, Wang B. An Intrabody against B-Cell Receptor-Associated Protein 31 (BAP31) Suppresses the Glycosylation of the Epithelial Cell-Adhesion Molecule (EpCAM) via Affecting the Formation of the Sec61-Translocon-Associated Protein (TRAP) Complex. Int J Mol Sci 2023; 24:14787. [PMID: 37834237 PMCID: PMC10572819 DOI: 10.3390/ijms241914787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The epithelial cell-adhesion molecule (EpCAM) is hyperglycosylated in carcinoma tissue and the oncogenic function of EpCAM primarily depends on the degree of glycosylation. Inhibiting EpCAM glycosylation is expected to have an inhibitory effect on cancer. We analyzed the relationship of BAP31 with 84 kinds of tumor-associated antigens and found that BAP31 is positively correlated with the protein level of EpCAM. Triple mutations of EpCAM N76/111/198A, which are no longer modified by glycosylation, were constructed to determine whether BAP31 has an effect on the glycosylation of EpCAM. Plasmids containing different C-termini of BAP31 were constructed to identify the regions of BAP31 that affects EpCAM glycosylation. Antibodies against BAP31 (165-205) were screened from a human phage single-domain antibody library and the effect of the antibody (VH-F12) on EpCAM glycosylation and anticancer was investigated. BAP31 increases protein levels of EpCAM by promoting its glycosylation. The amino acid region from 165 to 205 in BAP31 plays an important role in regulating the glycosylation of EpCAM. The antibody VH-F12 significantly inhibited glycosylation of EpCAM which, subsequently, reduced the adhesion of gastric cancer cells, inducing cytotoxic autophagy, inhibiting the AKT-PI3K-mTOR signaling pathway, and, finally, resulting in proliferation inhibition both in vitro and in vivo. Finally, we clarified that BAP31 plays a key role in promoting N-glycosylation of EpCAM by affecting the Sec61 translocation channels. Altogether, these data implied that BAP31 regulates the N-glycosylation of EpCAM and may represent a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China; (T.W.); (C.W.); (J.W.)
| |
Collapse
|
3
|
Kobayashi A, Hirata T, Shimazaki T, Munesue Y, Aoshima K, Kimura T, Nio-Kobayashi J, Hasebe R, Takeuchi A, Matsuura Y, Kusumi S, Koga D, Iwasaki Y, Kinoshita T, Mohri S, Kitamoto T. A point mutation in GPI-attachment signal peptide accelerates the development of prion disease. Acta Neuropathol 2023; 145:637-650. [PMID: 36879070 DOI: 10.1007/s00401-023-02553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
A missense variant from methionine to arginine at codon 232 (M232R) of the prion protein gene accounts for ~ 15% of Japanese patients with genetic prion diseases. However, pathogenic roles of the M232R substitution for the induction of prion disease have remained elusive because family history is usually absent in patients with M232R. In addition, the clinicopathologic phenotypes of patients with M232R are indistinguishable from those of sporadic Creutzfeldt-Jakob disease patients. Furthermore, the M232R substitution is located in the glycosylphosphatidylinositol (GPI)-attachment signal peptide that is cleaved off during the maturation of prion proteins. Therefore, there has been an argument that the M232R substitution might be an uncommon polymorphism rather than a pathogenic mutation. To unveil the role of the M232R substitution in the GPI-attachment signal peptide of prion protein in the pathogenesis of prion disease, here we generated a mouse model expressing human prion proteins with M232R and investigated the susceptibility to prion disease. The M232R substitution accelerates the development of prion disease in a prion strain-dependent manner, without affecting prion strain-specific histopathologic and biochemical features. The M232R substitution did not alter the attachment of GPI nor GPI-attachment site. Instead, the substitution altered endoplasmic reticulum translocation pathway of prion proteins by reducing the hydrophobicity of the GPI-attachment signal peptide, resulting in the reduction of N-linked glycosylation and GPI glycosylation of prion proteins. To the best of our knowledge, this is the first time to show a direct relationship between a point mutation in the GPI-attachment signal peptide and the development of disease.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
- Department of Biomedical Models, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Tetsuya Hirata
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan
| | - Taishi Shimazaki
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Yoshiko Munesue
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0615, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
- Research Center for Biomedical Models and Animal Welfare, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
4
|
van Lith M, Pringle MA, Fleming B, Gaeta G, Im J, Gilmore R, Bulleid NJ. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J Cell Sci 2021; 134:273533. [PMID: 34734627 PMCID: PMC8645230 DOI: 10.1242/jcs.259340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.
Collapse
Affiliation(s)
- Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bethany Fleming
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giorgia Gaeta
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| | - Jisu Im
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Cellular Protein Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Klein MC, Lerner M, Nguyen D, Pfeffer S, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Channels (Austin) 2021; 14:28-44. [PMID: 32013668 PMCID: PMC7039644 DOI: 10.1080/19336950.2020.1724759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In mammalian cells, one-third of all polypeptides is transported into or through the ER-membrane via the Sec61-channel. While the Sec61-complex facilitates the transport of all polypeptides with amino-terminal signal peptides (SP) or SP-equivalent transmembrane helices (TMH), the translocating chain-associated membrane protein (now termed TRAM1) was proposed to support transport of a subset of precursors. To identify possible determinants of TRAM1 substrate specificity, we systematically identified TRAM1-dependent precursors by analyzing cellular protein abundance changes upon TRAM1 depletion in HeLa cells using quantitative label-free proteomics. In contrast to previous analysis after TRAP depletion, SP and TMH analysis of TRAM1 clients did not reveal any distinguishing features that could explain its putative substrate specificity. To further address the TRAM1 mechanism, live-cell calcium imaging was carried out after TRAM1 depletion in HeLa cells. In additional contrast to previous analysis after TRAP depletion, TRAM1 depletion did not affect calcium leakage from the ER. Thus, TRAM1 does not appear to act as SP- or TMH-receptor on the ER-membrane’s cytosolic face and does not appear to affect the open probability of the Sec61-channel. It may rather play a supportive role in protein transport, such as making the phospholipid bilayer conducive for accepting SP and TMH in the vicinity of the lateral gate of the Sec61-channel. Abbreviations: ER, endoplasmic reticulum; OST, oligosaccharyltransferase; RAMP, ribosome-associated membrane protein; SP, signal peptide; SR, SRP-receptor; SRP, signal recognition particle; TMH, signal peptide-equivalent transmembrane helix; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein.
Collapse
Affiliation(s)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
7
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
8
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
9
|
Abstract
In eukaryotic cells, about one-third of the synthesized proteins are translocated into the endoplasmic reticulum; they are membrane or lumen resident proteins and proteins direct to the Golgi apparatus. The co-translational translocation takes place through the heterotrimeric protein-conducting channel Sec61 which is associated with the ribosome and many accessory components, such as the heterotetrameric translocon-associated protein (TRAP) complex. Recently, microscopic techniques, such as cryo-electron microscopy and cryo-electron tomography, have enabled the determination of the translocation machinery structure. However, at present, there is a lack of understanding regarding the roles of some of its components; indeed, the TRAP complex function during co-translational translocation needs to be established. In addition, TRAP may play a role during unfolded protein response, endoplasmic-reticulum-associated protein degradation and congenital disorder of glycosylation (ssr4 CDG). In this article, I describe the current understanding of the TRAP complex in the light of its possible function(s).
Collapse
Affiliation(s)
- Antonietta Russo
- Medical Biochemistry and Molecular Biology, UKS, University of Saarland, Homburg, Germany
| |
Collapse
|
10
|
Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Biomolecules 2020; 10:biom10040624. [PMID: 32316603 PMCID: PMC7226087 DOI: 10.3390/biom10040624] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell-cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal.
Collapse
|
11
|
Knopf JD, Landscheidt N, Pegg CL, Schulz BL, Kühnle N, Chao CW, Huck S, Lemberg MK. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J Cell Sci 2020; 133:jcs243790. [PMID: 32005703 DOI: 10.1242/jcs.243790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 08/31/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nina Landscheidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chao-Wei Chao
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Huck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Tamana S, Promponas VJ. An updated view of the oligosaccharyltransferase complex in Plasmodium. Glycobiology 2019; 29:385-396. [PMID: 30835280 DOI: 10.1093/glycob/cwz011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/27/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
Despite the controversy regarding the importance of protein N-linked glycosylation in species of the genus Plasmodium, genes potentially encoding core subunits of the oligosaccharyltransferase (OST) complex have already been characterized in completely sequenced genomes of malaria parasites. Nevertheless, the currently established notion is that only four out of eight subunits of the OST complex-which is considered conserved across eukaryotes-are present in Plasmodium species. In this study, we carefully conduct computational analysis to provide unequivocal evidence that all components of the OST complex, with the exception of Swp1/Ribophorin II, can be reliably identified within completely sequenced plasmodial genomes. In fact, most of the subunits currently considered as absent from Plasmodium refer to uncharacterized protein sequences already existing in sequence databases. Interestingly, the main reason why the unusually short Ost4 subunit (36 residues long in yeast) has not been identified so far in plasmodia (and possibly other species) is the failure of gene-prediction pipelines to detect such a short coding sequence. We further identify elusive OST subunits in select protist species with completely sequenced genomes. Thus, our work highlights the necessity of a systematic approach towards the characterization of OST subunits across eukaryotes. This is necessary both for obtaining a concrete picture of the evolution of the OST complex but also for elucidating its possible role in eukaryotic pathogens.
Collapse
Affiliation(s)
- Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, CY, Nicosia, Cyprus
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, CY, Nicosia, Cyprus
| |
Collapse
|
13
|
Harada Y, Ohkawa Y, Kizuka Y, Taniguchi N. Oligosaccharyltransferase: A Gatekeeper of Health and Tumor Progression. Int J Mol Sci 2019; 20:ijms20236074. [PMID: 31810196 PMCID: PMC6929149 DOI: 10.3390/ijms20236074] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Oligosaccharyltransferase (OST) is a multi-span membrane protein complex that catalyzes the addition of glycans to selected Asn residues within nascent polypeptides in the lumen of the endoplasmic reticulum. This process, termed N-glycosylation, is a fundamental post-translational protein modification that is involved in the quality control, trafficking of proteins, signal transduction, and cell-to-cell communication. Given these crucial roles, N-glycosylation is essential for homeostasis at the systemic and cellular levels, and a deficiency in genes that encode for OST subunits often results in the development of complex genetic disorders. A growing body of evidence has also demonstrated that the expression of OST subunits is cell context-dependent and is frequently altered in malignant cells, thus contributing to tumor cell survival and proliferation. Importantly, a recently developed inhibitor of OST has revealed this enzyme as a potential target for the treatment of incurable drug-resistant tumors. This review summarizes our current knowledge regarding the functions of OST in the light of health and tumor progression, and discusses perspectives on the clinical relevance of inhibiting OST as a tumor treatment.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
- Correspondence: ; Tel.: +81-6-6945-1181
| |
Collapse
|
14
|
Comprehensive Interactome Analysis Reveals that STT3B Is Required for N-Glycosylation of Lassa Virus Glycoprotein. J Virol 2019; 93:JVI.01443-19. [PMID: 31511384 PMCID: PMC6854512 DOI: 10.1128/jvi.01443-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022] Open
Abstract
Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future. Lassa virus (LASV) is the causative agent of a fatal hemorrhagic fever in humans. The glycoprotein (GP) of LASV mediates viral entry into host cells, and correct processing and modification of GP by host factors is a prerequisite for virus replication. Here, using an affinity purification-coupled mass spectrometry (AP-MS) strategy, 591 host proteins were identified as interactors of LASV GP. Gene ontology analysis was performed to functionally annotate these proteins, and the oligosaccharyltransferase (OST) complex was highly enriched. Functional studies conducted by using CRISPR-Cas9-mediated knockouts showed that STT3A and STT3B, the two catalytically active isoforms of the OST complex, are essential for the propagation of the recombinant arenavirus rLCMV/LASV glycoprotein precursor, mainly via affecting virus infectivity. Knockout of STT3B, but not STT3A, caused hypoglycosylation of LASV GP, indicating a preferential requirement of LASV for the STT3B-OST isoform. Furthermore, double knockout of magnesium transporter 1 (MAGT1) and tumor suppressor candidate 3 (TUSC3), two specific subunits of STT3B-OST, also caused hypoglycosylation of LASV GP and affected virus propagation. Site-directed mutagenesis analysis revealed that the oxidoreductase CXXC active-site motif of MAGT1 or TUSC3 is essential for the glycosylation of LASV GP. NGI-1, a small-molecule OST inhibitor, can effectively reduce virus infectivity without affecting cell viability. The STT3B-dependent N-glycosylation of GP is conserved among other arenaviruses, including both the Old World and New World groups. Our study provided a systematic view of LASV GP-host interactions and revealed the preferential requirement of STT3B for LASV GP N-glycosylation. IMPORTANCE Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future.
Collapse
|
15
|
Ng BG, Lourenço CM, Losfeld ME, Buckingham KJ, Kircher M, Nickerson DA, Shendure J, Bamshad MJ, Freeze HH. Mutations in the translocon-associated protein complex subunit SSR3 cause a novel congenital disorder of glycosylation. J Inherit Metab Dis 2019; 42:993-997. [PMID: 30945312 PMCID: PMC6739144 DOI: 10.1002/jimd.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
The translocon-associated protein (TRAP) complex facilitates the translocation of proteins across the endoplasmic reticulum membrane and associates with the oligosaccharyl transferase (OST) complex to maintain proper glycosylation of nascent polypeptides. Pathogenic variants in either complex cause a group of rare genetic disorders termed, congenital disorders of glycosylation (CDG). We report an individual who presented with severe intellectual and developmental disabilities and sensorineural deafness with an unsolved type I CDG, and sought to identify the underlying genetic basis. Exome sequencing identified a novel homozygous variant c.278_281delAGGA [p.Glu93Valfs*7] in the signal sequence receptor 3 (SSR3) subunit of the TRAP complex. Biochemical studies in patient fibroblasts showed the variant destabilized the TRAP complex with a complete loss of SSR3 protein and partial loss of SSR1 and SSR4. Importantly, all subunit levels were corrected by expression of wild-type SSR3. Abnormal glycosylation status in fibroblasts was confirmed using two markers proteins, GP130 and ICAM1. Our findings confirm mutations in SSR3 cause a novel CDG. A novel frameshift variant in the translocon associated protein, SSR3, disrupts the stability of the TRAP complex and causes a novel Congenital Disorder of Glycosylation.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Charles Marques Lourenço
- Clinical Genetics and Neurogenetics, Centro Universitario Estacio de Ribeirao Preto, Ribeirao Preto, Brazil
| | - Marie-Estelle Losfeld
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Corresponding author: Hudson H. Freeze PhD, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd. La Jolla, CA 92037, Phone: 858-646-3142;
| |
Collapse
|
16
|
Shrimal S, Cherepanova NA, Mandon EC, Venev SV, Gilmore R. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell 2019; 30:2626-2638. [PMID: 31433728 PMCID: PMC6761772 DOI: 10.1091/mbc.e19-06-0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammalian cells express two oligosaccharyltransferase complexes, STT3A and STT3B, that have distinct roles in N-linked glycosylation. The STT3A complex interacts directly with the protein translocation channel to mediate glycosylation of proteins using an N-terminal-to-C-terminal scanning mechanism. N-linked glycosylation of proteins in budding yeast has been assumed to be a cotranslational reaction. We have compared glycosylation of several glycoproteins in yeast and mammalian cells. Prosaposin, a cysteine-rich protein that contains STT3A-dependent glycosylation sites, is poorly glycosylated in yeast cells and STT3A-deficient human cells. In contrast, a protein with extreme C-terminal glycosylation sites was efficiently glycosylated in yeast by a posttranslocational mechanism. Posttranslocational glycosylation was also observed for carboxypeptidase Y-derived reporter proteins that contain closely spaced acceptor sites. A comparison of two recent protein structures indicates that the yeast OST is unable to interact with the yeast heptameric Sec complex via an evolutionarily conserved interface due to occupation of the OST binding site by the Sec63 protein. The efficiency of glycosylation in yeast is not enhanced for proteins that are translocated by the Sec61 or Ssh1 translocation channels instead of the Sec complex. We conclude that N-linked glycosylation and protein translocation are not directly coupled in yeast cells.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
17
|
Lee Y, Eum H, Lee D, Lee S, Song Y, Kang SW. Mutant-selective topologic conversion facilitates selective degradation of a pathogenic prion isoform. Cell Death Differ 2019; 27:284-296. [PMID: 31127199 PMCID: PMC7205900 DOI: 10.1038/s41418-019-0354-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
Regulating protein import across the endoplasmic reticulum (ER) membrane occasionally results in the synthesis of topologically unnatural variants, and their accumulation often leads to proteotoxicity. However, since this is a regulated process, it is questionable whether the topological rearrangement really has adverse consequences. In the present study, we provide an insight into the functional benefit of translocational regulation by illustrating mutant-selective topologic conversion (MSTC) and demonstrate that MSTC contributes to selective degradation of a membrane-anchored prion protein isoform (ctmPrP). We find that ctmPrP is inherently short-lived and topologically competent for degradation rather than accumulation. MSTC achieves, cotranslationally, the unique topology of ctmPrP during translocation, facilitating selective ctmPrP degradation from the ER via the proteasome-dependent pathway before entering the secretory pathway. At this time, the N-terminal polycationic cluster is essential for MSTC, and its cytosolic exposure acquires “ERAD-degron”-like activity for ctmPrP. Bypassing MSTC delays ctmPrP degradation, thus increasing prion proteotoxicity. Thus, topological rearrangement is used for the MSTC as a part of the protein quality control pathway to ensure the safety of the secretory pathway from misfolded PrP.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hongsik Eum
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
19
|
Hoffman AM, Chen Q, Zheng T, Nicchitta CV. Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. J Biol Chem 2019; 294:8942-8958. [PMID: 31004035 DOI: 10.1074/jbc.ra119.007996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a nexus for mRNA localization and translation, and recent studies have demonstrated that ER-bound ribosomes also play a transcriptome-wide role in regulating proteome composition. The Sec61 translocon (SEC61) serves as the receptor for ribosomes that translate secretory/integral membrane protein-encoding mRNAs, but whether SEC61 also serves as a translation site for cytosolic protein-encoding mRNAs remains unknown. Here, using a BioID proximity-labeling approach in HEK293T Flp-In cell lines, we examined interactions between ER-resident proteins and ribosomes in vivo Using in vitro analyses, we further focused on bona fide ribosome interactors (i.e. SEC61) and ER proteins (ribophorin I, leucine-rich repeat-containing 59 (LRRC59), and SEC62) previously implicated in associating with ribosomes. We observed labeling of ER-bound ribosomes with the SEC61β and LRRC59 BioID reporters, comparatively modest labeling with the ribophorin I reporter, and no labeling with the SEC62 reporter. A biotin pulse-chase/subcellular fractionation approach to examine ribosome exchange at the SEC61β and LRRC59 sites revealed that, at steady state, ribosomes at these sites comprise both rapid- and slow-exchanging pools. Global translational initiation arrest elicited by the inhibitor harringtonine accelerated SEC61β reporter-labeled ribosome exchange. RNA-Seq analyses of the mRNAs associated with SEC61β- and LRRC59-labeled ribosomes revealed both site-enriched and shared mRNAs and further established that the ER has a transcriptome-wide role in regulating proteome composition. These results provide evidence that ribosomes interact with the ER membrane via multiple modes and suggest regulatory mechanisms that control global proteome composition via ER membrane-bound ribosomes.
Collapse
Affiliation(s)
| | - Qiang Chen
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Tianli Zheng
- Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Christopher V Nicchitta
- From the Departments of Biochemistry and .,Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
20
|
Castilho A, Beihammer G, Pfeiffer C, Göritzer K, Montero‐Morales L, Vavra U, Maresch D, Grünwald‐Gruber C, Altmann F, Steinkellner H, Strasser R. An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1700-1709. [PMID: 29479800 PMCID: PMC6131413 DOI: 10.1111/pbi.12906] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/15/2017] [Accepted: 02/06/2018] [Indexed: 05/19/2023]
Abstract
N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central-protein complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N-glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single-subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well-established production platform for recombinant proteins. A fluorescent protein-tagged LmSTT3D variant was predominately found in the ER and co-located with plant oligosaccharyltransferase subunits. Co-expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N-glycosylation site occupancy on all N-glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N-glycosylation efficiency in plants.
Collapse
Affiliation(s)
- Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gernot Beihammer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Christina Pfeiffer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Laura Montero‐Morales
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
21
|
Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J, Zimmermann R. Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat Commun 2018; 9:3765. [PMID: 30217974 PMCID: PMC6138672 DOI: 10.1038/s41467-018-06188-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
In mammalian cells, one-third of all polypeptides are transported into or across the ER membrane via the Sec61 channel. While the Sec61 complex facilitates translocation of all polypeptides with amino-terminal signal peptides (SP) or transmembrane helices, the Sec61-auxiliary translocon-associated protein (TRAP) complex supports translocation of only a subset of precursors. To characterize determinants of TRAP substrate specificity, we here systematically identify TRAP-dependent precursors by analyzing cellular protein abundance changes upon TRAP depletion using quantitative label-free proteomics. The results are validated in independent experiments by western blotting, quantitative RT-PCR, and complementation analysis. The SPs of TRAP clients exhibit above-average glycine-plus-proline content and below-average hydrophobicity as distinguishing features. Thus, TRAP may act as SP receptor on the ER membrane’s cytosolic face, recognizing precursor polypeptides with SPs of high glycine-plus-proline content and/or low hydrophobicity, and triggering substrate-specific opening of the Sec61 channel through interactions with the ER-lumenal hinge of Sec61α. While Sec61 enables ER import of all polypeptides with N-terminal signal peptides, only selected clients are accepted for TRAP-assisted ER import. Here, the authors use a proteomics approach to characterize TRAP-dependent clients, identifying signal peptide features that govern recognition by TRAP.
Collapse
Affiliation(s)
- Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Regine Stutz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Stefan Schorr
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152, Martinsried, Germany
| | - Hudson H Freeze
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany.
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
22
|
Nagashima Y, von Schaewen A, Koiwa H. Function of N-glycosylation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:70-79. [PMID: 30080642 DOI: 10.1016/j.plantsci.2018.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Protein N-glycosylation is one of the major post-translational modifications in eukaryotic cells. In lower unicellular eukaryotes, the known functions of N-glycans are predominantly in protein folding and quality control within the lumen of the endoplasmic reticulum (ER). In multicellular organisms, complex N-glycans are important for developmental programs and immune responses. However, little is known about the functions of complex N-glycans in plants. Formed in the Golgi apparatus, plant complex N-glycans have structures distinct from their animal counterparts due to a set of glycosyltransferases unique to plants. Severe basal underglycosylation in the ER lumen induces misfolding of newly synthesized proteins, which elicits the unfolded protein response (UPR) and ER protein quality control (ERQC) pathways. The former promotes higher capacity of proper protein folding and the latter degradation of misfolded proteins to clear the ER. Although our knowledge on plant complex N-glycan functions is limited, genetic studies revealed the importance of complex N-glycans in cellulose biosynthesis and growth under stress.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
23
|
Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. Cell Chem Biol 2018; 25:1231-1241.e4. [PMID: 30078634 DOI: 10.1016/j.chembiol.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.
Collapse
|
24
|
Harada Y. The Early Stages of Asparagine-Linked Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1807.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoichiro Harada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
25
|
Harada Y. The Early Stages of Asparagine-Linked Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1807.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoichiro Harada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
26
|
Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 2018; 359:545-550. [PMID: 29301962 DOI: 10.1126/science.aar5140] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
Abstract
Oligosaccharyltransferase (OST) is an essential membrane protein complex in the endoplasmic reticulum, where it transfers an oligosaccharide from a dolichol-pyrophosphate-activated donor to glycosylation sites of secretory proteins. Here we describe the atomic structure of yeast OST determined by cryo-electron microscopy, revealing a conserved subunit arrangement. The active site of the catalytic STT3 subunit points away from the center of the complex, allowing unhindered access to substrates. The dolichol-pyrophosphate moiety binds to a lipid-exposed groove of STT3, whereas two noncatalytic subunits and an ordered N-glycan form a membrane-proximal pocket for the oligosaccharide. The acceptor polypeptide site faces an oxidoreductase domain in stand-alone OST complexes or is immediately adjacent to the translocon, suggesting how eukaryotic OSTs efficiently glycosylate a large number of polypeptides before their folding.
Collapse
Affiliation(s)
- Rebekka Wild
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jillianne Eyring
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elsy M Ngwa
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
27
|
Kitajima T, Xue W, Liu YS, Wang CD, Liu SS, Fujita M, Gao XD. Construction of green fluorescence protein mutant to monitor STT3B-dependent N-glycosylation. FEBS J 2017; 285:915-928. [PMID: 29282902 DOI: 10.1111/febs.14375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/06/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Oligosaccharyltransferases (OSTs) mediate the en bloc transfer of N-glycan intermediates onto the asparagine residue in glycosylation sequons (N-X-S/T, X≠P). These enzymes are typically heteromeric complexes composed of several membrane-associated subunits, in which STT3 is highly conserved as a catalytic core. Metazoan organisms encode two STT3 genes (STT3A and STT3B) in their genome, resulting in the formation of at least two distinct OST isoforms consisting of shared subunits and complex specific subunits. The STT3A isoform of OST primarily glycosylates substrate polypeptides cotranslationally, whereas the STT3B isoform is involved in cotranslational and post-translocational glycosylation of sequons that are skipped by the STT3A isoform. Here, we describe mutant constructs of monomeric enhanced green fluorescent protein (mEGFP), which are susceptible to STT3B-dependent N-glycosylation. The endoplasmic reticulum-localized mEGFP (ER-mEGFP) mutants contained an N-glycosylation sequon at their C-terminus and exhibited increased fluorescence in response to N-glycosylation. Isoform-specific glycosylation of the constructs was confirmed by using STT3A- or STT3B-knockout cell lines. Among the mutant constructs that we tested, the ER-mEGFP mutant containing the N185 -C186 -T187 sequon was the best substrate for the STT3B isoform in terms of glycosylation efficiency and fluorescence change. Our results suggest that the mutant ER-mEGFP is useful for monitoring STT3B-dependent post-translocational N-glycosylation in cells of interest, such as those from putative patients with a congenital disorder of glycosylation.
Collapse
Affiliation(s)
- Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Xue
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chun-Di Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Si-Si Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Hamieh A, Cartier D, Abid H, Calas A, Burel C, Bucharles C, Jehan C, Grumolato L, Landry M, Lerouge P, Anouar Y, Lihrmann I. Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Rep 2017; 18:1935-1946. [PMID: 28928140 DOI: 10.15252/embr.201643504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein T (SelT) is a recently characterized thioredoxin-like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone-producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum-associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT-membrane protein interactions, we sort keratinocyte-associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A-type OST complex which are depleted after SelT knockdown leading to POMC N-glycosylation defects. This study identifies SelT as a novel subunit of the A-type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.
Collapse
Affiliation(s)
- Abdallah Hamieh
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Houssni Abid
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Carole Burel
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Christine Bucharles
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cedric Jehan
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Luca Grumolato
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Patrice Lerouge
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France .,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
29
|
Shrimal S, Cherepanova NA, Gilmore R. DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon. J Cell Biol 2017; 216:3625-3638. [PMID: 28860277 PMCID: PMC5674889 DOI: 10.1083/jcb.201702159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The STT3A isoform of the oligosaccharyltransferase is adjacent to the protein translocation channel to catalyze co-translational N-glycosylation of proteins in the endoplasmic reticulum. Shrimal et al. show that the DC2 and KCP2 subunits of the STT3A isoform of the oligosaccharyltransferase are responsible for mediating the interaction between the STT3A complex and the protein translocation channel to allow co-translational N-glycosylation of proteins. In metazoan organisms, the STT3A isoform of the oligosaccharyltransferase is localized adjacent to the protein translocation channel to catalyze co-translational N-linked glycosylation of proteins in the endoplasmic reticulum. The mechanism responsible for the interaction between the STT3A complex and the translocation channel has not been addressed. Using genetically modified human cells that are deficient in DC2 or KCP2 proteins, we show that loss of DC2 causes a defect in co-translational N-glycosylation of proteins that mimics an STT3A−/− phenotype. Biochemical analysis showed that DC2 and KCP2 are responsible for mediating the interaction between the protein translocation channel and the STT3A complex. Importantly, DC2- and KCP2-deficient STT3A complexes are stable and enzymatically active. Deletion mutagenesis revealed that a conserved motif in the C-terminal tail of DC2 is critical for assembly into the STT3A complex, whereas the lumenal loop and the N-terminal cytoplasmic segment are necessary for the functional interaction between the STT3A and Sec61 complexes.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
30
|
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108:383-393. [PMID: 28363604 DOI: 10.1016/j.freeradbiomed.2017.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, Baumeister W, Zimmermann R, Freeze HH, Engel BD, Förster F. Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 2017; 8:14516. [PMID: 28218252 PMCID: PMC5321747 DOI: 10.1038/ncomms14516] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic cells, one-third of all proteins must be transported across or inserted into the endoplasmic reticulum (ER) membrane by the ER protein translocon. The translocon-associated protein (TRAP) complex is an integral component of the translocon, assisting the Sec61 protein-conducting channel by regulating signal sequence and transmembrane helix insertion in a substrate-dependent manner. Here we use cryo-electron tomography (CET) to study the structure of the native translocon in evolutionarily divergent organisms and disease-linked TRAP mutant fibroblasts from human patients. The structural differences detected by subtomogram analysis form a basis for dissecting the molecular organization of the TRAP complex. We assign positions to the four TRAP subunits within the complex, providing insights into their individual functions. The revealed molecular architecture of a central translocon component advances our understanding of membrane protein biogenesis and sheds light on the role of TRAP in human congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johanna Dudek
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
32
|
Bañó-Polo M, Martínez-Garay CA, Grau B, Martínez-Gil L, Mingarro I. Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:903-909. [PMID: 28132902 DOI: 10.1016/j.bbamem.2017.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Translocon-associated protein (TRAP) complex is intimately associated with the ER translocon for the insertion or translocation of newly synthesised proteins in eukaryotic cells. The TRAP complex is comprised of three single-spanning and one multiple-spanning subunits. We have investigated the membrane insertion and topology of the multiple-spanning TRAP-γ subunit by glycosylation mapping and green fluorescent protein fusions both in vitro and in cell cultures. Results demonstrate that TRAP-γ has four transmembrane (TM) segments, an Nt/Ct cytosolic orientation and that the less hydrophobic TM segment inserts efficiently into the membrane only in the cellular context of full-length protein.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Carlos A Martínez-Garay
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Brayan Grau
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain.
| |
Collapse
|
33
|
Silverman JM, Imperiali B. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. J Biol Chem 2016; 291:22001-22010. [PMID: 27573243 DOI: 10.1074/jbc.m116.747121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Site selectivity of protein N-linked glycosylation is dependent on many factors, including accessibility of the modification site, amino acid composition of the glycosylation consensus sequence, and cellular localization of target proteins. Previous studies have shown that the bacterial oligosaccharyltransferase, PglB, of Campylobacter jejuni favors acceptor proteins with consensus sequences ((D/E)X1NX2(S/T), where X1,2 ≠ proline) in flexible, solvent-exposed motifs; however, several native glycoproteins are known to harbor consensus sequences within structured regions of the acceptor protein, suggesting that unfolding or partial unfolding is required for efficient N-linked glycosylation in the native environment. To derive insight into these observations, we generated structural homology models of the N-linked glycoproteome of C. jejuni This evaluation highlights the potential diversity of secondary structural conformations of previously identified N-linked glycosylation sequons. Detailed assessment of PglB activity with a structurally characterized acceptor protein, PEB3, demonstrated that this natively folded substrate protein is not efficiently glycosylated in vitro, whereas structural destabilization increases glycosylation efficiency. Furthermore, in vivo glycosylation studies in both glyco-competent Escherichia coli and the native system, C. jejuni, revealed that efficient glycosylation of glycoproteins, AcrA and PEB3, depends on translocation to the periplasmic space via the general secretory pathway. Our studies provide quantitative evidence that many acceptor proteins are likely to be N-linked-glycosylated before complete folding and suggest that PglB activity is coupled to general secretion-mediated translocation to the periplasm. This work extends our understanding of the molecular mechanisms underlying N-linked glycosylation in bacteria.
Collapse
Affiliation(s)
- Julie Michelle Silverman
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barbara Imperiali
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
34
|
Pfeffer S, Dudek J, Zimmermann R, Förster F. Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane. Biochim Biophys Acta Gen Subj 2016; 1860:2122-9. [PMID: 27373685 DOI: 10.1016/j.bbagen.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND In eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex. SCOPE OF REVIEW The aim of this review is to summarize the current structural knowledge about protein translocon components in mammals. MAJOR CONCLUSIONS Various structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation. GENERAL SIGNIFICANCE The protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany
| | - Johanna Dudek
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Richard Zimmermann
- Saarland University, Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| | - Friedrich Förster
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany; Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
35
|
Cherepanova N, Shrimal S, Gilmore R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 2016; 41:57-65. [PMID: 27085638 DOI: 10.1016/j.ceb.2016.03.021] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 01/17/2023]
Abstract
As a major site of protein biosynthesis, homeostasis of the endoplasmic reticulum is critical for cell viability. Asparagine linked glycosylation of newly synthesized proteins by the oligosaccharyltransferase plays a central role in ER homeostasis due to the use of protein-linked oligosaccharides as recognition and timing markers for glycoprotein quality control pathways that discriminate between correctly folded proteins and terminally malfolded proteins destined for ER associated degradation. Recent findings indicate how the oligosaccharyltransferase achieves efficient and accurate glycosylation of the diverse proteins that enter the endoplasmic reticulum. In metazoan organisms two distinct OST complexes cooperate to maximize the glycosylation of nascent proteins. The STT3B complex glycosylates acceptor sites that have been skipped by the translocation channel associated STT3A complex.
Collapse
Affiliation(s)
- Natalia Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
36
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
37
|
Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci Rep 2016; 6:20946. [PMID: 26864433 PMCID: PMC4750078 DOI: 10.1038/srep20946] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 02/01/2023] Open
Abstract
Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. Metazoan organisms express two oligosaccharyltransferase complexes that are composed of a catalytic subunit (STT3A or STT3B) assembled with a shared set of accessory subunits and one to two complex specific subunits. siRNA mediated knockdowns of STT3A and STT3B in HeLa cells have shown that the two OST complexes have partially non-overlapping roles in N-linked glycosylation. However, incomplete siRNA mediated depletion of STT3A or STT3B reduces the impact of OST complex loss, thereby complicating the interpretation of experimental results. Here, we have used the CRISPR/Cas9 gene editing technology to create viable HEK293 derived cells lines that are deficient for a single catalytic subunit (STT3A or STT3B) or two STT3B-specific accessory subunits (MagT1 and TUSC3). Analysis of protein glycosylation in the STT3A, STT3B and MagT1/TUSC3 null cell lines revealed that these cell lines are superior tools for investigating the in vivo role and substrate preferences of the STT3A and STT3B complexes.
Collapse
|
38
|
Ng BG, Raymond K, Kircher M, Buckingham KJ, Wood T, Shendure J, Nickerson DA, Bamshad MJ, Wong JTS, Monteiro FP, Graham BH, Jackson S, Sparkes R, Scheuerle AE, Cathey S, Kok F, Gibson JB, Freeze HH. Expanding the Molecular and Clinical Phenotype of SSR4-CDG. Hum Mutat 2015; 36:1048-51. [PMID: 26264460 DOI: 10.1002/humu.22856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/02/2015] [Indexed: 01/16/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of mostly autosomal recessive disorders primarily characterized by neurological abnormalities. Recently, we described a single CDG patient with a de novo mutation in the X-linked gene, Signal Sequence Receptor 4 (SSR4). We performed whole-exome sequencing to identify causal variants in several affected individuals who had either an undifferentiated neurological disorder or unsolved CDG of unknown etiology based on abnormal transferrin glycosylation. We now report eight affected males with either de novo (4) or inherited (4) loss of function mutations in SSR4. Western blot analysis revealed that the mutations caused a complete loss of SSR4 protein. In nearly all cases, the abnormal glycosylation of serum transferrin was only slightly above the accepted normal cutoff range.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford - Burnham - Prebys Medical Discovery Institute, La Jolla, California
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Kati J Buckingham
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Tim Wood
- Department of Clinical Genetics, Greenwood Genetic Center, Charleston Office, North Charleston, South Caroline
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - Jonathan T S Wong
- Human Genetics Program, Sanford - Burnham - Prebys Medical Discovery Institute, La Jolla, California
| | - Fabiola Paoli Monteiro
- Department of Medical Genetics, University of Campinas (UNICAMP), São Paulo, Brazil.,Mendelics Genomic Analysis, São Paulo, São Paulo, Brazil
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sheryl Jackson
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Rebecca Sparkes
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Angela E Scheuerle
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sara Cathey
- Department of Clinical Genetics, Greenwood Genetic Center, Charleston Office, North Charleston, South Caroline
| | - Fernando Kok
- Mendelics Genomic Analysis, São Paulo, São Paulo, Brazil.,Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - James B Gibson
- Clinical and Metabolic Genetics, Specially for Children, Austin, Texas
| | - Hudson H Freeze
- Human Genetics Program, Sanford - Burnham - Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
39
|
Abstract
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
Collapse
|
40
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
41
|
Conti BJ, Devaraneni PK, Yang Z, David LL, Skach WR. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol Cell 2015; 58:269-83. [PMID: 25801167 DOI: 10.1016/j.molcel.2015.02.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/08/2015] [Accepted: 02/10/2015] [Indexed: 01/19/2023]
Abstract
The ER Sec61 translocon is a large macromolecular machine responsible for partitioning secretory and membrane polypeptides into the lumen, cytosol, and lipid bilayer. Because the Sec61 protein-conducting channel has been isolated in multiple membrane-derived complexes, we determined how the nascent polypeptide modulates translocon component associations during defined cotranslational translocation events. The model substrate preprolactin (pPL) was isolated principally with Sec61αβγ upon membrane targeting, whereas higher-order complexes containing OST, TRAP, and TRAM were stabilized following substrate translocation. Blocking pPL translocation by passenger domain folding favored stabilization of an alternate complex that contained Sec61, Sec62, and Sec63. Moreover, Sec62/63 stabilization within the translocon occurred for native endogenous substrates, such as the prion protein, and correlated with a delay in translocation initiation. These data show that cotranslational translocon contacts are ultimately controlled by the engaged nascent chain and the resultant substrate-driven translocation events.
Collapse
Affiliation(s)
- Brian J Conti
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Prasanna K Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA; Cystic Fibrosis Foundation Therapeutics, Inc., Bethesda, MD 20814, USA
| |
Collapse
|
42
|
Shrimal S, Gilmore R. Reduced expression of the oligosaccharyltransferase exacerbates protein hypoglycosylation in cells lacking the fully assembled oligosaccharide donor. Glycobiology 2015; 25:774-83. [PMID: 25792706 DOI: 10.1093/glycob/cwv018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
A defect in the assembly of the oligosaccharide donor (Dol-PP-GlcNAc(2)Man(9)Glc(3)) for N-linked glycosylation causes hypoglycosylation of proteins by the oligosaccharyltransferase (OST). Mammalian cells express two OST complexes that have different catalytic subunits (STT3A or STT3B). We monitored glycosylation of proteins in asparagine-linked glycosylation 6 (ALG6) deficient cell lines that assemble Dol-PP-GlcNAc(2)Man(9) as the largest oligosaccharide donor. Based upon pulse labeling experiments, 30-40% of STT3A-dependent glycosylation sites and 20% of STT3B-dependent sites are skipped in ALG6-congenital disorders of glycosylation fibroblasts supporting previous evidence that the STT3B complex has a relaxed preference for the fully assembled oligosaccharide donor. Glycosylation of STT3B-dependent sites was more severely reduced in the ALG6 deficient MI8-5 cell line. Protein immunoblot analysis and RT-PCR revealed that MI8-5 cells express 2-fold lower levels of STT3B than the parental Chinese hamster ovary cells. The combination of reduced expression of STT3B and the lack of the optimal Dol-PP-GlcNAc(2)Man(9)Glc(3) donor synergize to cause very severe hypoglycosylation of proteins in MI8-5 cells. Thus, differences in OST subunit expression can modify the severity of hypoglycosylation displayed by cells with a primary defect in the dolichol oligosaccharide assembly pathway.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
43
|
Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 2014; 41:71-8. [PMID: 25460543 DOI: 10.1016/j.semcdb.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
Abstract
Asparagine linked glycosylation of proteins is an essential protein modification reaction in most eukaryotic organisms. N-linked oligosaccharides are important for protein folding and stability, biosynthetic quality control, intracellular traffic and the physiological function of many N-glycosylated proteins. In metazoan organisms, the oligosaccharyltransferase is composed of a catalytic subunit (STT3A or STT3B) and a set of accessory subunits. Duplication of the catalytic subunit gene allowed cells to evolve OST complexes that act sequentially to maximize the glycosylation efficiency of the large number of proteins that are glycosylated in metazoan organisms. We will summarize recent progress in understanding the mechanism of (a) cotranslational glycosylation by the translocation channel associated STT3A complex, (b) the role of the STT3B complex in mediating cotranslational or posttranslocational glycosylation of acceptor sites that have been skipped by the STT3A complex, and (c) the role of the oxidoreductase MagT1 in STT3B-dependent glycosylation of cysteine-proximal acceptor sites.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
44
|
Cherepanova NA, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. ACTA ACUST UNITED AC 2014; 206:525-39. [PMID: 25135935 PMCID: PMC4137057 DOI: 10.1083/jcb.201404083] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stabilization of protein tertiary structure by disulfides can interfere with glycosylation of acceptor sites (NXT/S) in nascent polypeptides. Here, we show that MagT1, an ER-localized thioredoxin homologue, is a subunit of the STT3B isoform of the oligosaccharyltransferase (OST). The lumenally oriented active site CVVC motif in MagT1 is required for glycosylation of STT3B-dependent acceptor sites including those that are closely bracketed by disulfides or contain cysteine as the internal residue (NCT/S). The MagT1- and STT3B-dependent glycosylation of cysteine-proximal acceptor sites can be reduced by eliminating cysteine residues. The predominant form of MagT1 in vivo is oxidized, which is consistent with transient formation of mixed disulfides between MagT1 and a glycoprotein substrate to facilitate access of STT3B to unmodified acceptor sites. Cotranslational N-glycosylation by the STT3A isoform of the OST, which lacks MagT1, allows efficient modification of acceptor sites in cysteine-rich protein domains before disulfide bond formation. Thus, mammalian cells use two mechanisms to achieve N-glycosylation of cysteine proximal acceptor sites.
Collapse
Affiliation(s)
- Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
45
|
Takeda K, Qin SY, Matsumoto N, Yamamoto K. Association of malectin with ribophorin I is crucial for attenuation of misfolded glycoprotein secretion. Biochem Biophys Res Commun 2014; 454:436-40. [DOI: 10.1016/j.bbrc.2014.10.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
46
|
rCNT2 extracellular cysteines, Cys615
and Cys649
, are important for maturation and sorting to the plasma membrane. FEBS Lett 2014; 588:4382-9. [DOI: 10.1016/j.febslet.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
47
|
Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, Ploegh HL. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J Biol Chem 2014; 289:24005-18. [PMID: 25031321 PMCID: PMC4148833 DOI: 10.1074/jbc.m114.589275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/08/2014] [Indexed: 12/25/2022] Open
Abstract
A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport.
Collapse
Affiliation(s)
- Fikadu G Tafesse
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Carla P Guimaraes
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Jan E Carette
- the Stanford School of Medicine, Stanford, California 94305
| | - Stephen Lory
- the Harvard Medical School, Boston, Massachusetts 02115, and
| | - Thijn R Brummelkamp
- the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142,
| |
Collapse
|
48
|
Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans. Int J Microbiol 2014; 2014:267497. [PMID: 25104959 PMCID: PMC4106090 DOI: 10.1155/2014/267497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection.
Collapse
|
49
|
Dudek J, Pfeffer S, Lee PH, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R. Protein transport into the human endoplasmic reticulum. J Mol Biol 2014; 427:1159-75. [PMID: 24968227 DOI: 10.1016/j.jmb.2014.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.
Collapse
Affiliation(s)
- Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Po-Hsien Lee
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
50
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|