1
|
Zhu J, Yin H, Zheng S, Yu H, Yang L, Wang L, Geng X, Deng Y. Tag-free fluorometric aptasensor for detection of chromium(VI) in foods via SYBR Green I signal amplification and aptamer structure transition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8008-8021. [PMID: 38828647 DOI: 10.1002/jsfa.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND In response to growing concerns regarding heavy metal contamination in food, particularly chromium (Cr)(VI) contamination, this study presented a simple, sensitive and practical method for Cr(VI) detection. RESULTS A magnetic separation-based capture-exponential enrichment ligand system evolution (SELEX) method was used to identify and characterize DNA aptamers with a high affinity for Cr(VI). An aptamer, Cr-15, with a dissociation constant (Kd) of 4.42 ± 0.44 μmol L-1 was obtained after only eight rounds of selection. Further innovative methods combining molecular docking, dynamic simulation and thermodynamic analysis revealed that CrO4 2- could bind to the 19th and 20th guanine bases of Cr-15 via hydrogen bonds. Crucially, a label-free fluorometric aptasensor based on SYBR Green I was successfully constructed to detect CrO4 2-, achieving a linear detection range of 60-300 nmol L-1 with a lower limit of detection of 44.31 nmol L-1. Additionally, this aptasensor was able to quantitatively detect CrO4 2- in grapes and broccoli within 40 min, with spike recovery rates ranging from 89.22% to 108.05%. The designed fluorometric aptasensor exhibited high selectivity and could detect CrO4 2- in real samples without sample processing or target pre-enrichment. CONCLUSION The aptasensor demonstrated its potential as a reliable tool for monitoring Cr(VI) contamination in fruit and vegetable products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hao Yin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Zheng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming, China
| | - Lumei Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Geng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
3
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Ren W, Jimmy Huang PJ, de Rochambeau D, Moon WJ, Zhang J, Lyu M, Wang S, Sleiman H, Liu J. Selection of a metal ligand modified DNAzyme for detecting Ni 2. Biosens Bioelectron 2020; 165:112285. [PMID: 32510338 DOI: 10.1016/j.bios.2020.112285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Nickel is a highly important metal, and the detection of Ni2+ using biosensors is a long-stand analytical challenge. DNA has been widely used for metal detection, although no DNA-based sensors were reported for Ni2+. DNAzymes are DNA-based catalysts, and they recruit metal ions for catalysis. In this work, in vitro selection of RNA-cleaving DNAzymes was carried out using a library containing a region of 50 random nucleotides in the presence of Ni2+. To increase Ni2+ binding, a glycyl-histidine-functionalized tertiary amine moiety was inserted at the cleavage junction. A representative DNAzyme named Ni03 showed a high cleavage yield with Ni2+ and it was further studied. After truncation, the optimal sequence of Ni03l could bind one Ni2+ or two Co2+ for catalysis, while other metal ions were inactive. Its cleavage rates for 100 μM Ni2+ reached 0.63 h-1 at pH 8.0. A catalytic beacon biosensor was designed by labeling a fluorophore and a quencher on the Ni03l DNAzyme. Fluorescence enhancement was observed in the presence of Ni2+ with a detection limit of 12.9 μM. The sensor was also tested in spiked Lake Ontario water achieving a similar sensitivity. This is another example of using single-site modified DNAzyme for sensing transition metal ions.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Donatien de Rochambeau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Woohyun J Moon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jinyi Zhang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Hanadi Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
5
|
Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. NANOMATERIALS 2019; 9:nano9020233. [PMID: 30744040 PMCID: PMC6410142 DOI: 10.3390/nano9020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023]
Abstract
Genetically encodable sensors have been widely used in the detection of intracellular molecules ranging from metal ions and metabolites to nucleic acids and proteins. These biosensors are capable of monitoring in real-time the cellular levels, locations, and cell-to-cell variations of the target compounds in living systems. Traditionally, the majority of these sensors have been developed based on fluorescent proteins. As an exciting alternative, genetically encoded RNA-based molecular sensors (GERMS) have emerged over the past few years for the intracellular imaging and detection of various biological targets. In view of their ability for the general detection of a wide range of target analytes, and the modular and simple design principle, GERMS are becoming a popular choice for intracellular analysis. In this review, we summarize different design principles of GERMS based on various RNA recognition modules, transducer modules, and reporting systems. Some recent advances in the application of GERMS for intracellular imaging are also discussed. With further improvement in biostability, sensitivity, and robustness, GERMS can potentially be widely used in cell biology and biotechnology.
Collapse
|
6
|
Wu Q, Wang Y, Wang H, Wu L, Zhang H, Song Y, Zhu Z, Kang D, Yang C. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst 2019; 143:2267-2275. [PMID: 29708252 DOI: 10.1039/c8an00271a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioma is a cancer derived from transformed glial cells, which are often invasive and display a heterogeneous cell population. Currently, no trustworthy biomarkers for the detection and risk stratification of glioma have been discovered. The objective of the present research was to select DNA aptamers to facilitate early diagnosis and effective therapy of glioma. Using cell-SELEX, three aptamers (WYZ-37, WYZ-41, WYZ-50), which can specifically recognize the molecular differences between target cells T98G and negative cells SVGp12, were identified. The best binding sequences WYZ-41 and WYZ-50 were optimized in length, resulting in aptamer sequences WYZ-41a and WYZ-50a. The Kd values of the aptamers WYZ-41a and WYZ-50a against the target cell line were found to be 1.0 ± 0.2 nM and 2.8 ± 0.6 nM, respectively, which are better than the Kds for full-length aptamers WYZ-41 and WYZ-50. Flow cytometry analysis results show that the aptamers WYZ-41a and WYZ-50a do not influence each other in mutual binding, and that they effectively detect the target even in complex mixtures, such as undiluted fetal bovine serum (FBS) and cerebral spinal fluid (CSF), indicating that aptamers WYZ-41a and WYZ-50a have excellent potential as aptamer pairs to improve the accuracy of glioma diagnosis.
Collapse
Affiliation(s)
- Qiaoyi Wu
- The First Affiliated Hospital of Fujian Medical University, the First Clinical Medical College of Fujian Medical University, Fuzhou 350004, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hou C, Tsodikov OV. Utilizing guanine-coordinated Zn 2+ ions to determine DNA crystal structures by single-wavelength anomalous diffraction. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:32-40. [PMID: 30644843 DOI: 10.1107/s205979831801553x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022]
Abstract
The experimental phase determination of crystal structures of nucleic acids and nucleic acid-ligand complexes would benefit from a facile method. Even for double-stranded DNA, software-generated models are generally insufficiently accurate to serve as molecular replacement search models, necessitating experimental phasing. Here, it is demonstrated that Zn2+ ions coordinated to the N7 atom of guanine bases generate sufficient anomalous signal for single-wavelength anomalous diffraction (SAD) phasing of DNA crystal structures. Using zinc SAD, three crystal structures of double-stranded DNA oligomers, 5'-AGGGATCCCT-3', 5'-GGGATCCC-3' and 5'-GAGGCCTC-3', were determined. By determining the crystal structure of one of these oligomers, GAGGCCTC, in the presence of Mg2+ instead of Zn2+, it was demonstrated that Zn2+ is not structurally perturbing. These structures allowed the analysis of structural changes in the DNA on the binding of analogues of the natural product mithramycin to two of these oligomers, AGGGATCCCT and GAGGCCTC. Zinc SAD may become a routine approach for determining the crystal structures of nucleic acids and their complexes with small molecules.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics 2018; 8:4016-4032. [PMID: 30128033 PMCID: PMC6096388 DOI: 10.7150/thno.25958] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides that can selectively bind to small molecular ligands or protein targets with high affinity and specificity, by acquiring unique three-dimensional structures. Aptamers have the advantage of being highly specific, relatively small in size, non-immunogenic and can be easily stabilized by chemical modifications, thus allowing expansion of their diagnostic and therapeutic potential. Since the invention of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like macular degeneration, cancer, thrombosis and inflammatory diseases. Furthermore, owing to the aforementioned advantages and unique adaptability of aptamers to point-of-care platforms, aptamer technology has created a stable niche in the field of in vitro diagnostics by enhancing the speed and accuracy of diagnoses. The aim of this review is to give an overview on aptamers, highlight the inherent therapeutic and diagnostic opportunities and challenges associated with them and present various aptamers that have reached therapeutic clinical trials, diagnostic markets or that have immediate translational potential for therapeutics and diagnostics applications.
Collapse
Affiliation(s)
| | - John G. Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite 100, San Antonio, Texas 78229, USA
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute (THSTI), Faridabad-121001, Haryana, India
| |
Collapse
|
9
|
Liu H, Chen Y, Song C, Tian G, Li S, Yang G, Lv C. Novel and label-free colorimetric detection of radon using AuNPs and lead(II)-induced GR5 DNAzyme-based amplification strategy. Anal Bioanal Chem 2018; 410:4227-4234. [PMID: 29687247 DOI: 10.1007/s00216-018-1077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 01/29/2023]
Abstract
Radioactive radon decays into a stable daughter product, 210Pb, which was used as the detection target to determine the radon radiation dose in a new technique. Pb2+ triggers DNAzyme to cleave a molecular beacon (MB), resulting in the stem-loop structure opening and forming two single DNA strands (ssDNA). The ssDNA binds to unmodified gold nanoparticles and effectively prevents their aggregation in a salt solution. The detached enzyme strands continue to complement the remaining MB to amplify the response signal. The method proposed in this study exhibited a good linear relationship for Pb2+ and radon concentrations in the range of 6.22 × 102-1.02 × 105 Bq h/m3 with a detection limit of 186.48 Bq h/m3 using an ultraviolet-visible spectrometer. In practical applications, this sensitive method can avoid radioactive damage in field testing, and the detection limit meets the national standard in China. Importantly, this simple, highly sensitive strategy uses simple equipment and has a strong anti-interference ability. Graphical abstract.
Collapse
Affiliation(s)
- Hongwen Liu
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Yating Chen
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Chunli Song
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Gang Tian
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Shiya Li
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Guiying Yang
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Changyin Lv
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Li P, Yu Q, Zhou L, Dong D, Wei S, Ya H, Chen B, Qin Q. Probing and characterizing the high specific sequences of ssDNA aptamer against SGIV-infected cells. Virus Res 2018; 246:46-54. [PMID: 29341876 DOI: 10.1016/j.virusres.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022]
Abstract
As the major viral pathogen of grouper aquaculture, Singapore grouper iridovirus (SGIV) has caused great economic losses in China and Southeast Asia. In the previous study, we have generated highly specific ssDNA aptamers against SGIV-infected grouper spleen cells (GS) by Systematic Evolution of Ligands by Exponential Enrichment technology (SELEX), in which Q2 had the highest binding affinity of 16.43 nM. In this study, we would try to identify the specific sequences in the aptamer Q2 that exhibited the high binding affinity to SGIV-infected cells by truncating the original Q2 into some different specific segments. We first evaluated the specificity and binding affinity of these truncated aptamers to SGIV-infected cells by flow cytometry, fluorescent imaging of cells and aptamer-based enzyme-linked apta-sorbent assay (ELASA). We then performed cytotoxicity analysis, assessment of the inhibitory effects upon SGIV infection and the celluar internalization kinetics of each truncated aptamer. Compared to the initial Q2, one of the truncated aptamer Q2-C5 showed a 3-fold increase in the binding affinity for SGIV-infected cells, and held more effective inhibitory effects, higher internalization kinetics and stability. Hence, the aptamer's truncated methods could be applied in the research of identifying aptamer's key sequences. The shorter, structure optimizing aptamer showed more excellent performance over the originally selected aptamer, which could potentially be applied in developing commercial detection probes for the early and rapid diagnosis of SGIV infection, and highly specific therapeutic drugs against SGIV infection.
Collapse
Affiliation(s)
- Pengfei Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lingli Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dexin Dong
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hanzheng Ya
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bo Chen
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Walton BM, Jackson GW, Deutz N, Cote G. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:75002. [PMID: 28732094 PMCID: PMC5521305 DOI: 10.1117/1.jbo.22.7.075002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/30/2017] [Indexed: 05/15/2023]
Abstract
A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids. Download PDF SAVE FOR LATER
Collapse
Affiliation(s)
- Brian M. Walton
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - George W. Jackson
- BioTex, Inc., Houston, Texas, United States
- Base Pair Biotechnologies, Inc., Pearland, Texas, United States
| | - Nicolaas Deutz
- Texas A&M University, Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas, United States
| | - Gerard Cote
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
12
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Stuart CH, Riley KR, Boyacioglu O, Herpai DM, Debinski W, Qasem S, Marini FC, Colyer CL, Gmeiner WH. Selection of a Novel Aptamer Against Vitronectin Using Capillary Electrophoresis and Next Generation Sequencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e386. [PMID: 27845768 PMCID: PMC5155323 DOI: 10.1038/mtna.2016.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023]
Abstract
Breast cancer (BC) results in ~40,000 deaths each year in the United States and even among survivors treatment of the disease may have devastating consequences, including increased risk for heart disease and cognitive impairment resulting from the toxic effects of chemotherapy. Aptamer-mediated drug delivery can contribute to improved treatment outcomes through the selective delivery of chemotherapy to BC cells, provided suitable cancer-specific antigens can be identified. We report here the use of capillary electrophoresis in conjunction with next generation sequencing to develop the first vitronectin (VN) binding aptamer (VBA-01; Kd 405 nmol/l, the first aptamer to vitronectin (VN; Kd = 405 nmol/l) , a protein that plays an important role in wound healing and that is present at elevated levels in BC tissue and in the blood of BC patients relative to the corresponding nonmalignant tissues. We used VBA-01 to develop DVBA-01, a dimeric aptamer complex, and conjugated doxorubicin (Dox) to DVBA-01 (7:1 ratio) using pH-sensitive, covalent linkages. Dox conjugation enhanced the thermal stability of the complex (60.2 versus 46.5°C) and did not decrease affinity for the VN target. The resulting DVBA-01-Dox complex displayed increased cytotoxicity to MDA-MB-231 BC cells that were cultured on plasticware coated with VN (1.8 × 10-6mol/l) relative to uncoated plates (2.4 × 10-6 mol/l), or plates coated with the related protein fibronectin (2.1 × 10-6 mol/l). The VBA-01 aptamer was evaluated for binding to human BC tissue using immunohistochemistry and displayed tissue specific binding and apparent association with BC cells. In contrast, a monoclonal antibody that preferentially binds to multimeric VN primarily stained extracellular matrix and vessel walls of BC tissue. Our results indicate a strong potential for using VN-targeting aptamers to improve drug delivery to treat BC.
Collapse
Affiliation(s)
- Christopher H Stuart
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Molecular Medicine and Translation Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Current address: RayBiotech, Norcross, Georgia, USA
| | - Kathryn R Riley
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
- Current address: Department of Chemistry and Biochemistry, Swarthmore College,Swarthmore, Pennsylvania, USA
| | - Olcay Boyacioglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Current address: Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin, Turkey
| | - Denise M Herpai
- Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shadi Qasem
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Frank C Marini
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christa L. Colyer
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Molecular Medicine and Translation Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, Deng L. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis 2015; 73:ftv034. [PMID: 26025307 DOI: 10.1093/femspd/ftv034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2015] [Indexed: 11/13/2022] Open
Abstract
Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2 nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Lijuan Cheng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Min Ling
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Xinru Feng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Lingli Chen
- The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Minxi Wu
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
15
|
Wrzesinski J, Błaszczyk L, Wrońska M, Kasprowicz A, Stokowa-Sołtys K, Nagaj J, Szafraniec M, Kulinski T, Jeżowska-Bojczuk M, Ciesiołka J. Mapping the interactions of selected antibiotics and their Cu2+complexes with the antigenomic delta ribozyme. FEBS J 2013; 280:2652-64. [DOI: 10.1111/febs.12257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Wrzesinski
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań; Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań; Poland
| | | | | | | | | | - Milena Szafraniec
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań; Poland
| | - Tadeusz Kulinski
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań; Poland
| | | | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań; Poland
| |
Collapse
|
16
|
Zeidler J, Nijakowska D, Wrzesinski J. Regulation of the antigenomic delta ribozyme catalytic activity by complexes of triazole derivatives with transition metal ions in a pH-dependent manner. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Duan N, Wu S, Chen X, Huang Y, Wang Z. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4034-4038. [PMID: 22480209 DOI: 10.1021/jf300395z] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
18
|
Kaur H, Yung LYL. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One 2012; 7:e31196. [PMID: 22359573 PMCID: PMC3281051 DOI: 10.1371/journal.pone.0031196] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Vascular endothelial growth factor (VEGF165) is a potent angiogenic mitogen commonly overexpressed in cancerous cells. It contains two main binding domains, the receptor-binding domain (RBD) and the heparin-binding domain (HBD). This study attempted to identify the specific sequences of the VEa5 DNA aptamer that exhibit high binding affinity towards the VEGF165 protein by truncating the original VEa5 aptamer into different segments. Using surface plasmon resonance (SPR) spectroscopy for binding affinity analysis, one of the truncated aptamers showed a >200-fold increase in the binding affinity for HBD. This truncated aptamer also exhibited high specificity to HBD with negligible binding affinity for VEGF121, an isoform of VEGF lacking HBD. Exposing colorectal cancer cells to the truncated aptamer sequence further confirmed the binding affinity and specificity of the aptamer to the target VEGF165 protein. Hence, our approach of aptamer truncation can potentially be useful in identifying high affinity aptamer sequences for the biological molecules and targeting them as antagonist for cancer cell detection.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
19
|
Wrońska M, Wrzesinski J, Jeżowska-Bojczuk M, Szczepanik W, Starosta R, Barys M, Ciunik Z, Ciesiołka J. The impact of isomers of hemiaminal-1,2,4-triazole conjugates differently substituted in the phenyl ring and their Cu2+ complexes on the catalytic activity of the antigenomic delta ribozyme. J Inorg Biochem 2012; 108:62-8. [PMID: 22266462 DOI: 10.1016/j.jinorgbio.2011.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/30/2011] [Accepted: 12/16/2011] [Indexed: 02/05/2023]
Abstract
The ability of four stable hemiaminals differently substituted in the phenyl ring and their complexes with Cu(2+) ions to inhibit catalytic cleavage of the antigenomic delta ribozyme was compared. The hemiaminals were novel chiral derivatives of 1,2,4-triazole [i.e. (2,4-dinitrophenyl)(4H-1,2,4-triazol-4-ylamino) methanol (2,4-dnbald), (2-nitrophenyl)(4H-1,2,4-triazol-4-ylamino) methanol (2-nbald), (3-nitrophenyl)(4H-1,2,4-triazol-4-ylamino) methanol (3-nbald) and (4-nitrophenyl)(4H-1,2,4-triazol-4-ylamino) methanol (4-nbald)]. The complexes of nbalds with Cu(2+) were characterized using UV and EPR methods and additionally, the formation of 2,4-dnbald-Cu(2+) complex with CuL(2) stoichiometry was confirmed by mass spectrometry. The data suggest that there are two ways in which nbalds and their Cu(2+) complexes can influence catalytic cleavage of antigenomic delta ribozyme. The coordinated Cu(2+) ions may play the role of new cationic ligands increasing the affinity of the complexes to the ribozyme. Such situation occurs in the case of 2- and 2,4-nbald. Their Cu(2+) complexes decrease ribozyme cleavage rates twice more efficiently than uncomplexed compounds. Moreover, the Cu(2+) complexes displace the catalytic divalent metal ions from their strong binding sites located in the ribozyme J4/2 region as shown by the Pb(2+)-induced cleavage approach. On the other hand, 3- and 4-nbald inhibit catalysis more strongly as compared to 2-nbald and 2,4-dnbald but the ribozyme cleavage rates are changed only slightly upon Cu(2+) complexation. The mechanism of ribozyme inhibition by interfering with the formation of a correct ribozyme tertiary structure seems to operate in this case.
Collapse
|
20
|
Pang Y, Xu Z, Sato Y, Nishizawa S, Teramae N. Base pairing at the abasic site in DNA duplexes and its application in adenosine aptasensors. Chembiochem 2012; 13:436-42. [PMID: 22271570 DOI: 10.1002/cbic.201100666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 12/21/2022]
Abstract
The binding of nucleosides to abasic site (AP site)-containing DNA duplexes (AP-DNAs) carrying complementary nucleosides opposite the AP site was investigated by thermal denaturation and isothermal titration calorimetric (ITC) experiments. Purine nucleosides show high affinities (K(d) =14.1 μM for adenosine and 41.8 μM for guanosine) for binding to the AP-DNAs, and the interactions are driven primarily by the enthalpy change, similarly to the case of DNA intercalators. In contrast, pyrimidine nucleosides do not show noticeable binding to the AP-DNAs, thus suggesting that stacking interaction at the AP site plays a key role in the binding of purine nucleosides to the AP-DNAs, as revealed by ITC measurements. Next, to apply an AP-DNA as an aptasensor for adenosine, a competitive assay between adenosine and AP-site-binding fluorescent ligand was performed. The assay employs a fluorescent ligand, riboflavin, that binds to the AP site in a DNA duplex, thereby causing fluorescence quenching. By adding adenosine to the riboflavin/AP-DNA complex, the binding of adenosine to the AP site causes release of riboflavin from the AP site, thereby resulting in restoration of riboflavin fluorescence. AP-DNAs can serve as a new class of aptasensors-a limit of detection of 0.7 μM was obtained for adenosine. In contrast to conventional aptasensors for adenosine, the present method shows high selectivity for adenosine over the other nucleotides (AMP, ADP and ATP). The method does not require covalent labelling of fluorophores, and thus it is cost-effective; finally, the method was successfully demonstrated to be applicable for the detection of adenosine in horse serum.
Collapse
Affiliation(s)
- Yuanfeng Pang
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
21
|
Parekh P, Tang Z, Turner PC, Moyer RW, Tan W. Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 2011; 82:8642-9. [PMID: 20873781 DOI: 10.1021/ac101801j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional methods for detection and identification of pathogenic viruses or bacteria tend to be slow and cumbersome. We have developed aptamer probes with the capacity to rapidly detect the presence of viral infection with specificity and sensitivity. Vaccinia virus (VV) was chosen as the model because it is closely related to variola virus that causes smallpox. A method known as cell-SELEX (systematic evolution of ligands by exponential enrichment) was used to generate very selective and highly specific aptamers designed to recognize proteins expressed on the surface of VV-infected cells. Characterization of the aptamers showed that the virus-encoded hemagglutinin, a protein expressed on the surface of infected cells, is the preferential binding target. These studies show the feasibility of generating aptamers against a given specific infectious agent and will enable further development of aptamers as diagnostic and/or therapeutic tools against a broad range of infectious agents.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Chemistry, UF Genetics Institute, Center for Research at Bio/Nano Interface, Shands Cancer Center and McKnight Brain Institute, University of Florida, Gainesville Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
23
|
Zhang X, Potty ASR, Jackson GW, Stepanov V, Tang A, Liu Y, Kourentzi K, Strych U, Fox GE, Willson RC. Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J Mol Recognit 2009; 22:154-61. [PMID: 19195013 DOI: 10.1002/jmr.917] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In previous work, Vibrio proteolyticus 5S rRNA was shown to stabilize 13-50 nucleotide "guest" RNA sequences for expression in Escherichia coli. The expressed chimeric RNAs accumulated to high levels in E. coli without being incorporated into ribosomes and without obvious effects on the host cells. In this work, we inserted sequences encoding known aptamers recognizing a protein and an organic dye into the 5S rRNA carrier and showed that aptamer function is preserved in the chimeras. A surface plasmon resonance competitive binding assay demonstrated that a vascular endothelial growth factor (VEGF) aptamer/5S rRNA chimera produced in vitro by transcriptional runoff could compete with a DNA aptamer for VEGF, implying binding of the growth factor by the VEGF "ribosomal RNA aptamer." Separately, a 5S rRNA chimera displaying an aptamer known to increase the fluorescence of malachite green (MG) also enhanced MG fluorescence. Closely related control rRNA molecules showed neither activity. The MG aptamer/5S rRNA chimera, like the original MG aptamer, also increased the fluorescence of other triphenyl methane (TPM) dyes such as crystal violet, methyl violet, and brilliant green, although less effectively than with MG. These results indicate that the molecular recognition properties of aptamers are not lost when they are expressed in the context of a stable 5S rRNA carrier. Inclusion of the aptamer in a carrier may facilitate production of large quantities of RNA aptamers, and may open an approach to screening aptamer libraries in vivo.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-4004, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Co(2+) binding RNA aptamers were chosen as research models to reveal the structural basis underlying the recognition of Co(2+) by RNA, with the application of two distinct methods. Using the nucleotide analog interference mapping assay, we found strong interference effects after incorporation of the 7-deaza guanosine phosphorotioate analog into the RNA chain at equivalent positions G27 and G28 in aptamer no. 18 and G25 and G26 in aptamer no. 20. The results obtained by nucleotide analog interference mapping suggest that these guanine bases are crucial for the creation of Co(2+) binding sites and that they appear to be involved in the coordination of the ion to the exposed N7 atom of the tandem guanines. Additionally, most 7-deaza guanosine phosphorotioate and 7-deaza adenosine phosphorotioate interferences were located in the common motifs: loop E-like in aptamer no. 18 and kissing dimer in aptamer no. 20. We also found that purine-rich stretches containing guanines with the highest interference values were the targets for hybridization of 6-mers, which are members of the semi-random oligodeoxyribonucleotide library in both aptamers. It transpired that DNA oligomer directed RNase H digestions are sensitive to Co(2+) and, at an elevated metal ion concentration, the hybridization of oligomers to aptamer targets is inhibited, probably due to higher stability and complexity of the RNA structure.
Collapse
Affiliation(s)
- Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, Poland.
| | | |
Collapse
|
25
|
Rupcich N, Chiuman W, Nutiu R, Mei S, Flora KK, Li Y, Brennan JD. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes. J Am Chem Soc 2006; 128:780-90. [PMID: 16417367 DOI: 10.1021/ja053336n] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent years have seen a dramatic increase in the use of fluorescence-signaling DNA aptamers and deoxyribozymes as novel biosensing moieties. Many of these functional single-stranded DNA molecules are either engineered to function in the presence of divalent metal ion cofactors or designed as sensors for specific divalent metal ions. However, many divalent metal ions are potent fluorescence quenchers. In this study, we first set out to examine the factors that contribute to quenching of DNA-bound fluorophores by commonly used divalent metal ions, with the goal of establishing general principles that can guide future exploitation of fluorescence-signaling DNA aptamers and deoxyribozymes as biosensing probes. We then extended these studies to examine the effect of specific metals on the signaling performance of both a structure-switching signaling DNA aptamer and an RNA-cleaving and fluorescence-signaling deoxyribozyme. These studies showed extensive quenching was obtained when using divalent transition metal ions owing to direct DNA-metal ion interactions, leading to combined static and dynamic quenching. The extent of quenching was dependent on the type of metal ion and the concentration of supporting monovalent cations in the buffer, with quenching increasing with the number of unpaired electrons in the metal ion and decreasing with the concentration of monovalent ions. The extent of quenching was independent of the fluorophore, indicating that quenching cannot be alleviated simply by changing the nature of the fluorescent probe. Our results also show that the DNA sequence and the local secondary structure in the region of the fluorescent tag can dramatically influence the degree of quenching by divalent transition metal ions. In particular, the extent of quenching is predominantly determined by the fluorophore location with respect to guanine-rich and duplex regions within the strand sequence. Examination of the effect of both the type and concentration of metal ions on the performance of a fluorescence-signaling aptamer and a signaling deoxyribozyme confirms that judicious choice of divalent transition metal ions is important in maximizing signals obtained from such systems.
Collapse
Affiliation(s)
- Nicholas Rupcich
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1
| | | | | | | | | | | | | |
Collapse
|