1
|
Vijayasarathy M, Kumar S, Das R, Balaram P. Cysteine-free cone snail venom peptides: Classification of precursor proteins and identification of mature peptides. J Pept Sci 2024; 30:e3554. [PMID: 38009400 DOI: 10.1002/psc.3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.
Collapse
Affiliation(s)
- Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sanjeev Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Rajdeep Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
2
|
Ratibou Z, Inguimbert N, Dutertre S. Predatory and Defensive Strategies in Cone Snails. Toxins (Basel) 2024; 16:94. [PMID: 38393171 PMCID: PMC10892987 DOI: 10.3390/toxins16020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Cone snails are carnivorous marine animals that prey on fish (piscivorous), worms (vermivorous), or other mollusks (molluscivorous). They produce a complex venom mostly made of disulfide-rich conotoxins and conopeptides in a compartmentalized venom gland. The pharmacology of cone snail venom has been increasingly investigated over more than half a century. The rising interest in cone snails was initiated by the surprising high human lethality rate caused by the defensive stings of some species. Although a vast amount of information has been uncovered on their venom composition, pharmacological targets, and mode of action of conotoxins, the venom-ecology relationships are still poorly understood for many lineages. This is especially important given the relatively recent discovery that some species can use different venoms to achieve rapid prey capture and efficient deterrence of aggressors. Indeed, via an unknown mechanism, only a selected subset of conotoxins is injected depending on the intended purpose. Some of these remarkable venom variations have been characterized, often using a combination of mass spectrometry and transcriptomic methods. In this review, we present the current knowledge on such specific predatory and defensive venoms gathered from sixteen different cone snail species that belong to eight subgenera: Pionoconus, Chelyconus, Gastridium, Cylinder, Conus, Stephanoconus, Rhizoconus, and Vituliconus. Further studies are needed to help close the gap in our understanding of the evolved ecological roles of many cone snail venom peptides.
Collapse
Affiliation(s)
- Zahrmina Ratibou
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | | |
Collapse
|
3
|
McMahon KL, Vetter I, Schroeder CI. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. Toxins (Basel) 2024; 16:55. [PMID: 38251271 PMCID: PMC10819908 DOI: 10.3390/toxins16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
4
|
McMahon KL, O'Brien H, Schroeder CI, Deuis JR, Venkatachalam D, Huang D, Green BR, Bandyopadhyay PK, Li Q, Yandell M, Safavi-Hemami H, Olivera BM, Vetter I, Robinson SD. Identification of sodium channel toxins from marine cone snails of the subgenera Textilia and Afonsoconus. Cell Mol Life Sci 2023; 80:287. [PMID: 37689602 PMCID: PMC10492761 DOI: 10.1007/s00018-023-04935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Henrik O'Brien
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- Peptide Therapeutics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Di Huang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brad R Green
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Qing Li
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
- Cancer Bioinformatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
5
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
6
|
Zhao Z, Pan T, Chen S, Harvey PJ, Zhang J, Li X, Yang M, Huang L, Wang S, Craik DJ, Jiang T, Yu R. Design, synthesis, and mechanism of action of novel μ-conotoxin KIIIA analogues for inhibition of the voltage-gated sodium channel Na v1.7. J Biol Chem 2023; 299:103068. [PMID: 36842500 PMCID: PMC10074208 DOI: 10.1016/j.jbc.2023.103068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
μ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Fiorotti HB, Figueiredo SG, Campos FV, Pimenta DC. Cone snail species off the Brazilian coast and their venoms: a review and update. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220052. [PMID: 36756364 PMCID: PMC9897318 DOI: 10.1590/1678-9199-jvatitd-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
The genus Conus includes over 900 species of marine invertebrates known as cone snails, whose venoms are among the most powerful described so far. This potency is mainly due to the concerted action of hundreds of small bioactive peptides named conopeptides, which target different ion channels and membrane receptors and thus interfere with crucial physiological processes. By swiftly harpooning and injecting their prey and predators with such deadly cocktails, the slow-moving cone snails guarantee their survival in the harsh, competitive marine environment. Each cone snail species produces a unique venom, as the mature sequences of conopeptides from the venoms of different species share very little identity. This biochemical diversity, added to the numerous species and conopeptides contained in their venoms, results in an immense biotechnological and therapeutic potential, still largely unexplored. That is especially true regarding the bioprospection of the venoms of cone snail species found off the Brazilian coast - a region widely known for its biodiversity. Of the 31 species described in this region so far, only four - Conus cancellatus, Conus regius, Conus villepinii, and Conus ermineus - have had their venoms partially characterized, and, although many bioactive molecules have been identified, only a few have been actually isolated and studied. In addition to providing an overview on all the cone snail species found off the Brazilian coast to date, this review compiles the information on the structural and pharmacological features of conopeptides and other molecules identified in the venoms of the four aforementioned species, paving the way for future studies.
Collapse
Affiliation(s)
- Helena B. Fiorotti
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Suely G. Figueiredo
- Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Fabiana V. Campos
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Daniel C. Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Correspondence:
| |
Collapse
|
8
|
Synthesis and Characterization of an Analgesic Potential Conotoxin Lv32.1. Molecules 2022; 27:molecules27238617. [PMID: 36500709 PMCID: PMC9741281 DOI: 10.3390/molecules27238617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
In our work of screening analgesic peptides from the conotoxin libraries of diverse Conus species, we decoded a peptide sequence from Conus lividus and named it Lv32.1 (LvXXXIIA). The folding conditions of linear Lv32.1 on buffer, oxidizing agent, concentration of GSH/GSSG and reaction time were optimized for a maximum yield of (34.94 ± 0.96)%, providing an efficient solution for the synthesis of Lv32.1. Its disulfide connectivity was identified to be 1-3, 2-6, 4-5, which was first reported for the conotoxins with cysteine framework XXXII and different from the common connectivities established for conotoxins with six cysteines. The analgesic effect of Lv32.1 was determined by a hot plate test in mice. An evident increase in the pain threshold with time illustrated that Lv32.1 exhibited analgesic potency. The effects on Nav1.8 channel and α9α10 nAChR were detected, but weak inhibition was observed. In this work, we highlight the efficient synthesis, novel disulfide linkage and analgesic potential of Lv32.1, which laid a positive foundation for further development of conotoxin Lv32.1 as an analgesic candidate.
Collapse
|
9
|
Anti-Ovarian Cancer Conotoxins Identified from Conus Venom. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196609. [PMID: 36235146 PMCID: PMC9573077 DOI: 10.3390/molecules27196609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 μmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.
Collapse
|
10
|
Hernández-Sámano AC, Falcón A, Zamudio F, Michel-Morfín JE, Landa-Jaime V, López-Vera E, Jeziorski MC, Aguilar MB. A short framework-III (mini-M-2) conotoxin from the venom of a vermivorous species, Conus archon, inhibits human neuronal nicotinic acetylcholine receptors. Peptides 2022; 153:170785. [PMID: 35307452 DOI: 10.1016/j.peptides.2022.170785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
The venoms of Conus snails contain neuroactive peptides named conotoxins (CTXs). Some CTXs are nicotinic acetylcholine receptor (nAChRs) antagonists. nAChRs modulate the release of neurotransmitters and are implicated in several pathophysiologies. One venom peptide from Conus archon, a vermivorous species from the Mexican Pacific, was purified by RP-HPLC and its activity on human α7, α3β2, and α7β2 nAChRs was assessed by the two-electrode voltage clamp technique. At 36.3 µM the purified peptide (F27-1, renamed tentatively ArchIIIA) slowly reversibly inhibited the ACh-induced response of the hα7 subtype by 44.52 ± 5.83%, while it had low or no significant effect on the response of the hα3β2 and hα7β2 subtypes; the EC50 of the inhibiting effect was 45.7 µM on the hα7 subtype. This peptide has 15 amino acid residues and a monoisotopic mass of 1654.6 Da (CCSALCSRYHCLPCC), with three disulfide bridges and a free C-terminus. This sequence with a CC-C-C-CC arrangement (framework III) belongs to the M superfamily of conotoxins, corresponding to the mini-M´s (M-1-M-3) conotoxins; due to its size and inter-Cys spacings it is an M-2 conotoxin. This toxin is a novel mini-M conotoxin affecting ligand-gated ion channels, like the maxi-M CTX ψ-conotoxins and α-MIIIJ conotoxin (nAChRs blockers). This peptide seems to be homologous to the reg3b conotoxin (from Conus regius) with an identity of 93.3%, differing only in the third residue in the sequence, serine for threonine, both uncharged polar residues. We obtained, in silico, a probable 3D structure, which is consistent with its effect on neuronal subtypes.
Collapse
Affiliation(s)
- Arisaí C Hernández-Sámano
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurofarmacología Marina, Juriquilla, Querétaro 76230, Mexico
| | - Andrés Falcón
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurofarmacología Marina, Juriquilla, Querétaro 76230, Mexico
| | - Fernando Zamudio
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Cuernavaca, Morelos 62210, Mexico
| | | | - Víctor Landa-Jaime
- Universidad de Guadalajara, CUCSUR, Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, San Patricio-Melaque, Jalisco 48980, Mexico
| | - Estuardo López-Vera
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica de Ecología y Biodiversidad Acuática, Laboratorio de Toxinología Marina, Ciudad de México 04510, Mexico
| | - Michael C Jeziorski
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Unidad de Proteogenómica, Juriquilla, Querétaro 76230, Mexico
| | - Manuel B Aguilar
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurofarmacología Marina, Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
11
|
Tran HNT, McMahon KL, Deuis JR, Vetter I, Schroeder CI. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. J Biol Chem 2022; 298:101728. [PMID: 35167877 PMCID: PMC8927997 DOI: 10.1016/j.jbc.2022.101728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
μ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a ‘native’ CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, μ-conotoxin KIIIA, the smallest and most studied μ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native μ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native μ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three μ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of μ-conotoxins targeting therapeutically relevant NaV subtypes.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
12
|
Tran HNT, Tran P, Deuis JR, McMahon KL, Yap K, Craik DJ, Vetter I, Schroeder CI. Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjug Chem 2021; 32:2407-2419. [PMID: 34751572 PMCID: PMC10167913 DOI: 10.1021/acs.bioconjchem.1c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two NaV1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNaV1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Discovery of a Novel Cysteine Framework XXIV Conotoxin from Conus striatus, S24a, with Potential Analgesic Activity. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
15
|
Paul George AA, Heimer P, Leipold E, Schmitz T, Kaufmann D, Tietze D, Heinemann SH, Imhof D. Effect of Conformational Diversity on the Bioactivity of µ-Conotoxin PIIIA Disulfide Isomers. Mar Drugs 2019; 17:E390. [PMID: 31269696 PMCID: PMC6669574 DOI: 10.3390/md17070390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclic µ-conotoxin PIIIA, a potent blocker of skeletal muscle voltage-gated sodium channel NaV1.4, is a 22mer peptide stabilized by three disulfide bonds. Combining electrophysiological measurements with molecular docking and dynamic simulations based on NMR solution structures, we investigated the 15 possible 3-disulfide-bonded isomers of µ-PIIIA to relate their blocking activity at NaV1.4 to their disulfide connectivity. In addition, three µ-PIIIA mutants derived from the native disulfide isomer, in which one of the disulfide bonds was omitted (C4-16, C5-C21, C11-C22), were generated using a targeted protecting group strategy and tested using the aforementioned methods. The 3-disulfide-bonded isomers had a range of different conformational stabilities, with highly unstructured, flexible conformations with low or no channel-blocking activity, while more constrained molecules preserved 30% to 50% of the native isomer's activity. This emphasizes the importance and direct link between correct fold and function. The elimination of one disulfide bond resulted in a significant loss of blocking activity at NaV1.4, highlighting the importance of the 3-disulfide-bonded architecture for µ-PIIIA. µ-PIIIA bioactivity is governed by a subtle interplay between an optimally folded structure resulting from a specific disulfide connectivity and the electrostatic potential of the conformational ensemble.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Desiree Kaufmann
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Daniel Tietze
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
16
|
Dutt M, Dutertre S, Jin AH, Lavergne V, Alewood PF, Lewis RJ. Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Mar Drugs 2019; 17:md17010071. [PMID: 30669642 PMCID: PMC6356538 DOI: 10.3390/md17010071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
Collapse
Affiliation(s)
- Mriga Dutt
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Sébastien Dutertre
- Institut des Biomolecules Max Mousseron, UMR 5247, Université Montpellier-CNRS, 34093 Montpellier, France.
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | | | - Paul Francis Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Richard James Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| |
Collapse
|
17
|
Xu X, Xu Q, Chen F, Shi J, Liu Y, Chu Y, Wan S, Jiang T, Yu R. Role of the disulfide bond on the structure and activity of μ-conotoxin PIIIA in the inhibition of Na V1.4. RSC Adv 2019; 9:668-674. [PMID: 35517619 PMCID: PMC9059534 DOI: 10.1039/c8ra06103c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
μ-Conotoxin PIIIA, a peptide toxin isolated from Conus purpurascens, blocks the skeletal muscle voltage-gated sodium channel NaV1.4 with significant potency. PIIIA has three disulfide bonds, which contribute largely to its highly constrained and stable structure. In this study, a combination of experimental studies and computational modeling were performed to assess the effects of deletion of the disulfide bonds on the structure and activity of PIIIA. The final results indicate that the three disulfide bonds of PIIIA are required to produce the effective inhibition of NaV1.4, and the removal of any one of the disulfide bonds significantly reduces its binding affinity owing to secondary structure variation, among which the Cys11-Cys22 is the most important for sustaining the structure and activity of PIIIA.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Fangling Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Juan Shi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Yuntian Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Yanyan Chu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China +86-138-6986-2306
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| |
Collapse
|
18
|
Govindu PCV, Mohanan A, Dolle A, Gowd KH. Conformations of cysteine disulfides of peptide toxins: Advantage of differentiating forward and reverse asymmetric disulfide conformers. J Biomol Struct Dyn 2018; 37:2017-2029. [DOI: 10.1080/07391102.2018.1475257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Panchada Ch V Govindu
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Athul Mohanan
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
19
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones. Genome Biol Evol 2018; 10:2643-2662. [PMID: 30060147 PMCID: PMC6178336 DOI: 10.1093/gbe/evy150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/27/2022] Open
Abstract
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, Puerto Real, Spain
| | - Carlos M L Afonso
- Fisheries, Biodiversity and Conervation Group, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Franco A, Dovell S, Möller C, Grandal M, Clark E, Marí F. Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 2018; 285:887-902. [PMID: 29283511 DOI: 10.1111/febs.14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
The mini-M conotoxins are peptidic scaffolds found in the venom of cones snails. These scaffolds are tightly folded structures held together by three disulfide bonds with a CC-C-C-CC arrangement (conotoxin framework III) and belong to the M Superfamily of conotoxins. Here, we describe mini-M conotoxins from the venom of Conus regius, a Western Atlantic worm-hunting cone snail species using transcriptomic and peptidomic analyses. These C. regius conotoxins belong to three different subtypes: M1, M2, and M3. The subtypes show little sequence homology, and their loop sizes (intercysteine amino acid chains) vary significantly. The mini-Ms isolated from dissected venom contains preferentially hydroxylated proline residues, thus augmenting the structural reach of this conotoxin class. Using 2D-NMR methods, we have determined the 3D structure of reg3b, an M2 subtype conotoxin, which shows a constrained multi-turn scaffold. The structural diversity found within mini-M conotoxin scaffolds of C. regius is indicative of structural hypervariability of the conotoxin M superfamily that is not seen in other superfamilies. These stable minimalistic scaffolds may be investigated for the development of engineered peptides for therapeutic applications. DATABASES Sequences are available in GenBank under accession numbers MF588935-MF588952. Structural data are available in the RCSB protein database under the accession code 6BX9.
Collapse
Affiliation(s)
- Aldo Franco
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Sanaz Dovell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Carolina Möller
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA.,Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - Meghan Grandal
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA.,Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, USA
| | - Evan Clark
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Frank Marí
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA.,Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| |
Collapse
|
21
|
Omaga CA, Carpio LD, Imperial JS, Daly NL, Gajewiak J, Flores MS, Espino SS, Christensen S, Filchakova OM, López-Vera E, Raghuraman S, Olivera BM, Concepcion GP. Structure and Biological Activity of a Turripeptide from Unedogemmula bisaya Venom. Biochemistry 2017; 56:6051-6060. [PMID: 29090914 DOI: 10.1021/acs.biochem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The turripeptide ubi3a was isolated from the venom of the marine gastropod Unedogemmula bisaya, family Turridae, by bioassay-guided purification; both native and synthetic ubi3a elicited prolonged tremors when injected intracranially into mice. The sequence of the peptide, DCCOCOAGAVRCRFACC-NH2 (O = 4-hydroxyproline) follows the framework III pattern for cysteines (CC-C-C-CC) in the M-superfamily of conopeptides. The three-dimensional structure determined by NMR spectroscopy indicated a disulfide connectivity that is not found in conopeptides with the cysteine framework III: C1-C4, C2-C6, C3-C5. The peptide inhibited the activity of the α9α10 nicotinic acetylcholine receptor with relatively low affinity (IC50, 10.2 μM). Initial Constellation Pharmacology data revealed an excitatory activity of ubi3a on a specific subset of mouse dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Carla A Omaga
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines.,Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Department of Chemistry, University of Utah , 315 1400 E, Salt Lake City, Utah 84112, United States
| | - Louie D Carpio
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| | - Julita S Imperial
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University , Cairns, Queensland 4870, Australia
| | - Joanna Gajewiak
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Malem S Flores
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| | - Samuel S Espino
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Washington University School of Medicine , 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Sean Christensen
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Olena M Filchakova
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Biology Department, School of Science and Technology, Nazarbayev University , Qabanbay Batyr Avenue 53, Astana 010000, Kazakhstan
| | - Estuardo López-Vera
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico , 04510 Coyoacan, DF, Mexico
| | - Shrinivasan Raghuraman
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
22
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
23
|
Dao FY, Yang H, Su ZD, Yang W, Wu Y, Hui D, Chen W, Tang H, Lin H. Recent Advances in Conotoxin Classification by Using Machine Learning Methods. Molecules 2017; 22:molecules22071057. [PMID: 28672838 PMCID: PMC6152242 DOI: 10.3390/molecules22071057] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhen-Dong Su
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Development and Planning Department, Inner Mongolia University, Hohhot 010021, China.
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Ding Hui
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China.
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou 646000, China.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
24
|
The Venom Repertoire of Conus gloriamaris (Chemnitz, 1777), the Glory of the Sea. Mar Drugs 2017; 15:md15050145. [PMID: 28531118 PMCID: PMC5450551 DOI: 10.3390/md15050145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022] Open
Abstract
The marine cone snail Conus gloriamaris is an iconic species. For over two centuries, its shell was one of the most prized and valuable natural history objects in the world. Today, cone snails have attracted attention for their remarkable venom components. Many conotoxins are proving valuable as research tools, drug leads, and drugs. In this article, we present the venom gland transcriptome of C. gloriamaris, revealing this species' conotoxin repertoire. More than 100 conotoxin sequences were identified, representing a valuable resource for future drug discovery efforts.
Collapse
|
25
|
Kancherla AK, Meesala S, Jorwal P, Palanisamy R, Sikdar SK, Sarma SP. A Disulfide Stabilized β-Sandwich Defines the Structure of a New Cysteine Framework M-Superfamily Conotoxin. ACS Chem Biol 2015; 10:1847-60. [PMID: 25961405 DOI: 10.1021/acschembio.5b00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a new cysteine framework (-C-CC-C-C-C-) "M"-superfamily conotoxin, Mo3964, shows it to have a β-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K(+) currents in rat dorsal root ganglion neurons and increases the reversal potential of the NaV1.2 channels. The structure of Mo3964 (PDB ID: 2MW7 ) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the "M"-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)JNC' scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 ± 0.18 Å, with 87% and 13% of the backbone dihedral (ϕ, ψ) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Srinu Meesala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Pooja Jorwal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Ramasamy Palanisamy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
26
|
Franklin JB, Rajesh RP. A sleep-inducing peptide from the venom of the Indian cone snail Conus araneosus. Toxicon 2015; 103:39-47. [PMID: 26100663 DOI: 10.1016/j.toxicon.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022]
Abstract
The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins.
Collapse
|
27
|
Zhou M, Wang L, Wu Y, Liu J, Sun D, Zhu X, Feng Y, Qin M, Chen S, Xu A. Soluble expression and sodium channel activity of lt16a, a novel framework XVI conotoxin from the M-superfamily. Toxicon 2015; 98:5-11. [DOI: 10.1016/j.toxicon.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
28
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
29
|
Rajesh RP. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus. J Pept Sci 2014; 21:29-39. [PMID: 25420928 DOI: 10.1002/psc.2715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/23/2022]
Abstract
The venom of Conus figulinus, a vermivorous cone snail, found in the south east coast of India, has been studied in an effort to identify novel peptide toxins. The amino acid sequences of seven peptides have been established using de novo mass spectrometric based sequencing methods. Among these, three peptides belong to the M-Superfamily conotoxins, namely, Fi3a, Fi3b, and Fi3c, and one that belongs to the T-Superfamily, namely, Fi5a. The other three peptides are contryphans, namely, contryphans fib, fic, and fid. Of these Fi3b, Fi3c, Fi5a, and contryphan fib are novel and are reported for the first time from venom of C. figulinus. The details of the sequencing methods and the relationship of these peptides with other 'M'-Superfamily conotoxins from the fish hunting and mollusk hunting clades are discussed. These novel peptides could serve as a lead compounds for the development of neuropharmacologically important drugs.
Collapse
|
30
|
Thapa P, Espiritu MJ, Cabalteja CC, Bingham JP. Conotoxins and their regulatory considerations. Regul Toxicol Pharmacol 2014; 70:197-202. [PMID: 25013992 DOI: 10.1016/j.yrtph.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Venom derived peptides from marine cone snails, conotoxins, have demonstrated unique pharmacological targeting properties that have been pivotal in advancing medical research. The awareness of their true toxic origins and potent pharmacological nature is emphasized by their 'select agent' classification by the US Centers for Disease Control and Prevention. We briefly introduce the biochemical and pharmacological aspects of conotoxins, highlighting current advancements into their biological engineering, and provide details to the present regulations that govern their use in research.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Michael J Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Chino C Cabalteja
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA.
| |
Collapse
|
31
|
Prator CA, Murayama KM, Schulz JR. Venom variation during prey capture by the cone snail, Conus textile. PLoS One 2014; 9:e98991. [PMID: 24940882 PMCID: PMC4062396 DOI: 10.1371/journal.pone.0098991] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/09/2014] [Indexed: 01/14/2023] Open
Abstract
Observations of the mollusc-hunting cone snail Conus textile during feeding reveal that prey are often stung multiple times in succession. While studies on the venom peptides injected by fish-hunting cone snails have become common, these approaches have not been widely applied to the analysis of the injected venoms from mollusc-hunters. We have successfully obtained multiple injected venom samples from C. textile individuals, allowing us to investigate venom compositional variation during prey capture. Our studies indicate that C. textile individuals alter the composition of prey-injected venom peptides during single feeding events. The qualitative results obtained by MALDI-ToF mass spectrometry are mirrored by quantitative changes in venom composition observed by reverse-phase high performance liquid chromatography. While it is unclear why mollusc-hunting cone snails inject prey multiple times prior to engulfment, our study establishes for the first time a link between this behavior and compositional changes of the venom during prey capture. Changes in venom composition during hunting may represent a multi-step strategy utilized by these venomous animals to slow and incapacitate prey prior to engulfment.
Collapse
Affiliation(s)
- Cecilia A. Prator
- Department of Biology, Occidental College, Los Angeles, California, United States of America
| | - Kellee M. Murayama
- Department of Biology, Occidental College, Los Angeles, California, United States of America
| | - Joseph R. Schulz
- Department of Biology, Occidental College, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nguyen B, Caer JPL, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 2014; 12:3449-65. [PMID: 24905483 PMCID: PMC4071585 DOI: 10.3390/md12063449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/07/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
Collapse
Affiliation(s)
- Bao Nguyen
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jean-Pierre Le Caer
- Research Unit # 2301, Natural Product Chemistry Institute, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Gilles Mourier
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Robert Thai
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Hung Lamthanh
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Denis Servent
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Evelyne Benoit
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| |
Collapse
|
33
|
Anand P, Grigoryan A, Bhuiyan MH, Ueberheide B, Russell V, Quinoñez J, Moy P, Chait BT, Poget SF, Holford M. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata. PLoS One 2014; 9:e94122. [PMID: 24713808 PMCID: PMC3979744 DOI: 10.1371/journal.pone.0094122] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022] Open
Abstract
Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.
Collapse
Affiliation(s)
- Prachi Anand
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Alexandre Grigoryan
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Mohammed H. Bhuiyan
- Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, Staten Island, New York, United States of America
| | - Beatrix Ueberheide
- NYU Langone Medical Center, New York University, New York, New York, United States of America
| | - Victoria Russell
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Jose Quinoñez
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Patrick Moy
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Brian T. Chait
- The Rockefeller University, New York, New York, United States of America
| | - Sébastien F. Poget
- Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, Staten Island, New York, United States of America
| | - Mandë Holford
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
- The American Museum of Natural History, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sonti R, Rao KNS, Chidanand S, Gowd KH, Raghothama S, Balaram P. Conformational Analysis of a 20-Membered Cyclic Peptide Disulfide fromConus virgowith a WPW Segment: Evidence for an Aromatic-Proline Sandwich. Chemistry 2014; 20:5075-86. [DOI: 10.1002/chem.201303687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Indexed: 11/06/2022]
|
35
|
Robinson SD, Safavi-Hemami H, McIntosh LD, Purcell AW, Norton RS, Papenfuss AT. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One 2014; 9:e87648. [PMID: 24505301 PMCID: PMC3914837 DOI: 10.1371/journal.pone.0087648] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/28/2013] [Indexed: 12/31/2022] Open
Abstract
Animal venoms represent a vast library of bioactive peptides and proteins with proven potential, not only as research tools but also as drug leads and therapeutics. This is illustrated clearly by marine cone snails (genus Conus), whose venoms consist of mixtures of hundreds of peptides (conotoxins) with a diverse array of molecular targets, including voltage- and ligand-gated ion channels, G-protein coupled receptors and neurotransmitter transporters. Several conotoxins have found applications as research tools, with some being used or developed as therapeutics. The primary objective of this study was the large-scale discovery of conotoxin sequences from the venom gland of an Australian cone snail species, Conus victoriae. Using cDNA library normalization, high-throughput 454 sequencing, de novo transcriptome assembly and annotation with BLASTX and profile hidden Markov models, we discovered over 100 unique conotoxin sequences from 20 gene superfamilies, the highest diversity of conotoxins so far reported in a single study. Many of the sequences identified are new members of known conotoxin superfamilies, some help to redefine these superfamilies and others represent altogether new classes of conotoxins. In addition, we have demonstrated an efficient combination of methods to mine an animal venom gland and generate a library of sequences encoding bioactive peptides.
Collapse
Affiliation(s)
- Samuel D. Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- * E-mail: (SDR); (HSH)
| | - Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- * E-mail: (SDR); (HSH)
| | - Lachlan D. McIntosh
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Anthony T. Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Luo S, Zhangsun D, Schroeder CI, Zhu X, Hu Y, Wu Y, Weltzin MM, Eberhard S, Kaas Q, Craik DJ, McIntosh JM, Whiteaker P. A novel α4/7-conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB J 2014; 28:1842-53. [PMID: 24398291 DOI: 10.1096/fj.13-244103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study was performed to discover and characterize the first potent α3β2-subtype-selective nicotinic acetylcholine receptor (nAChR) ligand. A novel α4/7-conotoxin, α-CTxLvIA, was cloned from Conus lividus. Its pharmacological profile at Xenopus laevis oocyte-expressed rat nAChR subtypes was determined by 2-electrode voltage-clamp electrophysiology, and its 3-dimensional (3D) structure was determined by NMR spectroscopy. α-CTx LvIA is a 16-aa C-terminally-amidated peptide with 2-disulfide bridges. Using rat subunits expressed in Xenopus oocytes, we found the highest affinity of α-CTxLvIA was for α3β2 nAChRs (IC50 8.7 nM), where blockade was reversible within 2 min. IC50 values were >100 nM at α6/α3β2β3, α6/α3β4, and α3β4 nAChRs, and ≥3 μM at all other subtypes tested. α3β2 vs. α6β2 subtype selectivity was confirmed for human-subunit nAChRs with much greater preference (300-fold) for α3β2 over α6β2 nAChRs. This is the first α-CTx reported to show high selectivity for human α3β2 vs. α6β2 nAChRs. α-CTxLvIA adopts two similarly populated conformations water: one (assumed to be bioactive) is highly structured, whereas the other is mostly random coil in nature. Selectivity differences with the similarly potent, but less selective, α3β2 nAChR antagonist α-CTx PeIA probably reside within the three residues, which differ in loop 2, given their otherwise similar 3D structures. α4/7-CTx LvIA is a new, potent, selective α3β2 nAChR antagonist, which will enable detailed studies of α3β2 nAChR structure, function, and physiological roles.
Collapse
Affiliation(s)
- Sulan Luo
- 1Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University; Haikou, Hainan, 570228 China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam. Toxicon 2013; 75:148-59. [DOI: 10.1016/j.toxicon.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
|
38
|
Luo S, Zhangsun D, Zhu X, Wu Y, Hu Y, Christensen S, Harvey PJ, Akcan M, Craik DJ, McIntosh JM. Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3β4 nicotinic acetylcholine receptors. J Med Chem 2013; 56:9655-63. [PMID: 24200193 DOI: 10.1021/jm401254c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The α3β4 nAChRs are implicated in pain sensation in the PNS and addiction to nicotine in the CNS. We identified an α-4/6-conotoxin (CTx) TxID from Conus textile. The new toxin consists of 15 amino acid residues with two disulfide bonds. TxID was synthesized using solid phase methods, and the synthetic peptide was functionally tested on nAChRs heterologously expressed in Xenopus laevis oocytes. TxID blocked rat α3β4 nAChRs with a 12.5 nM IC50, which places it among the most potent α3β4 nAChR antagonists. TxID also blocked the closely related α6/α3β4 with a 94 nM IC50 but showed little activity on other nAChR subtypes. NMR analysis showed that two major structural isomers exist in solution, one of which adopts a regular α-CTx fold but with different surface charge distribution to other 4/6 family members. α-CTx TxID is a novel tool with which to probe the structure and function of α3β4 nAChRs.
Collapse
Affiliation(s)
- Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drug of Haikou, Hainan University , Haikou Hainan, 570228, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhou M, Wang L, Wu Y, Zhu X, Feng Y, Chen Z, Li Y, Sun D, Ren Z, Xu A. Characterizing the evolution and functions of the M-superfamily conotoxins. Toxicon 2013; 76:150-9. [PMID: 24080356 DOI: 10.1016/j.toxicon.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/28/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Conotoxins from cone snails are valuable in physiology research and therapeutic applications. Evolutionary mechanisms of conotoxins have been investigated in several superfamilies, but there is no phylogenetic analysis on M-superfamily conotoxins. In this study, we characterized identical sequences, gene structure, novel cysteine frameworks, functions and evolutionary mechanisms of M-superfamily conotoxins. Identical M-superfamily conotoxins can be found in different Conus species from the analysis of novel 467 M-superfamily conotoxin sequences and other published M-superfamily conotoxins sequences. M-superfamily conotoxin genes consist of two introns and three exons from the results of genome walking. Eighteen cysteine frameworks were identified from the M-superfamily conotoxins, and 10 of the 18 may be generated from framework III. An analysis between diet types and phylogeny of the M-superfamily conotoxins indicate that M-superfamily conotoxins might not evolve in a concerted manner but were subject to birth-and-death evolution. Codon usage analysis shows that position-specific codon conservation is not restricted to cysteines, but also to other conserved residues. By analysing primary structures and physiological functions of M-superfamily conotoxins, we proposed a hypothesis that insertions and deletions, especially insertions in the third cysteine loop, are involved in the creation of new functions and structures of the M-superfamily conotoxins.
Collapse
Affiliation(s)
- Maojun Zhou
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fedosov AÉ, Moshkovskiĭ SA, Kuznetsova KG, Olivera BM. [Conotoxins: from the biodiversity of gastropods to new drugs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2013; 59:267-94. [PMID: 23987066 DOI: 10.18097/pbmc20135903267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A review describes general trends in research of conotoxins that are peptide toxins isolated from sea gastropods of the Conus genus, since the toxins were discovered in 1970th. There are disclosed a conotoxin classification, their structure diversity and different ways of action to their molecular targets, mainly, ion channels. In the applied aspect of conotoxin research, drug discovery and development is discussed, the drugs being based on conotoxin structure. A first exemplary drug is a ziconotide, which is an analgesic of new generation.
Collapse
|
41
|
Peigneur S, Van Der Haegen A, Möller C, Waelkens E, Diego-García E, Marí F, Naudé R, Tytgat J. Unraveling the peptidome of the South African cone snails Conus pictus and Conus natalis. Peptides 2013; 41:8-16. [PMID: 22776330 DOI: 10.1016/j.peptides.2012.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Venoms from cone snails (genus Conus) can be seen as an untapped cocktail of biologically active compounds, being increasingly recognized as an emerging source of peptide-based therapeutics. Cone snails are considered to be specialized predators that have evolved the most sophisticated peptide chemistry and neuropharmacology system for their own biological purposes by producing venoms which contains a structural and functional diversity of neurotoxins. These neurotoxins or conotoxins are often small cysteine-rich peptides which have shown to be highly selective ligands for a wide range of ion channels and receptors. Local habitat conditions have constituted barriers preventing the spreading of Conus species occurring along the coast of South Africa. Due to their scarceness, these species remain, therefore, extremely poorly studied. In this work, the venoms of two South African cone snails, Conus pictus, a vermivorous snail and Conus natalis, a molluscivorous snail, have been characterized in depth. In total, 26 novel peptides were identified. Comparing the venoms of both snails, interesting differences were observed regarding venom composition and molecular characteristics of these components.
Collapse
Affiliation(s)
- Steve Peigneur
- Laboratory of Toxicology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aguilar MB, Zugasti-Cruz A, Falcón A, Batista CVF, Olivera BM, de la Cotera EPH. A novel arrangement of Cys residues in a paralytic peptide of Conus cancellatus (jr. syn.: Conus austini), a worm-hunting snail from the Gulf of Mexico. Peptides 2013; 41:38-44. [PMID: 23474143 PMCID: PMC3677226 DOI: 10.1016/j.peptides.2013.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/01/2022]
Abstract
The present study details the purification, the amino acid sequence determination, and a preliminary characterization of the biological effects in mice of a new conotoxin from the venom of Conus cancellatus (jr. syn.: Conus austini), a worm-hunting cone snail collected in the western Gulf of Mexico (Mexico). The 23-amino acid peptide, called as25a, is characterized by the sequence pattern CX1CX2CX8CX1CCX5, which is, for conotoxins, a new arrangement of six cysteines (framework XXV) that form three disulfide bridges. The primary structure (CKCPSCNFNDVTENCKCCIFRQP*; *, amidated C-terminus; calculated monoisotopic mass, 2644.09Da) was established by automated Edman degradation after reduction and alkylation, and MALDI-TOF and ESI mass spectrometry (monoisotopic mass, 2644.12/2644.08Da). Upon intracranial injection in mice, the purified peptide provokes paralysis of the hind limbs and death with a dose of 240 pmol (~0.635 μg, ~24.9 ng/g). In addition, a post-translational variant of this peptide (as25b) was identified and determined to contain two hydroxyproline residues. These peptides may represent a novel conotoxin gene superfamily.
Collapse
Affiliation(s)
- Manuel B Aguilar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico.
| | | | | | | | | | | |
Collapse
|
43
|
Khoo KK, Gupta K, Green BR, Zhang MM, Watkins M, Olivera BM, Balaram P, Yoshikami D, Bulaj G, Norton RS. Distinct disulfide isomers of μ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry 2012; 51:9826-35. [PMID: 23167564 DOI: 10.1021/bi301256s] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of μ-conotoxin KIIIA, which was predicted originally to have a [C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related μ-conotoxins. The two major isomers of synthetic μ-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a [C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a [C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(V)1.2 (K(d) values of 5 and 230 nM, respectively). The solution structure for μ-KIIIA based on nuclear magnetic resonance data was recalculated with the [C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the μ-KIIIA structure calculated with the incorrect [C1-C9,C2-C15,C4-C16] disulfide pattern, with an α-helix spanning residues 7-12. In addition, the major folding isomers of μ-KIIIB, an N-terminally extended isoform of μ-KIIIA identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as μ-KIIIA, and both blocked Na(V)1.2 (K(d) values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic μ-KIIIA and μ-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of μ-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Collapse
Affiliation(s)
- Keith K Khoo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 2012; 12:312-29. [PMID: 23152539 DOI: 10.1074/mcp.m112.021469] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50-200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of ∼ 100 gene transcripts can generate thousands of conopeptides in a single species of cone snail.
Collapse
Affiliation(s)
- Sébastien Dutertre
- The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Safavi-Hemami H, Gorasia DG, Steiner AM, Williamson NA, Karas JA, Gajewiak J, Olivera BM, Bulaj G, Purcell AW. Modulation of conotoxin structure and function is achieved through a multienzyme complex in the venom glands of cone snails. J Biol Chem 2012; 287:34288-303. [PMID: 22891240 PMCID: PMC3464536 DOI: 10.1074/jbc.m112.366781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/12/2012] [Indexed: 11/06/2022] Open
Abstract
The oxidative folding of large polypeptides has been investigated in detail; however, comparatively little is known about the enzyme-assisted folding of small, disulfide-containing peptide substrates. To investigate the concerted effect of multiple enzymes on the folding of small disulfide-rich peptides, we sequenced and expressed protein-disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase, and immunoglobulin-binding protein (BiP) from Conus venom glands. Conus PDI was shown to catalyze the oxidation and reduction of disulfide bonds in two conotoxins, α-GI and α-ImI. Oxidative folding rates were further increased in the presence of Conus PPI with the maximum effect observed in the presence of both enzymes. In contrast, Conus BiP was only observed to assist folding in the presence of microsomes, suggesting that additional co-factors were involved. The identification of a complex between BiP, PDI, and nascent conotoxins further suggests that the folding and assembly of conotoxins is a highly regulated multienzyme-assisted process. Unexpectedly, all three enzymes contributed to the folding of the ribbon isomer of α-ImI. Here, we identify this alternative disulfide-linked species in the venom of Conus imperialis, providing the first evidence for the existence of a "non-native" peptide isomer in the venom of cone snails. Thus, ER-resident enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation and function by reconfiguring disulfide connectivities. This study has evaluated the role of a number of ER-resident enzymes in the folding of conotoxins, providing novel insights into the enzyme-guided assembly of these small, disulfide-rich peptides.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- From the Department of Biochemistry and Molecular Biology and
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - Dhana G. Gorasia
- From the Department of Biochemistry and Molecular Biology and
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | | | - Nicholas A. Williamson
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - John A. Karas
- the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia
| | - Joanna Gajewiak
- Biology, University of Utah, Salt Lake City, Utah 84112, and
| | | | | | - Anthony W. Purcell
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
46
|
Franco A, Kompella SN, Akondi KB, Melaun C, Daly NL, Luetje CW, Alewood PF, Craik DJ, Adams DJ, Marí F. RegIIA: An α4/7-conotoxin from the venom of Conus regius that potently blocks α3β4 nAChRs. Biochem Pharmacol 2012; 83:419-26. [DOI: 10.1016/j.bcp.2011.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/26/2022]
|
47
|
Möller C, Melaun C, Castillo C, Díaz ME, Renzelman CM, Estrada O, Kuch U, Lokey S, Marí F. Functional hypervariability and gene diversity of cardioactive neuropeptides. J Biol Chem 2010; 285:40673-80. [PMID: 20923766 DOI: 10.1074/jbc.m110.171397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.
Collapse
Affiliation(s)
- Carolina Möller
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gupta K, Kumar M, Balaram P. Disulfide Bond Assignments by Mass Spectrometry of Native Natural Peptides: Cysteine Pairing in Disulfide Bonded Conotoxins. Anal Chem 2010; 82:8313-9. [DOI: 10.1021/ac101867e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Mukesh Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| |
Collapse
|
49
|
Jimenez EC, Olivera BM. Divergent M- and O-superfamily peptides from venom of fish-hunting Conus parius. Peptides 2010; 31:1678-83. [PMID: 20570703 PMCID: PMC2922443 DOI: 10.1016/j.peptides.2010.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/27/2010] [Accepted: 05/29/2010] [Indexed: 11/22/2022]
Abstract
Six novel peptides from the piscivorous cone snail, Conus parius were purified by reverse-phase HPLC fractionation of crude venom. With the use of matrix-assisted laser desorption ionization mass spectrometry and standard Edman sequencing methods, the peptides were characterized. Two peptides were identified as members of the m-2 and m-4 branches of the M-superfamily and were designated as pr3a and pr3b, while four peptides were identified as members of the O-superfamily and were designated as pr6a, pr6b, pr6c and pr6d. Peptide pr3a differs from the majority of the M-superfamily peptides in the presence of two prolines, which are not modified to 4-trans-hydroxyproline. In peptide pr3b, five amino acids out of the 16 non-cysteine residues are identical with those of mu-GIIIA and mu-PIIIA, suggesting that pr3b may be a divergent mu-conotoxin. Peptide pr6a is notable because of its extreme hydrophobicity. Peptide pr6c has three prolines that are unhydroxylated. Peptides pr6b and pr6d differ from the previously characterized O-superfamily peptides in the presence of an extended N-terminus consisting of six amino acids. Peptides pr3a, pr3b, pr6a and pr6b were demonstrated to be biologically active when injected intraperitoneally in fish. The identification and characterization of these peptides in venom of a fish-hunting species establish the divergence of gene products and their patterns of post-translational modification within superfamilies in a single Conus species.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines.
| | | |
Collapse
|
50
|
Tayo LL, Lu B, Cruz LJ, Yates JR. Proteomic analysis provides insights on venom processing in Conus textile. J Proteome Res 2010; 9:2292-301. [PMID: 20334424 DOI: 10.1021/pr901032r] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conus species of marine snails deliver a potent collection of toxins from the venom duct via a long proboscis attached to a harpoon tooth. Conotoxins are known to possess powerful neurological effects and some have been developed for therapeutic uses. Using mass-spectrometry based proteomics, qualitative and quantitative differences in conotoxin components were found in the proximal, central and distal sections of the Conus textile venom duct suggesting specialization of duct sections for biosynthesis of particular conotoxins. Reversed phase HPLC followed by Orbitrap mass spectrometry and data analysis using SEQUEST and ProLuCID identified 31 conotoxin sequences and 25 post-translational modification (PTM) variants with King-Kong 2 peptide being the most abundant. Several previously unreported variants of known conopeptides were found and this is the first time that HyVal is reported for a disulfide rich Conus peptide. Differential expression along the venom duct, production of PTM variants, alternative proteolytic cleavage sites, and venom processing enroute to the proboscis all appear to contribute to enriching the combinatorial pool of conopeptides and producing the appropriate formulation for a particular hunting situation. The complementary tools of mass spectrometry-based proteomics and molecular biology can greatly accelerate the discovery of Conus peptides and provide insights on envenomation and other biological strategies of cone snails.
Collapse
Affiliation(s)
- Lemmuel L Tayo
- School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Muralla Street Intramuros, Manila 1002, Philippines
| | | | | | | |
Collapse
|