1
|
Defourny J, Thiry M. Recent insights into gap junction biogenesis in the cochlea. Dev Dyn 2023; 252:239-246. [PMID: 36106826 DOI: 10.1002/dvdy.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Abstract
In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
3
|
Gabrielle PH. Lipid metabolism and retinal diseases. Acta Ophthalmol 2022; 100 Suppl 269:3-43. [PMID: 36117363 DOI: 10.1111/aos.15226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The retina has enormous lipids demands and must meet those needs. Retinal lipid homeostasis appears to be based on the symbiosis between neurons, Müller glial cells (MGC), and retinal pigment epithelium (RPE) cells, which can be impacted in several retinal diseases. The current research challenge is to better understand lipid-related mechanisms involved in retinal diseases, such as age-related macular degeneration (AMD) and glaucoma. RESULTS In a first axis, in vitro and focus on Müller glial cell, we aimed to characterize whether the 24S-hydroxycholesterol (24S-OHC), an overexpressed end-product of cholesterol elimination pathway in neural tissue and likely produced by suffering retinal ganglion cells in glaucoma, may modulate MGC membrane organization, such as lipid rafts, to trigger cellular signalling pathways related to retinal gliosis. We have found that lipid composition appears to be a key factor of membrane architecture, especially for lipid raft microdomain formation, in MGC. However, 24S-OHC did not appear to trigger retinal gliosis via the modulation of lipid or protein composition within lipid rafts microdomains. This study provided a better understanding of the complex mechanisms involved in the pathophysiology of glaucoma. On a second clinical ax, we focused on the lipid-related mechanisms involved in the dysfunction of aging RPE and the appearance of drusenoid deposits in AMD. Using the Montrachet population-based study, we intend to report the frequency of reticular pseudodrusen (RPD) and its ocular and systemic risk factors, particularly related to lipid metabolisms, such as plasma lipoprotein levels, carotenoids levels, and lipid-lowering drug intake. Our study showed that RPD was less common in subjects taking lipid-lowering drugs. Lipid-lowering drugs, such as statins, may reduce the risk of RPD through their effect on the production and function of lipoproteins. This observation highlights the potential role of retinal lipid trafficking via lipoproteins between photoreceptors and retinal pigment epithelium cells in RPD formation. Those findings have been complemented with preliminary results on the analysis of plasma fatty acid (FA) profile, a surrogate marker of short-term dietary lipid intake, according to the type of predominant drusenoid deposit, soft drusen or RPD, in age-related maculopathy. CONCLUSION Further research on lipid metabolism in retinal diseases is warranted to better understand the pathophysiology of retinal diseases and develop new promising diagnostic, prognostic, and therapeutic tools for our patients.
Collapse
Affiliation(s)
- Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Center for Taste and Feeding Behaviour, AgroSup Dijon, CNRS, INRAe, The University Bourgogne Franche-Comté, Dijon, France.,Department of Ophthalmology, Dijon University Hospital, Dijon, France.,The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Mesenchymal stem cell-derived exosomes altered neuron cholesterol metabolism via Wnt5a-LRP1 axis and alleviated cognitive impairment in a progressive Parkinson's disease model. Neurosci Lett 2022; 787:136810. [PMID: 35870714 DOI: 10.1016/j.neulet.2022.136810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is associated with abnormal metabolism of brain cholesterol, and the metabolites of neuronal cholesterol may also affect neurodegenerative progression. In this study, we aim to explore the therapeutic effect of BMSC derived exosomes on motor and cognitive deficits in α-synuclein (α-Syn) A53T transgenic mice, a progressive PD animal model. Results revealed that rotating rod performance of α-Syn A53T TG mice decreased by 45.4 %±8.6 % at the age of 12 months compared with wide-type (WT) mice. Striatum injection of BMSC quiescent exosomes (BMSCquiescent-EXO) and BMSC induced exosomes (BMSCinduced-EXO) rescued the rotation behavior (BMSCquiescent-EXO: 92.3 %±12.5 % P = 0.008; BMSCinduced-EXO: 102.3 %±16.7 %, P = 0.006). Although there was no difference in the escape latency within 5 days of Morris water maze learning between groups in the 12-month old mice. The exploration latency was shorter (p < 0.05) in BMSCquiescent-EXO and BMSCinduced-EXO groups, the number of explorations and novel object recognition index were significantly increased (p < 0.05). More importantly, the total cholesterol level was increased (p < 0.05), while the content of 24S-hydroxycholesterol significantly decreased (p < 0.05) after intrastriatal injection BMSCquiescent-EXO and BMSCinduced-EXO in A53T group. Liquid chromatography-mass spectrometry (LC/MS) was performed to profile phospholipid metabolites in lipid raft of hippocampal neurons, demonstrating that BMSCquiescent-EXO injection caused the decreasing relative percentages of phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) compared to those in A53T mice, while the relative percentages of phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidylcholine (PC) increased. The cholesterol content of lipid rafts was lower in BMSCquiescent-EXO and BMSCinduced-EXO groups than that in A53T group (P < 0.05). In summary, exosomes isolated during BMSC dopaminergic neuron differentiation can significantly improve the motor, learning and memory ability of the progressive PD mice model, and its mechanism may be related to the change of altered phospholipid composition and cholesterol metabolism in hippocampal neurons.
Collapse
|
5
|
Meter D, Racetin A, Vukojević K, Balog M, Ivić V, Zjalić M, Heffer M, Filipović N. A Lack of GD3 Synthase Leads to Impaired Renal Expression of Connexins and Pannexin1 in St8sia1 Knockout Mice. Int J Mol Sci 2022; 23:ijms23116237. [PMID: 35682927 PMCID: PMC9181035 DOI: 10.3390/ijms23116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the effects of altered ganglioside composition on the expression of Cx37, Cx40, Cx43, Cx45, and Panx1 in different kidney regions of St8sia1 gene knockout mice (St8sia1 KO) lacking the GD3 synthase enzyme. Experiments were performed in twelve male 6-month-old mice: four wild-type (C57BL/6-type, WT) and eight St8sia1 KO mice. After euthanasia, kidney tissue was harvested, embedded in paraffin wax, and processed for immunohistochemistry. The expression of connexins and Panx1 was determined in different regions of the kidney: cortex (CTX.), outer stripe of outer medulla (O.S.), inner stripe of outer medulla (IN.S.), and inner medulla (IN.MED.). We determined significantly lower expression of Cx37, Cx40, Cx45, and Panx1 in different parts of the kidneys of St8sia1 KO mice compared with WT. The most consistent decrease was found in the O.S. where all markers (Cx 37, 40, 45 and Panx1) were disrupted in St8si1 KO mice. In the CTX. region, we observed decrease in the expression of Cx37, Cx45, and Panx1, while reduced expression of Cx37 and Panx1 was more specific to IN.S. The results of the present study suggest that deficiency of GD3 synthase in St8sia1 KO mice leads to disruption of renal Cx expression, which is probably related to alteration of ganglioside composition.
Collapse
Affiliation(s)
- Diana Meter
- Department of Rheumatology and Clinical Immunology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Milorad Zjalić
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine Rijeka, University of Rijeka, Branchetta brothers 20, 51000 Rijeka, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.B.); (V.I.); (M.H.)
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (A.R.); (K.V.)
- Correspondence:
| |
Collapse
|
6
|
Rajan V, Pandey BN. Cytoproliferative effect of low dose alpha radiation in human lung cancer cells is associated with connexin 43, caveolin-1, and survivin pathway. Int J Radiat Biol 2021; 97:356-366. [PMID: 33416428 DOI: 10.1080/09553002.2021.1864044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE High LET including alpha radiation-based approaches have been proved as a promising mode for cancer therapy owing to their biophysical and radiobiological advantages compared to photon beams. Studies pertaining to effect of α-radiation on cancer cells are limited to cytotoxic high doses. MATERIALS AND METHODS In this study, human lung adenocarcinoma (A549) cells were α-irradiated using 241Am α-irradiator and effects of low dose of alpha radiation on these cells was studied under in vitro and in vivo conditions. RESULTS Clonogenic and other assays showed increased cellular proliferation at lower doses (1.36 and 6.8 cGy) but killing at higher doses (13.6-54.4 cGy). Further studies at low dose of alpha (1.36 cGy) showed increased TGF-β1 in the conditioned medium (CM) at early time point (24 h) but CM replacement did not affect the clonogenic survival. In these cells, increased phosphorylation of connexin 43 was correlated with decrease in gap-junction communication observed by dye transfer co-culture experiment. A decrease in caveolin-1 but increase in survivin expression was observed in low dose α-irradiated cells. An increase in cyclinD1 and decrease in Bcl-2, the target proteins of survivin, was observed in these cells. Low dose α-irradiated cancer cells transplanted in SCID mice showed significantly higher tumor volume, which was accompanied with an increased fraction of mitotic and PCNA/Ki67 positive cells in these tumor tissues. CONCLUSIONS Taken together, our results suggest an increase in proliferation and tumor volume at in vitro and in vivo levels, respectively, when A549 cells were irradiated with low dose of α-radiation. These findings may be relevant for a better understanding of radiobiological processes during high LET-based cancer radiotherapy.
Collapse
Affiliation(s)
- Vasumathy Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Defourny J, Thiry M. Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea. Hear Res 2020; 400:108137. [PMID: 33291008 DOI: 10.1016/j.heares.2020.108137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In the cochlea, connexins 26 (Cx26) and 30 (Cx30) largely co-assemble into heteromeric gap junctions, which connect adjacent non-sensory epithelial cells. These channels are believed to ensure the rapid removal of K+ away from the base of sensory hair cells, resulting in K+ recycling back to the endolymph to maintain cochlear homeostasis. Many of the mutations in GJB2 and GJB6, which encode CX26 and CX30, impair the formation of membrane channels and cause autosomal hearing loss in humans. Although recent advances have been made, several important questions remain about connexin trafficking and gap junction biogenesis. Here we show that tricellular adherens junctions present at the crossroad between adjacent gap junction plaques, provide an unexpected cell surface delivery platform for Cx26/Cx30 oligomers. Using an in situ proximity ligation assay, we detected the presence of non-junctional Cx26/Cx30 oligomers within lipid raft-enriched tricellular junction sites. In addition, we observed that cadherin homophilic interactions are critically involved in microtubule-mediated trafficking of Cx26/Cx30 oligomers to the cell surface. Overall, our results unveil an unexpected role for tricellular junctions in the trafficking and assembly of membrane channels.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium.
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium
| |
Collapse
|
8
|
Flores JA, Haddad BG, Dolan KA, Myers JB, Yoshioka CC, Copperman J, Zuckerman DM, Reichow SL. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 Å. Nat Commun 2020; 11:4331. [PMID: 32859914 PMCID: PMC7455559 DOI: 10.1038/s41467-020-18120-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Gap junctions establish direct pathways for cells to transfer metabolic and electrical messages. The local lipid environment is known to affect the structure, stability and intercellular channel activity of gap junctions; however, the molecular basis for these effects remains unknown. Here, we incorporate native connexin-46/50 (Cx46/50) intercellular channels into a dual lipid nanodisc system, mimicking a native cell-to-cell junction. Structural characterization by CryoEM reveals a lipid-induced stabilization to the channel, resulting in a 3D reconstruction at 1.9 Å resolution. Together with all-atom molecular dynamics simulations, it is shown that Cx46/50 in turn imparts long-range stabilization to the dynamic local lipid environment that is specific to the extracellular lipid leaflet. In addition, ~400 water molecules are resolved in the CryoEM map, localized throughout the intercellular permeation pathway and contributing to the channel architecture. These results illustrate how the aqueous-lipid environment is integrated with the architectural stability, structure and function of gap junction communication channels.
Collapse
Affiliation(s)
- Jonathan A Flores
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Bassam G Haddad
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Kimberly A Dolan
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Janette B Myers
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Craig C Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jeremy Copperman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA.
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
9
|
Pan L, Ni H, Jin W, Su X. Inhibition of ERK or Akt ameliorates intimal hyperplasia via up-regulation of Cx37 and down-regulation of Cx43 in balloon injury rat model. Cardiovasc Diagn Ther 2020; 10:658-666. [PMID: 32968622 DOI: 10.21037/cdt-20-345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Connexins (Cxs) are reported to participate in atherosclerosis associated intimal hyperplasia (IH), while their function involved in the balloon injury (BI) induced IH and restenosis is less reported. Methods Forty-eight male Sprague-Dawley rats were randomly assigned to not injured (NI) group and BI group, which were further administrated with ERK-inhibitor U0216 and Akt-inhibitor MIK2206. Western blot and RT-PCR were utilized to detect the expression of Cx30, Cx37, Cx40, and Cx43 at 6 hours, 24 hours, 7 days, and 14 days post-surgery. H&E staining and related intima area, media area, and luminal area measurement were applied to indicate neointima formation and IH. ERK and Akt phosphorylation levels and proliferating cell nuclear antigen (PCNA) immunostaining were also detected. Results Among the four Cxs detected, Cx37 showed down-regulated, and Cx43 showed up-regulated temporal expression pattern in BI rats with confirmed neointima formation. Up-regulated p-ERK (P<0.01) and p-Akt (P<0.01) can be detected in BI rats compared with NI rats. Meanwhile, U0216 and MIK2206 can significantly reduce Cx43 expression and increase CX37 expression accompanied with reduced neointima formation and PCNA staining (P<0.05 or P<0.01) in BI rats. Conclusions ERK or Akt inhibition can alleviate BI-induced IH via up-regulation of Cx37 and down-regulation of Cx43.
Collapse
Affiliation(s)
- Lemen Pan
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haizhen Ni
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxu Jin
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Su
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Kotova A, Timonina K, Zoidl GR. Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1. Int J Mol Sci 2020; 21:E5401. [PMID: 32751343 PMCID: PMC7432810 DOI: 10.3390/ijms21155401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.
Collapse
Affiliation(s)
- Anna Kotova
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Ksenia Timonina
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
11
|
Noh S, Kim H. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure. LAB ON A CHIP 2020; 20:1751-1761. [PMID: 32347229 DOI: 10.1039/c9lc01064e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports in-air monitoring of in vitro monolayer cells under air-exposure utilizing electrochemical impedance spectroscopy (EIS). In-air impedance measurement was performed by placing integrated electrodes laterally, instead of vertically, to a cell membrane, avoiding electrical disconnection, unlike conventional transepithelial-electrical-resistance (TEER). The in-air EIS sensor platform mainly consisted of two chambers, separated by a porous membrane where cells were cultured, that enabled cell exposure to both air (apical side) and liquid (basal side) for long-term measurement. On top of the membrane, EIS interdigitated electrodes were patterned and lung epithelial cells (A549 type II) were cultured with air exposure on one side. The fabricated in-air EIS sensor successfully demonstrated in situ real-time measurement of cell populations in confluency in the range of 7.8 × 104 and 9.6 × 105 cells per cm2 at a sensitivity of 3.0 × 10-2 Ω per cell in impedance and in the range of 1.0 × 104 and 9.6 × 105 cells per cm2 at a sensitivity of 0.17 × 10-15 F per cell in capacitance under AC frequencies of 100 kHz and 1 MHz, respectively. It also successfully monitored transient modulation of tight-junctions that collectively began to open in 30 minutes after the injection of 100 ng ml-1 TNF-α (a relaxation agent), reached maximum relaxation with a 12.6% increase in impedance value and a 12% decrease in capacitance in 60 minutes, and recovered back to its original junction status after 720 minutes, which confirmed the observation in animal models in the literature. Note that the opposite trends in impedance and capacitance allowed the in-air EIS sensor to distinguish cell population changes from tight junction modulation. It was concluded that the developed in-air EIS sensor in an in vitro platform can enable in situ and real-time monitoring of the population of the 'air-exposed' cells as well as the modulation of tight-junctions, which has not been demonstrated yet.
Collapse
Affiliation(s)
- Seungbeom Noh
- Department of Electrical and Computer Engineering, University of Utah, SMBB-3100, 50 S. Central Campus Drive, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
12
|
Shammas H, Kuech EM, Rizk S, Das AM, Naim HY. Different Niemann-Pick C1 Genotypes Generate Protein Phenotypes that Vary in their Intracellular Processing, Trafficking and Localization. Sci Rep 2019; 9:5292. [PMID: 30923329 PMCID: PMC6438969 DOI: 10.1038/s41598-019-41707-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/01/2019] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick Type C (NP-C) is an inherited neurovisceral lysosomal storage disease characterized by a defect in the trafficking of endocytosed cholesterol. In 95% of patients the gene encoding NPC1 is affected. The correlation of the genetic background in NP-C with the clinical phenotype such as, severity and onset of liver dysfunction, ataxia, dystonia and vertical gaze palsy, has not been elucidated at the molecular level. We have designed strategies to investigate the effect of different mutations in the NPC1 gene at the protein and cellular levels. The NPC1 mutants were expressed in mammalian cells and their structural features, maturation pathways and subcellular localization elucidated. Interestingly, three classes of NPC1 mutants could be identified and further characterized. The first group comprised mutants in which the NPC1 protein revealed virtually similar structural features to the wild type species. It was trafficked to the lysosomes and colocalized with the lysosomal protein marker Lamp2. The second class of NPC1 mutants was only partially trafficked to the lysosomes, but predominantly localized to the endoplasmic reticulum (ER). In the third group with the most severe phenotype, NPC1 mutants were entirely retained in the ER, colocalizing with the ER-protein marker calnexin. In conclusion, this study relates NPC1 mutations to the trafficking behavior of the NPC1 mutants along the secretory pathway. The findings are essential for a comprehensive understanding of the pathogenesis of NP-C and propose a mutation-based personalized therapeutical approach.
Collapse
Affiliation(s)
- Hadeel Shammas
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.,Clinic for Paediatric Kidney-, Liver-, and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Eva-Maria Kuech
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Anibh M Das
- Clinic for Paediatric Kidney-, Liver-, and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
13
|
Defourny J, Thelen N, Thiry M. Actin-independent trafficking of cochlear connexin 26 to non-lipid raft gap junction plaques. Hear Res 2019; 374:69-75. [DOI: 10.1016/j.heares.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
|
14
|
Vazquez L, Teixeira da Silva Ferreira A, Cavalcante FS, Garcia IJP, Dos Santos KRN, Barbosa LADO, Almeida MDS, Mignaco JA, Fontes CFL. Properties of novel surfactin-derived biosurfactants obtained through solid-phase synthesis. J Pept Sci 2018; 24:e3129. [PMID: 30325566 DOI: 10.1002/psc.3129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022]
Abstract
Eight molecules, four peptides (SPs) and four lipopeptides (LPs) derived by rational design from surfactin, a well-known secreted biosurfactant from Bacillus subtilis, were produced employing Fmoc-based solid-phase synthesis. These new peptides were tested to evaluate their potential biosurfactant and biological activities, aiming at possible applications in industrial, biological, pharmaceutical, and medical use. Five molecules (SP1, SP2, SP4, LP5, and LP8) presented potential for medical uses, mainly due to their drug delivery properties as suggested by their synergistic activity with the antibiotic vancomycin against Staphylococcus aureus. All synthetic peptides showed low toxicity against Vero cell cultures, in assays of hemolysis, and in different cytotoxicity assays. In addition, we found that three peptides (SP1, LP6, and LP7) had potential technological and industrial use because of their emulsifying capacity, low toxicity, and ability to physically stabilize solutions. These novel molecules retained some properties of the parental molecule (surfactin, which was originally obtained through nonribosomal synthesis in Bacillus subtilis) but have the advantage of being linear peptides, which can be produced at large scales through the use of conventional heterologous protein expression protocols.
Collapse
Affiliation(s)
- Leonardo Vazquez
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fernanda Sampaio Cavalcante
- Departamento de Microbiologia, Campus Macaé, Depto. Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Israel José P Garcia
- Department of Biochemistry, Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São João del Rei, Brazil
| | | | - Leandro Augusto de Oliveira Barbosa
- Department of Biochemistry, Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São João del Rei, Brazil
| | - Marcius da Silva Almeida
- Programa de Biologia Estrutural, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Alberto Mignaco
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Frederico Leite Fontes
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Pelletier RM, Akpovi CD, Chen L, Vitale ML. Cholesterol metabolism and Cx43, Cx46, and Cx50 gap junction protein expression and localization in normal and diabetic and obese ob/ob and db/db mouse testes. Am J Physiol Endocrinol Metab 2018; 314:E21-E38. [PMID: 28851737 PMCID: PMC5866387 DOI: 10.1152/ajpendo.00215.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022]
Abstract
Decreased fertility and birth rates arise from metabolic disorders. This study assesses cholesterol metabolism and Cx46, Cx50, and Cx43 expression in interstitium- and seminiferous tubule-enriched fractions of leptin-deficient ( ob/ob) and leptin receptor-deficient ( db/db) mice, two type 2 diabetes and obesity models associated with infertility. Testosterone levels decreased and glucose and free and esterified cholesterol (FC and EC) levels increased in serum, whereas FC and EC levels decreased in the interstitium, in ob/ob and db/db mice. In tubules, a decrease in EC caused FC-to-EC ratios to increase in db/db mice. In tubules, only acyl coenzyme A:cholesterol acyl transferase type 1 and 2 protein levels significantly decreased in ob/ob, but not db/db, mice compared with wild-type mice, and imbalances in the cholesterol transporters Niemann-Pick C1 (NPC1), ATP-binding cassette A1 (ABCA1), scavenger receptor class B member I (SR-BI), and cluster of differentiation 36 (CD36) were observed in ob/ob and db/db mice. In tubules, 14-kDa Cx46 prevailed during development, 48- to 49- and 68- to 71-kDa Cx46 prevailed during adulthood, and total Cx46 changed little. Compared with wild-type mice, 14-kDa Cx46 increased, whereas 48- to 49- and 68- to 71-kDa Cx46 decreased, in tubules, whereas the opposite occurred in the interstitium, in db/db and ob/ob mice. Total and 51-kDa Cx50 increased in db/db and ob/ob interstitium and tubules. Cx43 levels decreased in ob/ob interstitium and tubules, whereas Cx43 decreased in db/db interstitium but increased in db/db tubules. Apoptosis levels measured by ELISA and numbers of apostain-labeled apoptotic cells significantly increased in db/db, but not ob/ob, tubules. Testicular db/db capillaries were Cx50-positive but weakly Cx43-positive with a thickened lamina, suggesting altered permeability. Our findings indicate that the db mutation-induced impairment of meiosis may arise from imbalances in cholesterol metabolism and upregulated Cx43 expression and phosphorylation in tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Casimir D Akpovi
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Li Chen
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - María Leiza Vitale
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| |
Collapse
|
16
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
17
|
Peng Q, Jia SH, Parodo J, Ai Y, Marshall JC. Pre-B cell colony enhancing factor induces Nampt-dependent translocation of the insulin receptor out of lipid microdomains in A549 lung epithelial cells. Am J Physiol Endocrinol Metab 2015; 308:E324-33. [PMID: 25516545 DOI: 10.1152/ajpendo.00006.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-B cell colony-enhancing factor (PBEF) is a highly conserved pleiotropic protein reported to be an alternate ligand for the insulin receptor (IR). We sought to clarify the relationship between PBEF and insulin signaling by evaluating the effects of PBEF on the localization of the IRβ chain to lipid rafts in A549 epithelial cells. We isolated lipid rafts from A549 cells and detected the IR by immunoprecipitation from raft fractions or whole cell lysates. Cells were treated with rPBEF, its enzymatic product nicotinamide adenine dinucleotide (NAD), or the Nampt inhibitor daporinad to study the effect of PBEF on IRβ movement. We used coimmunoprecipitation studies in cells transfected with PBEF and IRβ constructs to detect interactions between PBEF, the IRβ, and caveolin-1 (Cav-1). PBEF was present in both lipid raft and nonraft fractions, whereas the IR was found only in lipid raft fractions of resting A549 cells. The IR-, PBEF-, and Cav-1-coimmunoprecipitated rPBEF treatment resulted in the movement of IRβ- and tyrosine-phosphorylated Cav-1 from lipid rafts to nonrafts, an effect that could be blocked by daporinad, suggesting that this effect was facilitated by the Nampt activity of PBEF. The addition of PBEF to insulin-treated cells resulted in reduced Akt phosphorylation of both Ser⁴⁷³ and Thr³⁰⁸. We conclude that PBEF can inhibit insulin signaling through the IR by Nampt-dependent promotion of IR translocation into the nonraft domains of A549 epithelial cells. PBEF-induced alterations in the spatial geometry of the IR provide a mechanistic explanation for insulin resistance in inflammatory states associated with upregulation of PBEF.
Collapse
Affiliation(s)
- Qianyi Peng
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Song Hui Jia
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jean Parodo
- Department of Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - John C Marshall
- Department of Surgery, Department of Critical Care Medicine, and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and the Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
18
|
Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes. Pflugers Arch 2014; 467:299-309. [DOI: 10.1007/s00424-014-1521-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
|
19
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
20
|
Koval M, Molina SA, Burt JM. Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 2014; 588:1193-204. [PMID: 24561196 DOI: 10.1016/j.febslet.2014.02.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs. Hetero-oligomerization is also a regulated process; differences in connexin quality control and monomer stability are likely to play integral roles to control interactions between compatible connexins. Gap junctions in oligodendrocyte:astrocyte communication and in the cardiovascular system have emerged as key systems where heterotypic and heteromeric channels have unique physiologic roles. There are several methodologies to study heteromeric and heterotypic channels that are best applied to either heterologous expression systems, native tissues or both. There remains a need to use and develop different experimental approaches in order to understand the prevalence and roles for mixed gap junction channels in human physiology.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States; Department of Cell Biology, Emory University, Atlanta, GA, United States.
| | - Samuel A Molina
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. Cholesterol and cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:965-79. [DOI: 10.1586/erc.10.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Biochim Biophys Acta Gen Subj 2014. [DOI: 10.1016/j.bbagen.2013.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L. Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 2013; 75:506-16. [DOI: 10.1016/j.neuropharm.2013.08.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022]
|
24
|
Park WJ, Park JW, Erez-Roman R, Kogot-Levin A, Bame JR, Tirosh B, Saada A, Merrill AH, Pewzner-Jung Y, Futerman AH. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization. J Biol Chem 2013; 288:30904-16. [PMID: 24019516 PMCID: PMC3829405 DOI: 10.1074/jbc.m112.448852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/08/2013] [Indexed: 12/18/2022] Open
Abstract
Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury.
Collapse
Affiliation(s)
- Woo-Jae Park
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Joo-Won Park
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Racheli Erez-Roman
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aviram Kogot-Levin
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Monique and Jacques Roboh Department of Genetic Research, Department of Genetics and Metabolic Diseases, Hadassah, and Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jessica R. Bame
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Boaz Tirosh
- the Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel, and
| | - Ann Saada
- the Monique and Jacques Roboh Department of Genetic Research, Department of Genetics and Metabolic Diseases, Hadassah, and Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alfred H. Merrill
- the School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Yael Pewzner-Jung
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H. Futerman
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Račková L. Cholesterol load of microglia: contribution of membrane architecture changes to neurotoxic power? Arch Biochem Biophys 2013; 537:91-103. [PMID: 23831332 DOI: 10.1016/j.abb.2013.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022]
Abstract
Considerable evidence provides a link between hypercholesterolemia and ageing-related neurodegenerative diseases. The present study was aimed to provide a complex view on the effects caused by cholesterol- and cholesterol 5α,6α-epoxide-load in microglia, with particular emphasize put on membrane proteins. Prolonged application of oxysterol significantly enhanced LPS-stimulated association of cytosolic NADPH-oxidase factor p47[phox] with detergent-resistant microdomains (DRMs) in BV-2 cells. Although the treatment with both sterols does not influence the portion of CD36 receptor in DRMs, its apparent surface-cellular expression was altered. Even though sterol-treatment potentiated oxidant production by microglia, as well as their phagocytosis, these effects, however, appeared to be independent of cholesterol profusion in the membrane. In addition, oxysterol-treatment resulted in a loss of DRMs-associated activity of 26S proteasome, the protease critically regulating both protein homeostasis and immune signaling in microglia. Oxysterol relatively ameliorated cytotoxic effects of inflammed microglia on co-cultured PC12 cells. The outcomes of this study suggest that cholesterol and cholesterol oxides can differentially modulate microglia resulting either in impairment of their immune functionalities or enhanced neurotoxic power. Moreover, these findings shed light on possible complexity of this effect, produced by simultaneous affection of the levels, distribution and function of the critical proteins within microglial membrane compartments.
Collapse
Affiliation(s)
- Lucia Račková
- Institute of Experimental Pharmacology & Toxicology Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
27
|
Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 2012. [PMID: 23184389 DOI: 10.1007/s00395-012-0309-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell-cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell-cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT-CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nan Wang
- Faculty of Medicine and Health Sciences, Physiology group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck G, Leybaert L. Paracrine signaling through plasma membrane hemichannels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:35-50. [PMID: 22796188 DOI: 10.1016/j.bbamem.2012.07.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
Abstract
Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cell's interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1-2kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD(+) or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE. Posttranslational modifications in connexins and pannexins. J Membr Biol 2012; 245:319-32. [PMID: 22739962 DOI: 10.1007/s00232-012-9453-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023]
Abstract
Posttranslational modification is a common cellular process that is used by cells to ensure a particular protein function. This can happen in a variety of ways, e.g., from the addition of phosphates or sugar residues to a particular amino acid, ensuring proper protein life cycle and function. In this review, we assess the evidence for ubiquitination, glycosylation, phosphorylation, S-nitrosylation as well as other modifications in connexins and pannexin proteins. Based on the literature, we find that posttranslational modifications are an important component of connexin and pannexin regulation.
Collapse
Affiliation(s)
- Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
31
|
Su V, Lau AF. Ubiquitination, intracellular trafficking, and degradation of connexins. Arch Biochem Biophys 2012; 524:16-22. [PMID: 22239989 DOI: 10.1016/j.abb.2011.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022]
Abstract
Gap junction channels provide a conduit for communication between neighboring cells. The function of gap junction channels is regulated by posttranslational modifications of connexins, the proteins that comprise these channels. Ubiquitination of connexins has increasingly been viewed as one mechanism by which cells regulate the level of connexins present in cells, as well as the corresponding intercellular communication. Here we review the current knowledge of connexin ubiquitination and the effects this may have on gap junctional communication.
Collapse
Affiliation(s)
- Vivian Su
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | | |
Collapse
|
32
|
Defamie N, Mesnil M. The modulation of gap-junctional intercellular communication by lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1866-9. [PMID: 21986485 DOI: 10.1016/j.bbamem.2011.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/15/2011] [Accepted: 09/24/2011] [Indexed: 01/24/2023]
Abstract
Lipid rafts are specific microdomains of plasma membrane which are enriched in cholesterol and sphingolipids. These domains seem to favour the interactions of particular proteins and the regulation of signalling pathways in the cells. Recent data have shown that among the proteins, which are preferentially localized in lipid rafts, are connexins that are the structural proteins of gap junctions. Since gap junctional intercellular communication is involved in various cellular processes and pathologies such as cancer, we were interested to review the various observations concerning this specific localization of connexins in lipid rafts and its consequences on gap junctional intercellular communication capacity. In particular, we will focus our discussion on the role of the lipid raft-connexin connection in cancer progression. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
33
|
Locke D, Kieken F, Tao L, Sorgen PL, Harris AL. Mechanism for modulation of gating of connexin26-containing channels by taurine. J Gen Physiol 2011; 138:321-39. [PMID: 21844220 PMCID: PMC3171079 DOI: 10.1085/jgp.201110634] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28-amino acid "tag" to the carboxyl-terminal domain (CT) of Cx26 (Cx26(T)) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26(Tc)) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26(Tc)/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32(T) and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, USA.
| | | | | | | | | |
Collapse
|
34
|
Tencé M, Ezan P, Amigou E, Giaume C. Increased interaction of connexin43 with zonula occludens-1 during inhibition of gap junctions by G protein-coupled receptor agonists. Cell Signal 2011; 24:86-98. [PMID: 21872657 DOI: 10.1016/j.cellsig.2011.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 11/17/2022]
Abstract
Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs). Previously, we have identified the GTPases G(i/o) and Rho as key actors in the process of S1P-induced inhibition. Here, we asked whether similar mechanisms underlied the effects of ET-1 and S1P by investigating changes in the phosphorylation status of Cx43 and in the molecular associations of Cx43 with zonula occludens (ZO) proteins and occludin. We showed that the inhibitory effect of ET-1 on GJIC was entirely dependent on the activation of G(i/o) but not on Rho and Rho-associated kinase. Both ET-1 and S1P induced dephosphorylation of Cx43 located at GJs through a process mediated by G(i/o) and calcineurin. Thanks to co-immunoprecipitation approaches, we found that a population of Cx43 (likely junctional Cx43) was associated to ZO-1-ZO-2-occludin multiprotein complexes and that acute treatments of astrocytes with ET-1 or S1P induced a G(i/o)-dependent increase in the amount of Cx43 linked to these complexes. As a whole, this study identifies a new mechanism of GJIC regulation in which two GPCR agonists dynamically alter interactions of Cx43 with its molecular partners.
Collapse
Affiliation(s)
- Martine Tencé
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Paris, France.
| | | | | | | |
Collapse
|
35
|
Norambuena A, Schwartz MA. Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Mol Biol Cell 2011; 22:3456-64. [PMID: 21795400 PMCID: PMC3172269 DOI: 10.1091/mbc.e11-04-0361] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anchorage dependence of cell growth, which is mediated by multiple integrin-regulated signaling pathways, is a key defense against cancer metastasis. Detachment of cells from the extracellular matrix triggers caveolin-1-dependent internalization of lipid raft components, which mediates suppression of Rho GTPases, Erk, and phosphatidylinositol 3-kinase in suspended cells. Elevation of cyclic adenosine monophosphate (cAMP) following cell detachment is also implicated in termination of growth signaling in suspended cells. Studies of integrins and lipid rafts, however, examined mainly ganglioside GM1 and glycosylphosphatidylinositol-linked proteins as lipid raft markers. In this study, we examine a wider range of lipid raft components. Whereas many raft components internalized with GM1 following cell detachment, flotillin2, connexin43, and Gα(s) remained in the plasma membrane. Loss of cell adhesion caused movement of many components from the lipid raft to the nonraft fractions on sucrose gradients, although flotillin2, connexin43, and H-Ras were resistant. Gα(s) lost its raft association, concomitant with cAMP production. Modification of the lipid tail of Gα(s) to increase its association with ordered domains blocked the detachment-induced increase in cAMP. These data define the effects of that integrin-mediated adhesion on the localization and behavior of a variety of lipid raft components and reveal the mechanism of the previously described elevation of cAMP after cell detachment.
Collapse
Affiliation(s)
- Andrés Norambuena
- Robert M. Berne Cardiovascular Research Center, Mellon Urological Cancer Research Institute, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
36
|
Abstract
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.
Collapse
|
37
|
Koval M, Billaud M, Straub AC, Johnstone SR, Zarbock A, Duling BR, Isakson BE. Spontaneous lung dysfunction and fibrosis in mice lacking connexin 40 and endothelial cell connexin 43. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2536-46. [PMID: 21641379 PMCID: PMC3124229 DOI: 10.1016/j.ajpath.2011.02.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 12/30/2010] [Accepted: 02/01/2011] [Indexed: 12/31/2022]
Abstract
Gap junction proteins (connexins) facilitate intercellular communication and serve several roles in regulation of tissue function and remodeling. To examine the physiologic effects of depleting two prominent endothelial connexins, Cx40 and Cx43, transgenic mice were generated by breeding Cx40-deficient mice (Cx40(-/-)) with a vascular endothelial cell (VEC)-specific Cx43-deficient mouse strain (VEC Cx43(-/-)) to produce double-connexin knockout mice (VEC Cx43(-/-)/Cx40(-/-)). The life span in VEC Cx43(-/-)/Cx40(-/-) mice was dramatically shortened, which correlated with severe spontaneous lung abnormalities as the mice aged including increased fibrosis, aberrant alveolar remodeling, and increased lung fibroblast content. Moreover, VEC Cx43(-/-)/Cx40(-/-) mice exhibited cardiac hypertrophy and hypertension. Because VEC Cx43(-/-)/Cx40(-/-) mice demonstrated phenotypic hallmarks that were remarkably similar to those in mice deficient in caveolin-1, pulmonary caveolin expression was examined. Lungs from VEC Cx43(-/-)/Cx40(-/-) mice demonstrated significantly decreased expression of caveolin-1 and caveolin-2. This suggests that expression of caveolin-1 may be linked to expression of Cx40 and endothelial Cx43. Moreover, the phenotype of caveolin-1(-/-) mice and VEC Cx43(-/-)/Cx40(-/-) mice may arise via a common mechanism.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Adam C. Straub
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Alexander Zarbock
- Department of Anesthesiology and Critical Care Medicine, University of Münster, Münster, Germany
- Max-Planck-Institute of Molecular Biomedicine, Münster, Germany
| | - Brian R. Duling
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
38
|
Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE. Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 2010; 31:399-407. [PMID: 21071693 DOI: 10.1161/atvbaha.110.215939] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. METHODS AND RESULTS Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been implicated in regulating heterocellular communication in the vessel wall. The myoendothelial junction serves as a conduit to facilitate gap junction communication between endothelial cells and vascular smooth muscle cells within the resistance vasculature. By using isolated vessels and a vascular cell coculture, we found that Cx43 is constitutively S-nitrosylated on cysteine 271 because of active endothelial NO synthase compartmentalized at the myoendothelial junction. Conversely, we found that stimulation of smooth muscle cells with the constrictor phenylephrine caused Cx43 to become denitrosylated because of compartmentalized S-nitrosoglutathione reductase, which attenuated channel permeability. We measured S-nitrosoglutathione breakdown and NO(x) concentrations at the myoendothelial junction and found S-nitrosoglutathione reductase activity to precede NO release. CONCLUSIONS This study provides evidence for compartmentalized S-nitrosylation/denitrosylation in the regulation of smooth muscle cell to endothelial cell communication.
Collapse
MESH Headings
- Alcohol Dehydrogenase
- Animals
- Cell Communication/physiology
- Cells, Cultured
- Connexin 43/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/metabolism
- Glutathione Reductase/genetics
- Glutathione Reductase/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phenylephrine/pharmacology
- S-Nitrosoglutathione/metabolism
- Vascular Resistance/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Adam C Straub
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Resnik N, Sepcic K, Plemenitas A, Windoffer R, Leube R, Veranic P. Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 2010; 286:1499-507. [PMID: 21071449 DOI: 10.1074/jbc.m110.189464] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of our study was to investigate the association of desmosomal proteins with cholesterol-enriched membrane domains, commonly called membrane rafts, and the influence of cholesterol on desmosome assembly in epithelial Madin-Darby canine kidney cells (clone MDc-2). Biochemical analysis proved an association of desmosomal cadherin desmocollin 2 (Dsc2) in cholesterol-enriched fractions that contain membrane raft markers caveolin-1 and flotillin-1 and the novel raft marker ostreolysin. Cold detergent extraction of biotinylated plasma membranes revealed that ∼60% of Dsc2 associates with membrane rafts while the remainder is present in nonraft and cholesterol-poor membranes. The results of immunofluorescence microscopy confirmed colocalization of Dsc2 and ostreolysin. Partial depletion of cholesterol with methyl-β-cyclodextrin disturbs desmosome assembly, as revealed by sequential recordings of live cells. Moreover, cholesterol depletion significantly reduces the strength of cell-cell junctions and partially releases Dsc2 from membrane rafts. Our data indicate that a pool of Dsc2 is associated with membrane rafts, particularly with the ostreolysin type of membrane raft, and that intact membrane rafts are necessary for desmosome assembly. Taken together, these data suggest cholesterol as a potential regulator that promotes desmosome assembly.
Collapse
Affiliation(s)
- Natasa Resnik
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
40
|
Govindarajan R, Chakraborty S, Johnson KE, Falk MM, Wheelock MJ, Johnson KR, Mehta PP. Assembly of connexin43 into gap junctions is regulated differentially by E-cadherin and N-cadherin in rat liver epithelial cells. Mol Biol Cell 2010; 21:4089-107. [PMID: 20881055 PMCID: PMC2993739 DOI: 10.1091/mbc.e10-05-0403] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherins have been thought to facilitate the assembly of connexins (Cxs) into gap junctions (GJs) by enhancing cell-cell contact, however the molecular mechanisms involved in this process have remained unexplored. We examined the assembly of GJs composed of Cx43 in isogenic clones derived from immortalized and nontransformed rat liver epithelial cells that expressed either epithelial cadherin (E-Cad), which curbs the malignant behavior of tumor cells, or neuronal cadherin (N-Cad), which augments the invasive and motile behavior of tumor cells. We found that N-cad expression attenuated the assembly of Cx43 into GJs, whereas E-Cad expression facilitated the assembly. The expression of N-Cad inhibited GJ assembly by causing endocytosis of Cx43 via a nonclathrin-dependent pathway. Knock down of N-Cad by ShRNA restored GJ assembly. When both cadherins were simultaneously expressed in the same cell type, GJ assembly and disassembly occurred concurrently. Our findings demonstrate that E-Cad and N-Cad have opposite effects on the assembly of Cx43 into GJs in rat liver epithelial cells. These findings imply that GJ assembly and disassembly are the down-stream targets of the signaling initiated by E-Cad and N-Cad, respectively, and may provide one possible explanation for the disparate role played by these cadherins in regulating cell motility and invasion during tumor progression and invasion.
Collapse
Affiliation(s)
- Rajgopal Govindarajan
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Williamson R, Thompson AJ, Abu M, Hye A, Usardi A, Lynham S, Anderton BH, Hanger DP. Isolation of detergent resistant microdomains from cultured neurons: detergent dependent alterations in protein composition. BMC Neurosci 2010; 11:120. [PMID: 20858284 PMCID: PMC2955047 DOI: 10.1186/1471-2202-11-120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022] Open
Abstract
Background Membrane rafts are small highly dynamic sterol- and sphingolipid-enriched membrane domains that have received considerable attention due to their role in diverse cellular functions. More recently the involvement of membrane rafts in neuronal processes has been highlighted since these specialized membrane domains have been shown to be involved in synapse formation, neuronal polarity and neurodegeneration. Detergent resistance followed by gradient centrifugation is often used as first step in screening putative membrane raft components. Traditional methods of raft isolation employed the nonionic detergent Triton X100. However successful separation of raft from non-raft domains in cells is dependent on matching the detergent used for raft isolation to the specific tissue under investigation. Results We report here the isolation of membrane rafts from primary neuronal culture using a panel of different detergents that gave rise to membrane fractions that differed in respect to cholesterol and protein content. In addition, proteomic profiling of neuronal membrane rafts isolated with different detergents, Triton X100 and CHAPSO, revealed heterogeneity in their protein content. Conclusions These data demonstrate that appropriate selection of detergent for raft isolation is an important consideration for investigating raft protein composition of cultured neurons.
Collapse
Affiliation(s)
- Ritchie Williamson
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF. Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 2010; 106:1153-63. [PMID: 20167932 DOI: 10.1161/circresaha.108.182147] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. OBJECTIVE To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. METHODS AND RESULTS By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. CONCLUSIONS Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Johns Hopkins University School of Medicine, 720 N Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hatem SN, Coulombe A, Balse E. Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias. J Mol Cell Cardiol 2009; 48:90-5. [PMID: 19744488 DOI: 10.1016/j.yjmcc.2009.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/14/2009] [Accepted: 08/29/2009] [Indexed: 11/19/2022]
Abstract
The electrical properties of the atria and ventricles differ in several aspects reflecting the distinct role of the atria in cardiac physiology. The study of atrial electrophysiology had greatly contributed to the understanding of the mechanisms of atrial fibrillation (AF). Only the atrial L-type calcium current is regulated by serotonine or, under basal condition, by phosphodiesterases. These distinct regulations can contribute to I(Ca) down-regulation observed during AF, which is an important determinant of action potential refractory period shortening. The voltage-gated potassium current, I(Kur), has a prominent role in the repolarization of the atrial but not ventricular AP. In many species, this current is based on the functional expression of K(V)1.5 channels, which might represent a specific therapeutic target for AF. Mechanisms regulating the trafficking of K(V)1.5 channels to the plasma membrane are being actively investigated. The resting potential of atrial myocytes is maintained by various inward rectifier currents which differ with ventricle currents by a reduced density of I(K1), the presence of a constitutively active I(KACh) and distinct regulation of I(KATP). Stretch-sensitive or mechanosensitive ion channels are particularly active in atrial myocytes and are involved in the secretion of the natriuretic peptide. Integration of knowledge on electrical properties of atrial myocytes in comprehensive schemas is now necessary for a better understanding of the physiology of atria and the mechanisms of AF.
Collapse
|
44
|
Locke D, Harris AL. Connexin channels and phospholipids: association and modulation. BMC Biol 2009; 7:52. [PMID: 19686581 PMCID: PMC2733891 DOI: 10.1186/1741-7007-7-52] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. RESULTS Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. CONCLUSION This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | - Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| |
Collapse
|
45
|
Sugibayashi K, Onuki Y, Takayama K. Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur J Pharm Sci 2009; 36:246-53. [DOI: 10.1016/j.ejps.2008.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/14/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
|
46
|
Abstract
Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
47
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
48
|
Pantano S, Zonta F, Mammano F. A fully atomistic model of the Cx32 connexon. PLoS One 2008; 3:e2614. [PMID: 18648547 PMCID: PMC2481295 DOI: 10.1371/journal.pone.0002614] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 05/10/2008] [Indexed: 11/18/2022] Open
Abstract
Connexins are plasma membrane proteins that associate in hexameric complexes to form channels named connexons. Two connexons in neighboring cells may dock to form a "gap junction" channel, i.e. an intercellular conduit that permits the direct exchange of solutes between the cytoplasm of adjacent cells and thus mediate cell-cell ion and metabolic signaling. The lack of high resolution data for connexon structures has hampered so far the study of the structure-function relationships that link molecular effects of disease-causing mutations with their observed phenotypes. Here we present a combination of modeling techniques and molecular dynamics (MD) to infer side chain positions starting from low resolution structures containing only C alpha atoms. We validated this procedure on the structure of the KcsA potassium channel, which is solved at atomic resolution. We then produced a fully atomistic model of a homotypic Cx32 connexon starting from a published model of the C alpha carbons arrangement for the connexin transmembrane helices, to which we added extracellular and cytoplasmic loops. To achieve structural relaxation within a realistic environment, we used MD simulations inserted in an explicit solvent-membrane context and we subsequently checked predictions of putative side chain positions and interactions in the Cx32 connexon against a vast body of experimental reports. Our results provide new mechanistic insights into the effects of numerous spontaneous mutations and their implication in connexin-related pathologies. This model constitutes a step forward towards a structurally detailed description of the gap junction architecture and provides a structural platform to plan new biochemical and biophysical experiments aimed at elucidating the structure of connexin channels and hemichannels.
Collapse
Affiliation(s)
- Sergio Pantano
- Institut Pasteur of Montevideo, Montevideo, Uruguay
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Rome, Italy
| | - Francesco Zonta
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Rome, Italy
| | - Fabio Mammano
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Rome, Italy
- Dipartimento di Fisica “G.Galilei”, Università di Padova, Padova, Italy
| |
Collapse
|
49
|
Dudez T, Borot F, Huang S, Kwak BR, Bacchetta M, Ollero M, Stanton BA, Chanson M. CFTR in a lipid raft-TNFR1 complex modulates gap junctional intercellular communication and IL-8 secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:779-88. [PMID: 18255040 DOI: 10.1016/j.bbamcr.2008.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/25/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause a chronic inflammatory response in the lung of patients with Cystic Fibrosis (CF). We have showed that TNF-alpha signaling through the Src family tyrosine kinases (SFKs) was defective as determined by an inability of TNF-alpha to regulate gap junctional communication (GJIC) in CF cells. Here, we sought to elucidate the mechanisms linking TNF-alpha signaling to the functions of CFTR at the molecular level. In a MDCKI epithelial cell model expressing wild-type (WtCFTR) or mutant CFTR lacking its PDZ-interacting motif (CFTR-DeltaTRL), TNF-alpha increased the amount of WtCFTR but not CFTR-DeltaTRL in detergent-resistant membrane microdomains (DRMs). This recruitment was modulated by SFK activity and associated with DRM localization of TNFR1 and c-Src. Activation of TNFR1 signaling also decreased GJIC and markedly stimulated IL-8 production in WtCFTR cells. In contrast, the absence of CFTR in DRMs was associated with abnormal TNFR1 signaling as revealed by no recruitment of TNFR1 and c-Src to lipid rafts in CFTR-DeltaTRL cells and loss of regulation of GJIC and IL-8 secretion. These results suggest that localization of CFTR in lipid rafts in association with c-Src and TNFR1 provides a responsive signaling complex to regulate GJIC and cytokine signaling.
Collapse
Affiliation(s)
- Tecla Dudez
- Laboratory of Clinical Investigation III, Micheli-du-Crest, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mathias RT, White TW, Brink PR. Chapter 3 The Role of Gap Junction Channels in the Ciliary Body Secretory Epithelium. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00403-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|