1
|
Horváth G, Balterer B, Micsonai A, Kardos J, Toke O. Multiple Timescale Dynamic Analysis of Functionally-Impairing Mutations in Human Ileal Bile Acid-Binding Protein. Int J Mol Sci 2022; 23:ijms231911346. [PMID: 36232642 PMCID: PMC9569817 DOI: 10.3390/ijms231911346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Human ileal bile acid-binding protein (hI-BABP) has a key role in the enterohepatic circulation of bile salts. Its two internal binding sites exhibit positive cooperativity accompanied by a site-selectivity of glycocholate (GCA) and glycochenodeoxycholate (GCDA), the two most abundant bile salts in humans. To improve our understanding of the role of dynamics in ligand binding, we introduced functionally impairing single-residue mutations at two key regions of the protein and subjected the mutants to NMR relaxation analysis and MD simulations. According to our results, mutation in both the vicinity of the C/D (Q51A) and the G/H (Q99A) turns results in a redistribution of motional freedom in apo hI-BABP. Mutation Q51A, deteriorating the site-selectivity of GCA and GCDA, results in the channeling of ms fluctuations into faster motions in the binding pocket hampering the realization of key side chain interactions. Mutation Q99A, abolishing positive binding cooperativity for GCDA, leaves ms motions in the C-terminal half unchanged but by decoupling βD from a dynamic cluster of the N-terminal half displays an increased flexibility in the vicinity of site 1. MD simulations of the variants indicate structural differences in the portal region and mutation-induced changes in dynamics, which depend on the protonation state of histidines. A dynamic coupling between the EFGH portal, the C/D-region, and the helical cap is evidenced highlighting the interplay of structural and dynamic effects in bile salt recognition in hI-BABP.
Collapse
Affiliation(s)
- Gergő Horváth
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| | - Bence Balterer
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Orsolya Toke
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6575
| |
Collapse
|
2
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
3
|
Cariello M, Gadaleta RM, Moschetta A. The gut-liver axis in cholangiopathies: focus on bile acid based pharmacological treatment. Curr Opin Gastroenterol 2022; 38:136-143. [PMID: 35034082 PMCID: PMC10826921 DOI: 10.1097/mog.0000000000000807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review analyses the main features of primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) and provides an overview of the currently available (bile acid) bile acid related treatments. RECENT FINDINGS In PBC, biliary injury is the consequence of a dysregulated intrahepatic and systemic immune response. Given the close association between PSC and inflammatory bowel disease (IBD), the microbiota represents an important factor in the development of PSC. Bile acid based pharmacological treatments could represent promising therapeutic strategies in the management of cholangiopathies. SUMMARY Cholangiopathies include a spectrum of diseases resulting in cholestasis, an impairment of bile flow in the biliary tree, leading to biliary obstruction and damage as well as liver inflammation and fibrosis. PSC and PBC are highly heterogeneous cholangiopathies and progressive disorders with defined pathophysiological mechanisms. Curative treatments have not been established, and although their prevalence is low, they are a frequent indication for liver transplantation in the advanced stages of cholangiopathies. These diseases still present with unmet therapeutic strategies, also taking into account that on average 30-40% of patients undergoing liver transplantation will have recurrence of the original illness.
Collapse
Affiliation(s)
- Marica Cariello
- INBB, National Institute for Biostructures and Biosystems, Rome
| | - Raffaella M. Gadaleta
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Antonio Moschetta
- INBB, National Institute for Biostructures and Biosystems, Rome
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| |
Collapse
|
4
|
Toke O. Structural and Dynamic Determinants of Molecular Recognition in Bile Acid-Binding Proteins. Int J Mol Sci 2022; 23:505. [PMID: 35008930 PMCID: PMC8745080 DOI: 10.3390/ijms23010505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders in bile acid transport and metabolism have been related to a number of metabolic disease states, atherosclerosis, type-II diabetes, and cancer. Bile acid-binding proteins (BABPs), a subfamily of intracellular lipid-binding proteins (iLBPs), have a key role in the cellular trafficking and metabolic targeting of bile salts. Within the family of iLBPs, BABPs exhibit unique binding properties including positive binding cooperativity and site-selectivity, which in different tissues and organisms appears to be tailored to the local bile salt pool. Structural and biophysical studies of the past two decades have shed light on the mechanism of bile salt binding at the atomic level, providing us with a mechanistic picture of ligand entry and release, and the communication between the binding sites. In this review, we discuss the emerging view of bile salt recognition in intestinal- and liver-BABPs, with examples from both mammalian and non-mammalian species. The structural and dynamic determinants of the BABP-bile-salt interaction reviewed herein set the basis for the design and development of drug candidates targeting the transcellular traffic of bile salts in enterocytes and hepatocytes.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Cariello M, Piccinin E, Moschetta A. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cell Mol Gastroenterol Hepatol 2021; 11:1519-1539. [PMID: 33545430 PMCID: PMC8042405 DOI: 10.1016/j.jcmgh.2021.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease comprises a wide spectrum of liver injuries from simple steatosis to steatohepatitis and cirrhosis. Nonalcoholic steatohepatitis (NASH) is defined when liver steatosis is associated with inflammation, hepatocyte damage, and fibrosis. A genetic predisposition and environmental insults (ie, dietary habits, obesity) are putatively responsible for NASH progression. Here, we present the impact of the lipid-sensing nuclear receptors in the pathogenesis and treatment of NASH. In detail, we discuss the pros and cons of the putative transcriptional action of the fatty acid sensors (peroxisome proliferator-activated receptors), the bile acid sensor (farnesoid X receptor), and the oxysterol sensor (liver X receptors) in the pathogenesis and bona fide treatment of NASH.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Elena Piccinin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy; National Institute for Biostructures and Biosystems (INBB), Rome, Italy; Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
6
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Positive Cooperativity in Substrate Binding by Human Thymidylate Synthase. Biophys J 2019; 117:1074-1084. [PMID: 31500803 DOI: 10.1016/j.bpj.2019.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023] Open
Abstract
Thymidylate synthase (TS) catalyzes the production of the nucleotide dTMP from deoxyuridine monophosphate (dUMP), making the enzyme necessary for DNA replication and consequently a target for cancer therapeutics. TSs are homodimers with active sites separated by ∼30 Å. Reports of half-the-sites activity in TSs from multiple species demonstrate the presence of allosteric communication between the active sites of this enzyme. A simple explanation for the negative allosteric regulation occurring in half-the-sites activity would be that the two substrates bind with negative cooperativity. However, previous work on Escherichia coli TS revealed that dUMP substrate binds without cooperativity. To gain further insight into TS allosteric function, binding cooperativity in human TS is examined here. Isothermal titration calorimetry and two-dimensional lineshape analysis of NMR titration spectra are used to characterize the thermodynamics of dUMP binding, with a focus on quantification of cooperativity between the two substrate binding events. We find that human TS binds dUMP with ∼9-fold entropically driven positive cooperativity (ρITC = 9 ± 1, ρNMR = 7 ± 1), in contrast to the apparent strong negative cooperativity reported previously. Our work further demonstrates the necessity of globally fitting isotherms collected under various conditions, as well as accurate determination of binding competent protein concentration, for calorimetric characterization of homotropic cooperative binding. Notably, an initial curvature of the isotherm is found to be indicative of positively cooperative binding. Two-dimensional lineshape analysis NMR is also found to be an informative tool for quantifying binding cooperativity, particularly in cases in which bound intermediates yield unique resonances.
Collapse
|
8
|
Different modes of barrel opening suggest a complex pathway of ligand binding in human gastrotropin. PLoS One 2019; 14:e0216142. [PMID: 31075121 PMCID: PMC6510414 DOI: 10.1371/journal.pone.0216142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Gastrotropin, the intracellular carrier of bile salts in the small intestine, binds two ligand molecules simultaneously in its internal cavity. The molecular rearrangements required for ligand entry are not yet fully clear. To improve our understanding of the binding process we combined molecular dynamics simulations with previously published structural and dynamic NMR parameters. The resulting ensembles reveal two distinct modes of barrel opening with one corresponding to the transition between the apo and holo states, whereas the other affecting different protein regions in both ligation states. Comparison of the calculated structures with NMR-derived parameters reporting on slow conformational exchange processes suggests that the protein undergoes partial unfolding along a path related to the second mode of the identified barrel opening motion.
Collapse
|
9
|
Suga T, Yamaguchi H, Ogura J, Mano N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1023-1029. [DOI: 10.1016/j.bbamem.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
|
10
|
Horváth G, Egyed O, Tang C, Kovács M, Micsonai A, Kardos J, Toke O. Ligand entry in human ileal bile acid-binding protein is mediated by histidine protonation. Sci Rep 2019; 9:4825. [PMID: 30886237 PMCID: PMC6423008 DOI: 10.1038/s41598-019-41180-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Human ileal bile acid-binding protein (hI-BABP) has a key role in the intracellular transport of bile salts. To explore the role of histidine protonation in the binding process, the pH-dependence of bile salt binding and internal dynamics in hI-BABP was investigated using NMR spectroscopy and biophysical tools. Thermodynamic and kinetic measurements show an increase in the overall binding affinity and the association rate constant of the first binding step below the pKa of the histidines, suggesting that ligand binding is favoured by the protonated state. The overlap between residues exhibiting a high sensitivity to pH in their backbone amide chemical shifts and protein regions undergoing a global ms conformational exchange indicate a connection between the two processes. According to 15N NMR relaxation dispersion analysis, the slow motion is most pronounced at and above the pKa of the histidines. In agreement with the NMR measurements, MD simulations show a stabilization of the protein by histidine protonation. Hydrogen-bonding and van der Waals interactions mediating the flow of information between the C/D- and G/H-turn regions hosting the three histidines, suggest a complex way of pH-governed allosteric regulation of ligand entry involving a transition between a closed and a more open protein state.
Collapse
Affiliation(s)
- Gergő Horváth
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Orsolya Egyed
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Changguo Tang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary.
| |
Collapse
|
11
|
Badiee M, Tochtrop GP. Bile Acid Recognition by Mouse Ileal Bile Acid Binding Protein. ACS Chem Biol 2017; 12:3049-3056. [PMID: 29058872 DOI: 10.1021/acschembio.7b00865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ileal bile acid binding protein (I-BABP, gene name FABP6) is a component of the bile acid recycling system, expressed in the ileal enterocyte. The physiological role of I-BABP has been hypothesized to be either an intracellular buffering agent to protect against excess intracellular bile acids or separately as a modulator of bile acid controlled transcription. We investigated mouse I-BABP (mI-BABP) to understand the function of this protein family. Here, we studied energetics and site selectivity of binding with physiological bile acids using a combination of isothermal calorimetric analysis and NMR spectroscopy. We found that the most abundant bile acid in the mouse (β-muricholic acid) binds with weak affinity individually and in combination with other bile acids. Further analysis showed that mI-BABP like human I-BABP (hI-BABP) specifically recognizes the conjugated form of cholic acid:chenodeoxycholic acid (CA:CDCA) in a site-selective manner, displaying the highest affinity of any bile acid combination tested. These results indicate that I-BABP specifically recognizes the ligand combination of CDCA and CA, even in a species such as the mouse where CDCA only represents a trace component of the physiological pool. Specific and conserved recognition of the CDCA and CA ligand combination suggests that I-BABP may play a critical role in the regulation of bile acid signaling in addition to its proposed role as a buffering agent.
Collapse
Affiliation(s)
- Mohsen Badiee
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
13
|
Bile acids and colon cancer: Is FXR the solution of the conundrum? Mol Aspects Med 2017; 56:66-74. [DOI: 10.1016/j.mam.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
14
|
D'Onofrio M, Zanzoni S, Munari F, Monaco HL, Assfalg M, Capaldi S. The long variant of human ileal bile acid-binding protein associated with colorectal cancer exhibits sub-cellular localization and lipid binding behaviour distinct from those of the common isoform. Biochim Biophys Acta Gen Subj 2017; 1861:2315-2324. [PMID: 28689989 DOI: 10.1016/j.bbagen.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ileal bile acid-binding protein, IBABP, participates in the intracellular trafficking of bile salts and influences their signaling activities. The recently discovered variant, IBABP-L, bearing an N-terminal 49-amino acid extension, was found to be associated with colorectal cancer and to protect cancer cells from the cytotoxic effects of deoxycholate. However, the precise function and the molecular properties of this variant are currently unknown. METHODS Bioinformatics tools and confocal microscopy were used to investigate the sub-cellular localization of IBABP-L; protein dynamics, ligand binding and interaction with membrane models were studied by 2D NMR and fluorescence spectroscopy. RESULTS Based on sub-cellular localization experiments we conclude that IBABP-L is targeted to the secretory pathway by a 24-residue signal peptide and, upon its cleavage, the mature protein is constitutively released into the extracellular space. Site-resolved NMR experiments indicated the distinct preference of primary and secondary bile salts to form either heterotypic or homotypic complexes with IBABP-L. The presence of the relatively dynamic N-terminal extension, originating only subtle conformational perturbations in the globular domain, was found to influence binding site occupation in IBABP-L as compared to IBABP. Even more pronounced differences were found in the tendency of the two variants to associate with phospholipid bilayers. CONCLUSIONS IBABP-L exhibits different sub-cellular localization, ligand-binding properties and membrane interaction propensity compared to the canonical short isoform. GENERAL SIGNIFICANCE Our results constitute an essential first step towards an understanding of the role of IBABP-L in bile salt trafficking and signaling under healthy and pathological conditions.
Collapse
Affiliation(s)
- Mariapina D'Onofrio
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesca Munari
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Hugo L Monaco
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
15
|
D'Onofrio M, Barracchia CG, Bortot A, Munari F, Zanzoni S, Assfalg M. Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1152-1159. [PMID: 28668637 DOI: 10.1016/j.bbapap.2017.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.
Collapse
Affiliation(s)
| | | | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
16
|
Horváth G, Bencsura Á, Simon Á, Tochtrop GP, DeKoster GT, Covey DF, Cistola DP, Toke O. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. FEBS J 2016; 283:541-55. [PMID: 26613247 DOI: 10.1111/febs.13610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. PROTEIN DATA BANK ACCESSION NUMBERS The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3.
Collapse
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Bencsura
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gregory P Tochtrop
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.,Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - David P Cistola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Orsolya Toke
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
17
|
Tomaselli S, Pagano K, Boulton S, Zanzoni S, Melacini G, Molinari H, Ragona L. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach. FEBS J 2015; 282:4094-113. [PMID: 26260520 DOI: 10.1111/febs.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.
Collapse
Affiliation(s)
- Simona Tomaselli
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Stephen Boulton
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | - Giuseppe Melacini
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Henriette Molinari
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| |
Collapse
|
18
|
Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 2015; 95:1-10. [PMID: 25468388 DOI: 10.1016/j.plefa.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking.
Collapse
Affiliation(s)
- Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Alberto Ceccon
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Laura Ragona
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Henriette Molinari
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
19
|
Favretto F, Santambrogio C, D'Onofrio M, Molinari H, Grandori R, Assfalg M. Bile salt recognition by human liver fatty acid binding protein. FEBS J 2015; 282:1271-88. [PMID: 25639618 DOI: 10.1111/febs.13218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.
Collapse
|
20
|
Gadaleta RM, Cariello M, Sabbà C, Moschetta A. Tissue-specific actions of FXR in metabolism and cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:30-9. [PMID: 25139561 DOI: 10.1016/j.bbalip.2014.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022]
Abstract
The nuclear Farnesoid X Receptor (FXR) is a transcription factor critically involved in metabolic homeostasis in the gut-liver axis. FXR activity is mediated by hormonal and dietary signals and driven by bile acids (BAs), which are the natural FXR ligands. Given the great physiological importance in BA homeostasis, as well as in the regulation of glucose and lipid metabolism, FXR plays a pivotal role in the pathogenesis of a wide range of disease of the liver, biliary tract and intestine, including hepatic and colorectal cancer. In the last years several studies have shown the relative FXR tissue-specific importance, highlighting synergism and additive effects in the liver and intestine. Gain- and loss-of-FXR-function mouse models have been generated in order to identify the biological processes and the molecular FXR targets. Taking advantage of the knowledge on the structure-activity relationship of BAs for FXR, semi-synthetic and synthetic molecules have been generated to obtain more selective and powerful FXR activators than BAs. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Raffaella Maria Gadaleta
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK
| | - Marica Cariello
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy
| | - Carlo Sabbà
- Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy
| | - Antonio Moschetta
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy; Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy.
| |
Collapse
|
21
|
Horváth G, Egyed O, Toke O. Temperature Dependence of Backbone Dynamics in Human Ileal Bile Acid-Binding Protein: Implications for the Mechanism of Ligand Binding. Biochemistry 2014; 53:5186-98. [DOI: 10.1021/bi500553f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Egyed
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Toke
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
22
|
Pagano K, Tomaselli S, Zanzoni S, Assfalg M, Molinari H, Ragona L. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials. Comput Struct Biotechnol J 2013; 6:e201303021. [PMID: 24688729 PMCID: PMC3962148 DOI: 10.5936/csbj.201303021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs) not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
23
|
Létourneau D, Lorin A, Lefebvre A, Cabana J, Lavigne P, LeHoux JG. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1589-99. [PMID: 23872533 DOI: 10.1016/j.bbalip.2013.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Aurélien Lorin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrée Lefebvre
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jérôme Cabana
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre Lavigne
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Guy LeHoux
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
24
|
Turpin ER, Fang HJ, Thomas NR, Hirst JD. Cooperativity and site selectivity in the ileal lipid binding protein. Biochemistry 2013; 52:4723-33. [PMID: 23758264 DOI: 10.1021/bi400192w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ileal lipid binding protein (ILBP or I-BABP) binds bile salts with positive cooperativity and has unusual site selectivity, whereby cholic acid binds preferentially in one site and chenodeoxycholic in another, despite both sites having an affinity for both ligands and the ligands only differing by a single hydroxyl group. Previous studies of the human variant have assumed that the ligand/protein binding ratio is 2:1, but we show, using electrospray ionization mass spectroscopy, that human ILBP binds bile acids with a 3:1 ratio, even at low protein and ligand concentrations. Docking calculations and molecular dynamics (MD) simulations identify an allosterically active binding site on the protein exterior that induces a change from a closed conformation to an open one, characterized by a movement of one of the α-helices by ~10° with respect to the β-clam shell. Additional independent MD simulations of several hundred nanoseconds implicate the change between conformations in the mechanisms of both cooperativity and ligand site selectivity.
Collapse
Affiliation(s)
- Eleanor R Turpin
- School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
25
|
Favretto F, Assfalg M, Gallo M, Cicero DO, D'Onofrio M, Molinari H. Ligand Binding Promiscuity of Human Liver Fatty Acid Binding Protein: Structural and Dynamic Insights from an Interaction Study with Glycocholate and Oleate. Chembiochem 2013; 14:1807-19. [DOI: 10.1002/cbic.201300156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/09/2022]
|
26
|
Nakashima S, Yamamoto K, Arai Y, Ikeda Y. Impact of Physicochemical Profiling for Rational Approach on Drug Discovery. Chem Pharm Bull (Tokyo) 2013; 61:1228-38. [DOI: 10.1248/cpb.c13-00436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shoko Nakashima
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd
| | - Katsuhiko Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd
| | - Yuta Arai
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd
| | - Yukihiro Ikeda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd
| |
Collapse
|
27
|
Zanzoni S, D’Onofrio M, Molinari H, Assfalg M. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy. Biochem Biophys Res Commun 2012; 427:677-81. [DOI: 10.1016/j.bbrc.2012.09.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|
28
|
Horváth G, Király P, Tárkányi G, Toke O. Internal Motions and Exchange Processes in Human Ileal Bile Acid Binding Protein As Studied by Backbone 15N Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2012; 51:1848-61. [DOI: 10.1021/bi201588q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gergő Horváth
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Péter Király
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Gábor Tárkányi
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Orsolya Toke
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| |
Collapse
|
29
|
Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα. J Lipid Res 2012; 53:664-73. [PMID: 22223860 DOI: 10.1194/jlr.m021733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Collapse
Affiliation(s)
- Changming Fang
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
30
|
Zanzoni S, Assfalg M, Giorgetti A, D'Onofrio M, Molinari H. Structural requirements for cooperativity in ileal bile acid-binding proteins. J Biol Chem 2011; 286:39307-17. [PMID: 21917914 PMCID: PMC3234755 DOI: 10.1074/jbc.m111.261099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ileal bile acid-binding proteins (I-BABP), belonging to the family of intracellular lipid-binding proteins, control bile acid trafficking in enterocytes and participate in regulating the homeostasis of these cholesterol-derived metabolites. I-BABP orthologues share the same structural fold and are able to host up to two ligands in their large internal cavities. However variations in the primary sequences determine differences in binding properties such as the degree of binding cooperativity. To investigate the molecular requirements for cooperativity we adopted a gain-of-function approach, exploring the possibility to turn the noncooperative chicken I-BABP (cI-BABP) into a cooperative mutant protein. To this aim we first solved the solution structure of cI-BABP in complex with two molecules of the physiological ligand glycochenodeoxycholate. A comparative structural analysis with closely related members of the same protein family provided the basis to design a double mutant (H99Q/A101S cI-BABP) capable of establishing a cooperative binding mechanism. Molecular dynamics simulation studies of the wild type and mutant complexes and essential dynamics analysis of the trajectories supported the role of the identified amino acid residues as hot spot mediators of communication between binding sites. The emerging picture is consistent with a binding mechanism that can be described as an extended conformational selection model.
Collapse
Affiliation(s)
- Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
31
|
Liao M, Zhao J, Wang T, Duan J, Zhang Y, Deng X. Role of bile salt in regulating Mcl-1 phosphorylation and chemoresistance in hepatocellular carcinoma cells. Mol Cancer 2011; 10:44. [PMID: 21507240 PMCID: PMC3107804 DOI: 10.1186/1476-4598-10-44] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/20/2011] [Indexed: 11/25/2022] Open
Abstract
Background Glycochenodeoxycholate (GCDA) is one of the major human bile salts. Bile salts stimulate cell survival and proliferation through the mitogen-activated protein kinase, but the downstream signaling mechanism(s) remains enigmatic. Mcl-1 is an antiapoptotic molecule of the Bcl2 family that is extensively overexpressed in tumor tissues of patients with hepatocellular carcinoma (HCC). Results Here we found that exposure of HepG2 cells to GCDA results in activation of ERK1 and ERK2 and phosphorylation of Mcl-1 in a PD98059 (MEK inhibitor)-sensitive manner. GCDA stimulates Mcl-1 phosphorylation in cells expressing WT but not T163A Mcl-1 mutant, indicating that GCDA-induced Mcl-1 phosphorylation occurs exclusively at the T163 site in its PEST region. GCDA-induced Mcl-1 phosphorylation at T163 enhances the half-life of Mcl-1. Treatment of HepG2 cells with GCDA facilitates Mcl-1 dissociation from Mule (a physiological Mcl-1 ubiquitin E3 ligase). Specific depletion of Mcl-1 from HepG2 cells by RNA interference increases sensitivity of HepG2 cells to chemotherapeutic drugs (i.e. cisplatin and irinotecan). In addition to activation of the ERK/Mcl-1 survival pathway, GCDA can also induce dose-dependent apurinic/apyrimidinic (AP) sites of DNA lesions, which may partially neutralize its survival activity. Conclusion Our findings suggest that bile salt may function as a survival agonist and/or potential carcinogen in the development of HCC. Molecular approaches that inactivate Mcl-1 by blocking its T163 phosphorylation may represent new strategies for treatment of HCC.
Collapse
Affiliation(s)
- Mingmei Liao
- National Hepatobiliary & Enteric Surgery Research Center, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. NUCLEAR RECEPTOR SIGNALING 2010; 8:e005. [PMID: 21383957 PMCID: PMC3049226 DOI: 10.1621/nrs.08005] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022]
Abstract
Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use.
Collapse
Affiliation(s)
- Salvatore Modica
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
33
|
Cogliati C, Ragona L, D'Onofrio M, Günther U, Whittaker S, Ludwig C, Tomaselli S, Assfalg M, Molinari H. Site-Specific Investigation of the Steady-State Kinetics and Dynamics of the Multistep Binding of Bile Acid Molecules to a Lipid Carrier Protein. Chemistry 2010; 16:11300-10. [DOI: 10.1002/chem.201000498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Chicken ileal bile-acid-binding protein: a promising target of investigation to understand binding co-operativity across the protein family. Biochem J 2009; 425:413-24. [PMID: 19874274 DOI: 10.1042/bj20091209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein-bile acid interactions are crucial microscopic events at the basis of both physiological and pathological biochemical pathways. BABPs (bile-acid-binding proteins) are intracellular transporters able to bind ligands with different stoichiometry, selectivity and co-operativity. The molecular determinants and energetics of interaction are the observables that connect the microscopic to the macroscopic frameworks. The present paper addresses the study and proposes a mechanism for the multi-site interaction of bile acids with chicken I-BABP (ileal BABP) with the aim of elucidating the determinants of ligand binding in comparison with homologous proteins from different species and tissues. A thermodynamic binding model describing two independent consecutive binding sites is derived from isothermal titration calorimetry experiments and validated on the basis of both protein-observed and ligand-observed NMR titration data. It emerges that a singly bound protein is relatively abundant at low ligand/protein molar ratios assessing the absence of strong co-operativity. Both the measured energetics of binding and the distributed protein chemical-shift perturbations are in agreement with a first binding event triggering a global structural rearrangement. The enthalpic and entropic contributions associated with binding of the first ligand indicate that the interaction increases stability and order of the bound protein. The results described in the present study point to the presence of a protein scaffold which is able to establish long-range communication networks, but does not manifest positive-binding co-operativity, as observed for the human protein. We consider chicken I-BABP a suitable model to address the molecular basis for a gain-of-function on going from non-mammalian to mammalian species.
Collapse
|
35
|
Pedò M, D'Onofrio M, Ferranti P, Molinari H, Assfalg M. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein. Proteins 2009; 77:718-31. [DOI: 10.1002/prot.22496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Cogliati C, Tomaselli S, Assfalg M, Pedò M, Ferranti P, Zetta L, Molinari H, Ragona L. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins. FEBS J 2009; 276:6011-23. [PMID: 19754879 DOI: 10.1111/j.1742-4658.2009.07309.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.
Collapse
Affiliation(s)
- Clelia Cogliati
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole, CNR, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Analysis of cooperativity by isothermal titration calorimetry. Int J Mol Sci 2009; 10:3457-77. [PMID: 20111687 PMCID: PMC2812830 DOI: 10.3390/ijms10083457] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/25/2022] Open
Abstract
Cooperative binding pervades Nature. This review discusses the use of isothermal titration calorimetry (ITC) in the identification and characterisation of cooperativity in biological interactions. ITC has broad scope in the analysis of cooperativity as it determines binding stiochiometries, affinities and thermodynamic parameters, including enthalpy and entropy in a single experiment. Examples from the literature are used to demonstrate the applicability of ITC in the characterisation of cooperative systems.
Collapse
|
38
|
Rea AM, Thurston V, Searle MS. Mechanism of Ligand-Induced Folding of a Natively Unfolded Helixless Variant of Rabbit I-BABP. Biochemistry 2009; 48:7556-64. [DOI: 10.1021/bi900805s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anita M. Rea
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Victoria Thurston
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Mark S. Searle
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
39
|
The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule. J Mol Biol 2008; 385:99-116. [PMID: 18952094 DOI: 10.1016/j.jmb.2008.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/24/2008] [Accepted: 10/01/2008] [Indexed: 02/05/2023]
Abstract
The ileal bile acid-binding proteins (I-BABPs), also called ileal lipid-binding proteins or gastrotropins, belong to the family of the fatty acid-binding proteins and play an important role in the solubilization and transport of bile acids in the enterocyte. This article describes the expression, purification, crystallization, and three-dimensional structure determination of zebrafish (Danio rerio) I-BABP both in its apo form and bound to cholic acid. This is the first X-ray structure of an I-BABP. The structure of the apoprotein was determined to a resolution of 1.6 A, and two different monoclinic crystal forms of the holoprotein were solved and refined to 2.2 A resolution. Three protein molecules are present in the asymmetric unit of one of the co-crystal forms and two in the other, and therefore, the results of this study refer to observations made on five different protein molecules in the crystalline state. In every case, two cholate ligands were found bound in approximately the same position in the internal cavity of the protein molecules, but an unexpected result is the presence of clear and unambiguous electron density for several cholate molecules bound on hydrophobic patches on the surface of all the five independent protein molecules examined. Isothermal titration calorimetry was used for the thermodynamic characterization of the binding mechanism and has yielded results that are consistent with the X-ray data. Ligand binding is described in detail, and the conformational changes undergone by the protein molecule in the apo-to-holo transition are examined by superposition of the apo- and holoprotein models. The structure of the holoprotein is also compared with that of the liver BABP from the same species and those of other I-BABPs determined by NMR.
Collapse
|
40
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Tomaselli S, Ragona L, Zetta L, Assfalg M, Ferranti P, Longhi R, Bonvin AMJJ, Molinari H. NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids. Proteins 2007; 69:177-91. [PMID: 17607743 DOI: 10.1002/prot.21517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions.
Collapse
Affiliation(s)
- Simona Tomaselli
- Laboratorio NMR, ISMAC, CNR, via Bassini 15, 20133, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kouvatsos N, Thurston V, Ball K, Oldham NJ, Thomas NR, Searle MS. Bile Acid Interactions with Rabbit Ileal Lipid Binding Protein and an Engineered Helixless Variant Reveal Novel Ligand Binding Properties of a Versatile β-Clam Shell Protein Scaffold. J Mol Biol 2007; 371:1365-77. [PMID: 17618650 DOI: 10.1016/j.jmb.2007.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 11/25/2022]
Abstract
The intracellular ileal lipid binding proteins (ILBPs) are involved in the transport and enterohepatic circulation of bile acids. ILBPs from different species show high sequence and structural homology and have been shown to bind multiple bile acid ligands with differing degrees of selectivity and positive co-operativity. Human ILBP binds bile acid derivatives in a well-characterised 2:1 ligand:protein complex, however, we show that the highly homologous rabbit ILBP (82% sequence identity) with seven conservative substitutions preferentially binds multiple conjugated deoxycholate ligands in a novel 3:1 binding mode essentially within the same beta-clam shell structure. We have extended these studies to investigate the role of the alpha-helical capping motif (residues 9-35) in controlling the dimensions of the binding cavity and ligand uptake. Substituting the alpha-helical motif (residues 9-35) with a short Gly-Gly-Ser-Gly linker dramatically affects the protein stability such that under physiological conditions the mutant (Deltaalpha-ILBP) is highly disordered. However, we show that the inability of the mutant to adopt a stable three-dimensional structure under these conditions is no barrier to binding ligands with near-native affinity. These structural modifications not only demonstrate the possibility of strong coupling between ligand binding and protein folding, but result in changes in bile acid selectivity and binding stoichiometry, which we characterise in detail using isothermal calorimetry and mass spectrometry.
Collapse
Affiliation(s)
- Nikolaos Kouvatsos
- Centre for Biomolecular Sciences, School of Chemistry, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
43
|
Heddle JG, Okajima T, Scott DJ, Akashi S, Park SY, Tame JRH. Dynamic Allostery in the Ring Protein TRAP. J Mol Biol 2007; 371:154-67. [PMID: 17559872 DOI: 10.1016/j.jmb.2007.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/01/2007] [Accepted: 05/04/2007] [Indexed: 11/19/2022]
Abstract
We have discovered distinct, characteristic differences in the thermodynamic signatures of tryptophan binding by trp RNA-binding attenuation protein (TRAP) from two different bacterial species. The TRAP 11mer ring binds 11 molecules of tryptophan at symmetry-related sites. Tryptophan binding to Bacillus stearothermophilus TRAP is not cooperative, but isothermal titration calorimetry shows that filling the first tryptophan binding sites of Bacillus subtilis TRAP has a marked effect on the thermodynamics of subsequent ligand binding. We have identified a single, conservative amino acid replacement (Ile to Leu) in B. subtilis TRAP that abolishes this effect, and suggest the initial ligand binding causes a change throughout the wild-type protein ring.
Collapse
Affiliation(s)
- Jonathan G Heddle
- Yokohama City University, Tsurumi, Suehiro 1-7-29, Yokohama 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007; 24:1803-23. [PMID: 17404808 DOI: 10.1007/s11095-007-9289-1] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 12/11/2022]
Abstract
Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.
Collapse
Affiliation(s)
- Waddah A Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
45
|
Houtman JCD, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 2007; 16:30-42. [PMID: 17192587 PMCID: PMC1794685 DOI: 10.1110/ps.062558507] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.
Collapse
Affiliation(s)
- Jon C D Houtman
- Department of Microbiology, University of Iowa, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kouvatsos N, Meldrum JK, Searle MS, Thomas NR. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein. Chem Commun (Camb) 2006:4623-5. [PMID: 17082863 DOI: 10.1039/b610130e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.
Collapse
Affiliation(s)
- Nikolaos Kouvatsos
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham, UKNG7 2RD
| | | | | | | |
Collapse
|
47
|
Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 2006; 3:231-51. [PMID: 16749856 DOI: 10.1021/mp060010s] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids which cause liver injury ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms. Such defense mechanisms include repression of hepatic bile acid uptake and de novo bile acid synthesis. Furthermore, phase I and II bile acid detoxification is induced rendering bile acids more hydrophilic. In addition to "orthograde" export via canalicular export systems, these compounds are also excreted via basolateral "alternative" export systems into the systemic circulation followed by renal elimination. Passive glomerular filtration of hydrophilic bile acids, active renal tubular secretion, and repression of tubular bile acid reabsorption facilitate renal bile acid elimination during cholestasis. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors and other transcription factors. So far, the farnesoid X receptor FXR, pregnane X receptor PXR, and vitamin D receptor VDR have been identified as nuclear receptors for bile acids. However, the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis. Therefore, additional therapeutic strategies such as targeted activation of nuclear receptors are needed to enhance the hepatic defense against toxic bile acids.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Austria, and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|