1
|
Wingert J, Meinhardt E, Sasipong N, Pott M, Lederer C, de la Torre C, Sticht C, Most P, Katus HA, Frey N, Raake PWJ, Schlegel P. Cardiomyocyte-specific RXFP1 overexpression protects against pressure overload-induced cardiac dysfunction independently of relaxin. Biochem Pharmacol 2024; 225:116305. [PMID: 38768763 DOI: 10.1016/j.bcp.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) prevalence is rising due to reduced early mortality and demographic change. Relaxin (RLN) mediates protective effects in the cardiovascular system through Relaxin-receptor 1 (RXFP1). Cardiac overexpression of RXFP1 with additional RLN supplementation attenuated HF in the pressure-overload transverse aortic constriction (TAC) model. Here, we hypothesized that robust transgenic RXFP1 overexpression in cardiomyocytes (CM) protects from TAC-induced HF even in the absence of RLN. Hence, transgenic mice with a CM-specific overexpression of human RXFP1 (hRXFP1tg) were generated. Receptor functionality was demonstrated by in vivo hemodynamics, where the administration of RLN induced positive inotropy strictly in hRXFP1tg. An increase in phospholamban-phosphorylation at serine 16 was identified as a molecular correlate. hRXFP1tg were protected from TAC without additional RLN administration, presenting not only less decline in systolic left ventricular (LV) function but also abrogated LV dilation and pulmonary congestion compared to WT mice. Molecularly, transgenic hearts exhibited not only a significantly attenuated fetal and fibrotic gene activation but also demonstrated less fibrotic tissue and CM hypertrophy in histological sections. These protective effects were evident in both sexes. Similar cardioprotective effects of hRXFP1tg were detectable in a RLN-knockout model, suggesting an alternative mechanism of receptor activation through intrinsic activity, alternative endogenous ligands or crosstalk with other receptors. In summary, CM-specific RXFP1 overexpression provides protection against TAC even in the absence of endogenous RLN. This suggests RXFP1 overexpression as a potential therapeutic approach for HF, offering baseline protection with optional RLN supplementation for specific activation.
Collapse
Affiliation(s)
- J Wingert
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - E Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - N Sasipong
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - M Pott
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - C Lederer
- Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - C de la Torre
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Sticht
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - H A Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - N Frey
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - P W J Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany; Department of Internal Medicine I, University Hospital Augsburg, Augsburg University, Germany
| | - P Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
2
|
Wu H, Praveen P, Handley TNG, Chandrashekar C, Cummins SF, Bathgate RAD, Hossain MA. Total Chemical Synthesis of Aggregation-Prone Disulfide-Rich Starfish Peptides. Chemistry 2024; 30:e202400933. [PMID: 38609334 DOI: 10.1002/chem.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, The University of Melbourne, Victoria, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Victoria, Australia
| | | | | | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ross A D Bathgate
- The Florey, The University of Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Victoria, Australia
- School of Chemistry, The University of Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wu H, Hoare BL, Handley TNG, Akhter Hossain M, Bathgate RAD. Development of a synthetic relaxin-3/INSL5 chimeric peptide ligand for NanoBiT complementation binding assays. Biochem Pharmacol 2024; 224:116238. [PMID: 38677442 DOI: 10.1016/j.bcp.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
INSL5 and relaxin-3 are relaxin family peptides with important roles in gut and brain function, respectively. They mediate their actions through the class A GPCRs RXFP4 and RXFP3. RXFP4 has been proposed to be a therapeutic target for colon motility disorders whereas RXFP3 targeting could be effective for neurological conditions such as anxiety. Validation of these targets has been limited by the lack of specific ligands and the availability of robust ligand-binding assays for their development. In this study, we have utilized NanoBiT complementation to develop a SmBiT-conjugated tracer for use with LgBiT-fused RXFP3 and RXFP4. The low affinity between LgBiT:SmBiT should result in a low non-specific luminescence signal and enable the quantification of binding without the tedious separation of non-bound ligands. We used solid-phase peptide synthesis to produce a SmBiT-labelled RXFP3/4 agonist, R3/I5, where SmBiT was conjugated to the B-chain N-terminus via a PEG12 linker. Both SmBiT-R3/I5 and R3/I5 were synthesized and purified in high purity and yield. Stable HEK293T cell lines expressing LgBiT-RXFP3 and LgBiT-RXFP4 were produced and demonstrated normal signaling in response to the synthetic R3/I5 peptide. Binding was first characterized in whole-cell binding kinetic assays validating that the SmBiT-R3/I5 bound to both cell lines with nanomolar affinity with minimal non-specific binding without bound and free SmBiT-R3/I5 separation. We then optimized membrane binding assays, demonstrating easy and robust analysis of both saturation and competition binding from frozen membranes. These assays therefore provide an appropriate rigorous binding assay for the high-throughput analysis of RXFP3 and RXFP4 ligands.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, University of Melbourne, Victoria, Australia
| | | | | | - Mohammed Akhter Hossain
- The Florey, University of Melbourne, Victoria, Australia; School of Chemistry, University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia.
| | - Ross A D Bathgate
- The Florey, University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Bathgate RAD, Praveen P, Sethi A, Furuya WI, Dhingra RR, Kocan M, Ou Q, Valkovic AL, Gil-Miravet I, Navarro-Sánchez M, Olucha-Bordonau FE, Gundlach AL, Rosengren KJ, Gooley PR, Dutschmann M, Hossain MA. Noncovalent Peptide Stapling Using Alpha-Methyl-l-Phenylalanine for α-Helical Peptidomimetics. J Am Chem Soc 2023; 145:20242-20247. [PMID: 37439676 DOI: 10.1021/jacs.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.
Collapse
Affiliation(s)
- Ross A D Bathgate
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Werner I Furuya
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Rishi R Dhingra
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martina Kocan
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qinghao Ou
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam L Valkovic
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Isis Gil-Miravet
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Mónica Navarro-Sánchez
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Francisco E Olucha-Bordonau
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Andrew L Gundlach
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mathias Dutschmann
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Hossain MA, Praveen P, Noorzi NA, Wu H, Harrison IP, Handley T, Selemidis S, Samuel CS, Bathgate RAD. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. ACS Pharmacol Transl Sci 2023; 6:842-853. [PMID: 37200817 PMCID: PMC10186362 DOI: 10.1021/acsptsci.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 05/20/2023]
Abstract
H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- School
of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Praveen Praveen
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Nurhayati Ahmad Noorzi
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Hongkang Wu
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Ian P. Harrison
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Thomas Handley
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Stavros Selemidis
- School
of
Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
7
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
8
|
Spears RJ, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 2021; 50:11098-11155. [PMID: 34605832 DOI: 10.1039/d1cs00271f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling in vitro and in vivo. In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science.
Collapse
Affiliation(s)
| | - Clíona McMahon
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
9
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
10
|
A Chemogenetic Tool that Enables Functional Neural Circuit Analysis. Cell Rep 2020; 32:108139. [DOI: 10.1016/j.celrep.2020.108139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/21/2020] [Indexed: 01/31/2023] Open
|
11
|
He R, Pan J, Mayer JP, Liu F. Stepwise Construction of Disulfides in Peptides. Chembiochem 2020; 21:1101-1111. [PMID: 31886929 DOI: 10.1002/cbic.201900717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The disulfide bond plays an important role in biological systems. It defines global conformation, and ultimately the biological activity and stability of the peptide or protein. It is frequently present, singly or multiply, in biologically important peptide hormones and toxins. Numerous disulfide-containing peptides have been approved by the regulatory agencies as marketed drugs. Chemical synthesis is one of the prerequisite tools needed to gain deep insights into the structure-function relationships of these biomolecules. Along with the development of solid-phase peptide synthesis, a number of methods of disulfide construction have been established. This minireview will focus on the regiospecific, stepwise construction of multiple disulfides used in the chemical synthesis of peptides. We intend for this article to serve a reference for peptide chemists conducting complex peptide syntheses and also hope to stimulate the future development of disulfide methodologies.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | - Jia Pan
- Novo Nordisk Research Center China, 20 Life Science Road, Beijing, 102206, P. R. China
| | - John P Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle, 530 Fairview Avenue North, Seattle, WA, 98109, USA
| |
Collapse
|
12
|
Engineering of chimeric peptides as antagonists for the G protein-coupled receptor, RXFP4. Sci Rep 2019; 9:17828. [PMID: 31780677 PMCID: PMC6882824 DOI: 10.1038/s41598-019-53707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Insulin-like peptide 5 (INSL5) is a very important pharma target for treating human conditions such as anorexia and diabetes. However, INSL5 with two chains and three disulfide bridges is an extremely difficult peptide to assemble by chemical or recombinant means. In a recent study, we were able to engineer a simplified INSL5 analogue 13 which is a relaxin family peptide receptor 4 (RXFP4)-specific agonist. To date, however, no RXFP4-specific antagonist (peptide or small molecule) has been reported in the literature. The focus of this study was to utilize the non-specific RXFP3/RXFP4 antagonist ΔR3/I5 as a template to rationally design an RXFP4 specific antagonist. Unexpectedly, we demonstrated that ΔR3/I5 exhibited partial agonism at RXFP4 when expressed in CHO cells which is associated with only partial antagonism of INSL5 analogue activation. In an attempt to improve RXFP4 specificity and antagonist activity we designed and chemically synthesized a series of analogues of ΔR3/I5. While all the chimeric analogues still demonstrated partial agonism at RXFP4, one peptide (Analogue 17) exhibited significantly improved RXFP4 specificity. Importantly, analogue 17 has a simplified structure which is more amenable to chemical synthesis. Therefore, analogue 17 is an ideal template for further development into a specific high affinity RXFP4 antagonist which will be an important tool to probe the physiological role of RXFP4/INSL5 axis.
Collapse
|
13
|
Kamimoto H, Kobayashi Y, Moriyama K. Relaxin 2 carried by magnetically directed liposomes accelerates rat midpalatal suture expansion and subsequent new bone formation. Bone Rep 2019; 10:100202. [PMID: 30937342 PMCID: PMC6430079 DOI: 10.1016/j.bonr.2019.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Relaxin (RLN) is an insulin-like peptide hormone that enables softening and lengthening of the pubic symphysis and uterine cervix. Here, we analyzed the effects of RLN2 on the expansion of rat midpalatal suture (MPS) using a magnetically directed liposome-based drug delivery system. Thirty-six male rats were divided into three groups: control (MPS was not expanded), lipo (expanded for 1 week with vehicle liposomes encapsulating ferric oxide and Cy5.5), and RLN-lipo (expanded for 1 week with the liposomes coated with RLN2). Rats were sacrificed after 1 week of expansion or after 2 weeks of retention. To accumulate RLN2-liposomes, a magnetic sheet was fixed to the palatal mucosa of the MPS. In vivo imaging showed magnetically controlled accumulation of liposomes in the MPS for 72 h. Immunohistochemistry revealed RLN2 expression in the MPS after expansion and relaxin receptor (RXFP) 2 expression at the osteogenic front (OF) in the RLN-lipo group; all groups expressed RXFP1 in the MPS. MPS expansion and bone formation were significantly accelerated at the OF in RLN-lipo group compared with the other groups. In the RLN-lipo group, significantly accelerated serrate bone deposition and elevated periostin (POSTN), iNOS, and MMP-1 levels were observed in the MPS. Sclerostin (SOST) expression was significantly reduced in newly formed bone in the RLN-lipo group. Our data revealed that RLN2 enhanced suture expansion via MMP-1 and iNOS secretion in the sutural fibroblasts and new bone formation via POSTN expression in osteoblasts at the OF. These properties may be useful for developing a new less-invasive orthopedic treatment aiming at sutural modification of cranio- and maxillofacial deformity patients. In vivo Magnetically localization of RLN2 carried by liposome at rat midpalatal suture (MPS) was originally performed. RLN2 promoted efficiency of the MPS expansion with secretion of Mmp1 and iNos in the mid-sutural fibroblasts. During expansion period, RLN2 increased the number and differentiation of osteoblast cells in the MPS. RLN2 enhanced newly bone formation at the MPS during expansion and retention period through Rxfp2. Sinus-like bone formation and Postn localization at the expanded MPS was observed by RLN2 administration.
Collapse
Affiliation(s)
- Hiroyuki Kamimoto
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
14
|
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019; 13:30. [PMID: 30906254 PMCID: PMC6419585 DOI: 10.3389/fnana.2019.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 loxP/loxP mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV(1/2)-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kimberly Tin
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Mohsen Nategh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - João Covita
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alexander D. Wykes
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jake Rogers
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019; 29:991-994. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
The relaxin family peptide receptors have been implicated in numerous physiological processes including energy homeostasis, cardiac function, wound healing, and reproductive function. Two family members, RXFP3 and RXFP4, are class A GPCRs with endogenous peptide ligands (relaxin-3 and insulin-like peptide 5 (INSL5), respectively). Polymorphisms in relaxin-3 and RXFP3 have been associated with obesity, diabetes, and hypercholesterolemia. Moreover, central administration of relaxin-3 in rats has been shown to increase food intake, leading to body weight gain. Reported RXFP3 and RXFP4 ligands have been restricted to peptides (both endogenous and synthetic) as well as a low molecular weight positive allosteric modulator requiring a non-endogenous orthosteric ligand. Described here is the discovery of the first potent low molecular weight dual agonists of RXFP3/4. The scaffold identified is competitive with a chimeric relaxin-3/INSL5 peptide for RXFP3 binding, elicits similar downstream signaling as relaxin-3, and increases food intake in rats following acute central administration. This is the first report of small molecule RXFP3/4 agonism.
Collapse
Affiliation(s)
- Brian DeChristopher
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Soo-Hee Park
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Linh Vong
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Derek Bamford
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Hyun-Hee Cho
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rohit Duvadie
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Allison Fedolak
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Christopher Hogan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Pramod Pandey
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Olga Rozhitskaya
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Liansheng Su
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Elizabeth Tomlinson
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Iain Wallace
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
16
|
You X, Guo ZF, Cheng F, Yi B, Yang F, Liu X, Zhu N, Zhao X, Yan G, Ma XL, Sun J. Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes. J Biol Chem 2018; 293:14001-14011. [PMID: 30006349 DOI: 10.1074/jbc.ra118.003099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the β-adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Xiaohua You
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zhi-Fu Guo
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fang Cheng
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Bing Yi
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fan Yang
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Xinzhu Liu
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Ni Zhu
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guijun Yan
- the Reproductive Medicine Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 211166, China
| | - Xin-Liang Ma
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Jianxin Sun
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China, .,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| |
Collapse
|
17
|
Characterization and optimization of two-chain folding pathways of insulin via native chain assembly. Commun Chem 2018. [DOI: 10.1038/s42004-018-0024-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
de Ávila C, Chometton S, Lenglos C, Calvez J, Gundlach AL, Timofeeva E. Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behav Brain Res 2018; 336:135-144. [DOI: 10.1016/j.bbr.2017.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
|
19
|
Malone L, Opazo JC, Ryan PL, Hoffmann FG. Progressive erosion of the Relaxin1 gene in bovids. Gen Comp Endocrinol 2017; 252:12-17. [PMID: 28733228 DOI: 10.1016/j.ygcen.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 02/02/2023]
Abstract
The relaxin/insulin-like (RLN/INSL) gene family is a group of genes that encode peptide hormones involved in a variety of physiological functions related to reproduction. Previous studies have shown that relaxin plays a key role in widening of the pubic bone during labor and in gamete maturation. Because of these functions, studying the evolution of RLN1, the gene encoding for relaxin, is relevant in livestock species, most of which belong in the group Laurasiatheria, which includes cow, pig, horse, goat, and sheep in addition to bats, cetaceans and carnivores. Experimental evidence suggests that cows do not synthesize relaxin, but respond to it, and sheep apparently have a truncated RLN1 gene. Thus, we made use of genome sequence data to characterize the genomic locus of the RLN1 gene in Laurasiatherian mammals to better understand how cows lost the ability to synthesize this peptide. We found that all ruminants in our study (cow, giraffe, goat, sheep and Tibetan antelope) lack a functional RLN1 gene, and document the progressive loss of RLN1 in the lineage leading to cows. Our analyses indicate that 1 - all ruminants have lost all key regulatory elements upstream of the first exon, 2 - giraffe, goat, sheep and Tibetan antelope have multiple inactivating mutations in the RLN1 pseudogene, and 3 - the cow genome has lost all traces of RLN1. The 5' regulatory sequence plays a key role in activating expression, and the loss of this sequence would impair synthesis of mRNA. Our results suggest that changes in regulatory sequence preceded mutations in coding sequence and highlight the importance of these regions in maintaining proper gene function. In addition, we found that all bovids examined posses copies of the relaxin receptors, which explains why they are able to respond to relaxin despite their inability to produce it.
Collapse
Affiliation(s)
- Loggan Malone
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, MS 39762, USA; Department of Pathobiology & Population Medicine, Mississippi State University, MS 39762, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, MS 39762, USA.
| |
Collapse
|
20
|
Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017; 50:2116-2127. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Liu F, Li P, Gelfanov V, Mayer J, DiMarchi R. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Acc Chem Res 2017; 50:1855-1865. [PMID: 28771323 DOI: 10.1021/acs.accounts.7b00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin is a miraculous hormone that has served a seminal role in the treatment of insulin-dependent diabetes for nearly a century. Insulin resides within in a superfamily of structurally related peptides that are distinguished by three invariant disulfide bonds that anchor the three-dimensional conformation of the hormone. The additional family members include the insulin-like growth factors (IGF) and the relaxin-related set of peptides that includes the so-called insulin-like peptides. Advances in peptide chemistry and rDNA-based synthesis have enabled the preparation of multiple insulin analogues. The translation of these methods from insulin to related peptides has presented unique challenges that pertain to differing biophysical properties and unique amino acid compositions. This Account presents a historical context for the advances in the chemical synthesis of insulin and the related peptides, with division into two general categories where disulfide bond formation is facilitated by native conformational folding or alternatively orthogonal chemical reactivity. The inherent differences in biophysical properties of insulin-like peptides, and in particular within synthetic intermediates, have constituted a central limitation to achieving high yield synthesis of properly folded peptides. Various synthetic approaches have been advanced in the past decade to successfully address this challenge. The use of chemical ligation and metastable amide bond surrogates are two of the more important synthetic advances in the preparation of high quality synthetic precursors to high potency peptides. The discovery and application of biomimetic connecting peptides simplifies proper disulfide formation and the subsequent traceless removal by chemical methods dramatically simplifies the total synthesis of virtually any two-chain insulin-like peptide. We report the application of these higher synthetic yield methodologies to the preparation of insulin-like peptides in support of exploratory in vivo studies requiring a large quantity of peptide. Tangentially, we demonstrate the use of these methods to study the relative importance of the IGF-1 connecting peptide to its biological activity. We report the translation of these finding in search of an insulin analog that might be comparably enhanced by a suitable connecting peptide for interaction with the insulin receptor, as occurs with IGF-1 and its receptor. The results identify a unique receptor site in the IGF-1 receptor from which this enhancement derives. The selective substitution of this specific IGF-1 receptor sequence into the homologous site in the insulin receptor generated a chimeric receptor that was equally capable of signaling with insulin or IGF-1. This novel receptor proved to enhance the potency of lower affinity insulin ligands when they were supplemented with the IGF-1 connecting peptide that similarly enhanced IGF-1 activity at its receptor. The chimeric insulin receptor demonstrated no further enhancement of potency for native insulin when it was similarly prepared as a single-chain analogue with a native IGF-1 connecting peptide. These results suggest a more highly evolved insulin receptor structure where the requirement for an additional structural element to achieve high potency interaction as demonstrated for IGF-1 is no longer required.
Collapse
Affiliation(s)
- Fa Liu
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Pengyun Li
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily Gelfanov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John Mayer
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Hanafy S, Sabry JH, Akl EM, Elethy RA, Mostafa T. Serum relaxin-3 hormone relationship to male delayed puberty. Andrologia 2017; 50. [PMID: 28786126 DOI: 10.1111/and.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 02/05/2023] Open
Abstract
Puberty is the transitional period between childhood and adulthood, a process encompassing morphological, physiological and behavioural development to attain full reproductive capability. This study aimed to assess serum relaxin-3 hormone relationship with male delayed puberty. Sixty males were investigated as two equal groups: males with delayed puberty and healthy matched males as controls. They were subjected to history taking, clinical examination and estimation of serum FSH, LH, testosterone, relaxin-3 hormonal levels. The results showed that the secondary sexual characters in the patients group were at Tanner stages 1-2 and in the healthy controls at Tanner stages 3-5. The mean BMI in the patients group was significantly increased, whereas the mean levels of the span, testicular volume, serum LH, FSH, testosterone as well as relaxin-3 hormonal levels were significantly decreased compared with the healthy controls. Serum relaxin-3 levels showed significant positive correlation with the age, testis volume, span, Tanner stages, serum testosterone, FSH, LH hormones. In addition, serum relaxin-3 levels showed significant negative correlation with BMI. It is concluded that serum level of relaxin-3 hormone is an important mediator in the pathophysiological process of normal puberty being significantly decreased in males with delayed puberty.
Collapse
Affiliation(s)
- S Hanafy
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - J H Sabry
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - E M Akl
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - R A Elethy
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - T Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Nowak M, Gram A, Boos A, Aslan S, Ay SS, Önyay F, Kowalewski MP. Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term. Reproduction 2017; 154:415-431. [PMID: 28667126 DOI: 10.1530/rep-17-0135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/03/2017] [Accepted: 06/30/2017] [Indexed: 11/08/2022]
Abstract
Relaxin (RLN) is a key hormone of pregnancy in mammals best known for its involvement in connective tissue remodeling. In the domestic dog, placental RLN is the only known endocrine marker of pregnancy. However, knowledge is sparse regarding the spatio-temporal expression of RLN and its receptors (RXFP1 and RXFP2) in the canine uterus and placenta. Here, their expression was investigated in the pre-implantation uterus and utero-placental compartments (UtPl) at selected time points during gestation: post-implantation, mid-gestation, and at normal and antigestagen-induced luteolysis/abortion. Immunohistochemistry with newly generated, canine-specific antisera, in situ hybridization and semi-quantitative PCR were applied. In compartmentalization studies, placental and endometrial RLN increased continuously toward prepartum. The placental RXFP1 was time-related and highest during post-implantation and decreased together with RXFP2 at prepartum luteolysis. The endometrial levels of both receptors did not vary greatly, but myometrial RXFP2 decreased from mid-gestation to prepartum luteolysis. Antigestagen treatment resulted in suppression of RLN in UtPl and decreased RXFP1 and RXFP2 in the uterus. The placental RLN was localized mainly in the cytotrophoblast. Additionally, RXFP1 stained strongly in placental endothelial cells while RXFP2 was found mainly in maternal decidual cells. Uterine staining for all targets was found in epithelial cellular constituents and in myometrium. Finally, besides its endocrine functions, RLN seems to be involved in auto-/paracrine regulation of utero-placental functions in dogs in a time-dependent manner. New insights into feto-maternal communication was provided, in particular regarding the localization of RXFP2 in the maternal decidual cells, implying functional roles of RLN during the decidualization process.
Collapse
Affiliation(s)
- Marta Nowak
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and GynecologyVeterinary Faculty, Near East University, Nicosia, North Cyprus, Turkey
| | - Serhan S Ay
- Department of Obstetrics and GynaecologyFaculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Firdevs Önyay
- Department of Obstetrics and GynaecologyFaculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Mariusz P Kowalewski
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017; 234:1725-1739. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Relaxin-3/RXFP3 signalling is proposed to be involved in the neuromodulatory control of arousal- and stress-related neural circuits. Furthermore, previous studies in rats have led to the proposal that relaxin-3/RXFP3 signalling is associated with activation of the hypothalamic-pituitary-adrenal axis, but direct evidence for RXFP3-related actions on the activity of hypothalamic corticotropin-releasing hormone (CRH) neurons is lacking. In this study, we investigated characteristics of the relaxin-3/RXFP3 system in mouse hypothalamus. Administration of an RXFP3 agonist (RXFP3-A2) intra-cerebroventricularly or directly into the paraventricular nucleus of hypothalamus (PVN) of C57BL/6J mice did not alter corticosterone levels. Similarly, there were no differences between serum corticosterone levels in Rxfp3 knockout (C57BL/6JRXFP3TM1) and wild-type mice at baseline and after stress, despite detection of the predicted stress-induced increases in serum corticosterone. We examined the nature of the relaxin-3 innervation of PVN in wild-type mice and in Crh-IRES-Cre;Ai14 mice that co-express the tdTomato fluorophore in CRH neurons, identifying abundant relaxin-3 fibres in the peri-PVN region, but only sparse fibres associated with densely packed CRH neurons. In whole-cell voltage-clamp recordings of tdTomato-positive CRH neurons in these mice, we observed a reduction in sEPSC frequency following local application of RXFP3-A2, consistent with an activation of RXFP3 on presynaptic glutamatergic afferents in the PVN region. These studies clarify the relationship between relaxin-3/RXFP3 inputs and CRH neurons in mouse PVN, with implications for the interpretation of current and previous in vivo studies and future investigations of this stress-related signalling network in normal and transgenic mice, under normal and pathological conditions.
Collapse
Affiliation(s)
- C Zhang
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - D V Baimoukhametova
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - C M Smith
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
25
|
Thalluri K, Kou B, Yang X, Zaykov AN, Mayer JP, Gelfanov VM, Liu F, DiMarchi RD. Synthesis of relaxin‐2 and insulin‐like peptide 5 enabled by novel tethering and traceless chemical excision. J Pept Sci 2017; 23:455-465. [DOI: 10.1002/psc.3010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Kishore Thalluri
- Department of ChemistryIndiana University Bloomington IN 47405 USA
| | - Binbin Kou
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Xu Yang
- Department of ChemistryIndiana University Bloomington IN 47405 USA
| | - Alexander N. Zaykov
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - John P. Mayer
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Vasily M. Gelfanov
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Fa Liu
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | | |
Collapse
|
26
|
Ivell R, Agoulnik AI, Anand‐Ivell R. Relaxin-like peptides in male reproduction - a human perspective. Br J Pharmacol 2017; 174:990-1001. [PMID: 27933606 PMCID: PMC5406299 DOI: 10.1111/bph.13689] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival. In the fetus, INSL3 is a key hormone expressed shortly after sex determination and is responsible for the first transabdominal phase of testicular descent. Importantly, INSL3 is becoming a very useful constitutive biomarker reflecting both fetal and post-natal development. Nothing is known about roles for INSL4 in male reproduction and only very little about relaxin-3, which is mostly considered as a brain peptide, or INSL5. The former is expressed at very low levels in the testes, but has no known physiology there, whereas the INSL5 knockout mouse does exhibit a testicular phenotype with mild effects on spermatogenesis, probably due to a disruption of glucose homeostasis. INSL6 is a major product of male germ cells, although it is relatively unexplored with regard to its physiology or pharmacology, except that in mice disruption of the INSL6 gene leads to a disruption of spermatogenesis. Clinically, relaxin analogues may be useful in the control of prostate cancer, and both relaxin and INSL3 have been considered as sperm adjuvants for in vitro fertilization. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Richard Ivell
- School of BiosciencesUniversity of NottinghamNottinghamLE12 5RDUK
- School of Veterinary and Medical SciencesUniversity of NottinghamNottinghamLE12 5RDUK
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | |
Collapse
|
27
|
Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus 2017; 27:529-546. [PMID: 28100033 DOI: 10.1002/hipo.22709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Abstract
Hippocampus is innervated by γ-aminobutyric acid (GABA) "projection" neurons of the nucleus incertus (NI), including a population expressing the neuropeptide, relaxin-3 (RLN3). In studies aimed at gaining an understanding of the role of RLN3 signaling in hippocampus via its Gi/o -protein-coupled receptor, RXFP3, we examined the distribution of RLN3-immunoreactive nerve fibres and RXFP3 mRNA-positive neurons in relation to hippocampal GABA neuron populations. RLN3-positive elements were detected in close-apposition with a substantial population of somatostatin (SST)- and GABA-immunoreactive neurons, and a smaller population of parvalbumin- and calretinin-immunoreactive neurons in different hippocampal areas, consistent with the relative distribution patterns of RXFP3 mRNA and these marker transcripts. In light of the functional importance of the dentate gyrus (DG) hilus in learning and memory, and our anatomical data, we examined the possible influence of RLN3/RXFP3 signaling in this region on spatial memory. Using viral-based Cre/LoxP recombination methods and adult mice with a floxed Rxfp3 gene, we deleted Rxfp3 from DG hilar neurons and assessed spatial memory performance and affective behaviors. Following infusions of an AAV(1/2) -Cre-IRES-eGFP vector, Cre expression was observed in DG hilar neurons, including SST-positive cells, and in situ hybridization histochemistry for RXFP3 mRNA confirmed receptor depletion relative to levels in floxed-RXFP3 mice infused with an AAV(1/2) -eGFP (control) vector. RXFP3 depletion within the DG hilus impaired spatial reference memory in an appetitive T-maze task reflected by a reduced percentage of correct choices and increased time to meet criteria, relative to control. In a continuous spontaneous alternation Y-maze task, RXFP3-depleted mice made fewer alternations in the first minute, suggesting impairment of spatial working memory. However, RXFP3-depleted and control mice displayed similar locomotor activity, anxiety-like behavior in light/dark box and elevated-plus maze tests, and learning and long-term memory retention in the Morris water maze. These data indicate endogenous RLN3/RXFP3 signaling can modulate hippocampal-dependent spatial reference and working memory via effects on SST interneurons, and further our knowledge of hippocampal cognitive processing. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - G Guèvremont
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Quebec, Canada
| | - C Zhang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - R A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | - E Timofeeva
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Quebec, Canada
| | - C M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Victoria, Australia
| | - A L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017; 174:950-961. [PMID: 27922185 DOI: 10.1111/bph.13684] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The human relaxin peptide family consists of seven cystine-rich peptides, four of which are known to signal through relaxin family peptide receptors, RXFP1-4. As these peptides play a vital role physiologically and in various diseases, they are of considerable importance for drug discovery and development. Detailed structure-activity relationship (SAR) studies towards understanding the role of important residues in each of these peptides have been reported over the years and utilized for the design of antagonists and minimized agonist variants. This review summarizes the current knowledge of the SAR of human relaxin 2 (H2 relaxin), human relaxin 3 (H3 relaxin), human insulin-like peptide 3 (INSL3) and human insulin-like peptide 5 (INSL5). LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Nitin A Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - K Johan Rosengren
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2016; 174:1034-1048. [PMID: 27774604 DOI: 10.1111/bph.13659] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones. Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4 receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 systems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory. Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neurons in major experimental species and humans are also identified. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
30
|
The actions of relaxin family peptides on signal transduction pathways activated by the relaxin family peptide receptor RXFP4. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:105-111. [PMID: 27888281 DOI: 10.1007/s00210-016-1321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/18/2016] [Indexed: 01/06/2023]
Abstract
The relaxin family peptide receptor 4 (RXFP4) is a G protein-coupled receptor (GPCR) expressed in the colorectum with emerging roles in metabolism and appetite regulation. It is activated by its cognate ligand insulin-like peptide 5 (INSL5) that is expressed in enteroendocrine L cells in the gut. Whether other evolutionarily related peptides such as relaxin-2, relaxin-3, or INSL3 activate RXFP4 signal transduction mechanisms with a pattern similar to or distinct from INSL5 is still unclear. In this study, we compare the signaling pathways activated by various relaxin family peptides to INSL5. We found that, like INSL5, relaxin-3 activated ERK1/2, p38MAPK, Akt, and S6RP phosphorylations leading to increased cell proliferation and also caused GRK and β-arrestin-mediated receptor internalization. Interestingly, relaxin-3 was slightly more potent than INSL5 in ERK1/2 and Akt phosphorylations, but both peptides were almost equipotent in adenylyl cyclase inhibition, S6RP phosphorylation, and cell proliferation. In addition, relaxin-3 showed greater efficacy only in Akt phosphorylation but not in the other pathways investigated. In contrast, no signaling activity or receptor internalization mechanisms were observed following relaxin-2 and INSL3. In conclusion, relaxin-3 is a high-efficacy agonist at RXFP4 with a comparable signal transduction profile to INSL5.
Collapse
|
31
|
Yang X, Gelfanov V, Liu F, DiMarchi R. Synthetic Route to Human Relaxin-2 via Iodine-Free Sequential Disulfide Bond Formation. Org Lett 2016; 18:5516-5519. [DOI: 10.1021/acs.orglett.6b02751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Yang
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Vasily Gelfanov
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Fa Liu
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| |
Collapse
|
32
|
Jayakody T, Marwari S, Lakshminarayanan R, Tan FCK, Johannes CW, Dymock BW, Poulsen A, Herr DR, Dawe GS. Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides 2016; 84:44-57. [PMID: 27498038 DOI: 10.1016/j.peptides.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022]
Abstract
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deron Raymond Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.
| |
Collapse
|
33
|
Hojo K, Hossain MA, Tailhades J, Shabanpoor F, Wong LLL, Ong-Pålsson EEK, Kastman HE, Ma S, Gundlach AL, Rosengren KJ, Wade JD, Bathgate RAD. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling. J Med Chem 2016; 59:7445-56. [PMID: 27464307 DOI: 10.1021/acs.jmedchem.6b00265] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Structure-activity studies of the insulin superfamily member, relaxin-3, have shown that its G protein-coupled receptor (RXFP3) binding site is contained within its central B-chain α-helix and this helical structure is essential for receptor activation. We sought to develop a single B-chain mimetic that retained agonist activity. This was achieved by use of solid phase peptide synthesis together with on-resin ruthenium-catalyzed ring closure metathesis of a pair of judiciously placed i,i+4 α-methyl, α-alkenyl amino acids. The resulting hydrocarbon stapled peptide was shown by solution NMR spectroscopy to mimic the native helical conformation of relaxin-3 and to possess potent RXFP3 receptor binding and activation. Alternative stapling procedures were unsuccessful, highlighting the critical need to carefully consider both the peptide sequence and stapling methodology for optimal outcomes. Our result is the first successful minimization of an insulin-like peptide to a single-chain α-helical peptide agonist which will facilitate study of the function of relaxin-3.
Collapse
Affiliation(s)
- Keiko Hojo
- Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University , Chuo-ku, Kobe 650-8586, Japan
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia.,School of Chemistry, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia.,School of Chemistry, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Lilian L L Wong
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Emma E K Ong-Pålsson
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Hanna E Kastman
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Sherie Ma
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Andrew L Gundlach
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia.,School of Chemistry, University of Melbourne , Melbourne, Victoria 3052, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, Victoria 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne , Melbourne, Victoria 3052, Australia
| |
Collapse
|
34
|
Calvez J, de Ávila C, Timofeeva E. Sex-specific effects of relaxin-3 on food intake and body weight gain. Br J Pharmacol 2016; 174:1049-1060. [PMID: 27245781 DOI: 10.1111/bph.13530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023] Open
Abstract
Relaxin-3 (RLN3) is a neuropeptide that is strongly expressed in the pontine nucleus incertus (NI) and binds with high affinity to its cognate receptor RXFP3. Central administration of RLN3 in rats increases food intake and adiposity. In humans, RLN3 polymorphism has been associated with obesity and hypercholesterolaemia. Emerging evidence suggests that the effects of RLN3 may have sex-specific aspects. Thus, the RLN3 knockout female but not male mice are hypoactive. RLN3 produced stronger orexigenic and obesogenic effects in female rats compared with male rats. In addition, female rats demonstrated higher sensitivity to lower doses of RLN3. Repeated cycles of food restriction and stress were accompanied by an increase in RLN3 expression and hyperphagia in female but not in male rats. Furthermore, stress-induced binge eating in female rats was blocked by an RXFP3 receptor antagonist. RLN3 increased the expression of corticotropin releasing factor in the paraventricular hypothalamic nucleus in male but not in female rats. Conversely, in female rats, RLN3 increased the expression of orexin in the lateral hypothalamus. There is evidence that orexin directly activates the RLN3 neurons in the NI. The positive reinforcement of the RLN3 effects by orexin may intensify behavioural activation and feeding in females. Sex-specific effects of RLN3 may also depend on differential expression of RXFP3 receptors in the brain. Given the higher sensitivity of females to the orexigenic effects of RLN3 and the stress-induced activation of RLN3, the overall data suggest a possible role for RLN3 in eating disorders that show a higher propensity in women. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Juliane Calvez
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
35
|
Wu F, Mayer JP, Zaykov AN, Zhang F, Liu F, DiMarchi RD. Chemical Synthesis of Human Insulin-Like Peptide-6. Chemistry 2016; 22:9777-83. [DOI: 10.1002/chem.201601410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Fangzhou Wu
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - John P. Mayer
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alexander N. Zaykov
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Fa Zhang
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Fa Liu
- Novo Nordisk Research Center Indianapolis; 5225 Exploration Drive Indianapolis Indiana 46241 USA
| | - Richard D. DiMarchi
- Department of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
36
|
Liu F, Zaykov AN, Levy JJ, DiMarchi RD, Mayer JP. Chemical synthesis of peptides within the insulin superfamily. J Pept Sci 2016; 22:260-70. [PMID: 26910514 DOI: 10.1002/psc.2863] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fa Liu
- Calibrium LLC, 11711 N. Meridian Street, Carmel, IN, 46032, USA
| | - Alexander N Zaykov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Jay J Levy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - John P Mayer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
37
|
Lee JH, Koh SQ, Guadagna S, Francis PT, Esiri MM, Chen CP, Wong PTH, Dawe GS, Lai MKP. Altered relaxin family receptors RXFP1 and RXFP3 in the neocortex of depressed Alzheimer's disease patients. Psychopharmacology (Berl) 2016; 233:591-8. [PMID: 26542729 DOI: 10.1007/s00213-015-4131-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/23/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE The G-protein-coupled relaxin family receptors RXFP1 and RXFP3 are widely expressed in the cortex and are involved in stress responses and memory and emotional processing. However, the identification of these receptors in human cortex and their status in Alzheimer's disease (AD), which is characterized by both cognitive impairments and neuropsychiatric behaviours, have not been reported. OBJECTIVES In this study, we characterized RXFP receptors for immunoblotting and measured RXFP1 and RXFP3 immunoreactivities in the postmortem neocortex of AD patients longitudinally assessed for depressive symptoms. METHODS RXFP1 and RXFP3 antibodies were characterized by immunoblotting with lysates from transfected HEK cells and preadsorption with RXFP3 peptides. Also, postmortem neocortical tissues from behaviourally assessed AD and age-matched controls were processed for immunoblotting with RXFP1 and RXFP3 antibodies. RESULTS Compared to controls, putative RXFP1 immunoreactivity was reduced in parietal cortex of non-depressed AD patients but unchanged in depressed patients. Furthermore, putative RXFP3 immunoreactivity was increased only in depressed AD patients. RXFP1 levels in the parietal cortex also correlated with severity of depression symptoms. In contrast, RXFP1 and RXFP3 levels did not correlate with dementia severity or β-amyloid burden. CONCLUSION Alterations of RXFP1 and RXFP3 may be neurochemical markers of depression in AD, and relaxin family receptors warrant further preclinical investigations as possible therapeutic targets for neuropsychiatric symptoms in dementia.
Collapse
Affiliation(s)
- Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore
| | - Shu Qing Koh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore
| | - Simone Guadagna
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore
- Neurobiology and Ageing Programme, Life Science Institute, National University of Singapore, Kent Ridge, Singapore
- Singapore Institute for Neurotechnology (SINAPSE), Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Unit 09-01, Centre for Translational Medicine (MD6), 14 Medical Drive, Kent Ridge, 117599, Singapore.
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
- Neurobiology and Ageing Programme, Life Science Institute, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
38
|
Dschietzig TB, Krause-Relle K, Hennequin M, von Websky K, Rahnenführer J, Ruppert J, Grön HJ, Armbruster FP, Bathgate RAD, Aschenbach JR, Forssmann WG, Hocher B. Relaxin-2 does not ameliorate nephropathy in an experimental model of type-1 diabetes. Kidney Blood Press Res 2016; 40:77-88. [PMID: 25791819 DOI: 10.1159/000368484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS In diabetic nephropathy (DN), the current angiotensin-II-blocking pharmacotherapy is frequently failing. For diabetic cardiomyopathy (DC), there is no specific remedy available. Relaxin-2 (Rlx) - an anti-fibrotic, anti-inflammatory, and vasoprotecting peptide – is a candidate drug for both. METHODS Low-dose (32 μg/kg/day) and high-dose (320 μg/kg/day) Rlx were tested against vehicle (n = 20 each) and non-diabetic controls (n = 14) for 12 weeks in a model of type-1 diabetes induced in endothelial nitric oxide synthase knock-out (eNOS-KO) mice by intraperitoneal injection of streptozotocin. RESULTS Diabetic animals showed normal plasma creatinine, markedly increased albuminuria and urinary malonyldialdehyde, elevated relative kidney weight, glomerulosclerosis, and increased glomerular size, but no relevant interstitial fibrosis. Neither dose of Rlx affected these changes although the drug was active and targeted plasma levels were achieved. Of note, we found no activation of the renal TGF-β pathway in this model. In the hearts of diabetic animals, no fibrotic alterations indicative of DC could be determined which precluded testing of the initial hypothesis. CONCLUSIONS We investigated a model showing early DN without overt tubulointerstitial fibrosis and activation of the TGF-β-Smad-2/3 pathway. In this model, Rlx proved ineffective; however, the same may not apply to other models and types of diabetes.
Collapse
|
39
|
Wu QP, Zhang L, Shao XX, Wang JH, Gao Y, Xu ZG, Liu YL, Guo ZY. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies. Amino Acids 2016; 48:1099-1107. [PMID: 26767372 DOI: 10.1007/s00726-015-2146-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.
Collapse
Affiliation(s)
- Qing-Ping Wu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Zhang
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia-Hui Wang
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Gao
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
40
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
41
|
Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015; 100:1064-72. [PMID: 26147879 DOI: 10.1113/ep085349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 01/21/2023]
Abstract
NEW FINDINGS What is the central question of this study? Sodium appetite is controlled by conserved neuronal transmitter-receptor systems. Here, we tested the contribution made by relaxin family peptide 3 receptor (RXFP3), the cognate G-protein-coupled receptor for the neuropeptide relaxin-3. What is the main finding and its importance? Intracerebroventricular infusion of an RXFP3 antagonist reduced in a dose-dependent manner the volume of 0.3 m NaCl consumed by sodium-depleted C57Bl/6J (wild-type) mice. This effect was absent in sodium-depleted Rxfp3 knockout mice, and RXFP3 antagonist infusion did not alter water consumption in wild-type mice subjected to multiple thirst tests, indicating both the pharmacological and the physiological specificity of observed effects. Our findings identify endogenous relaxin-3-RXFP3 signalling as a modulator of sodium appetite. Overconsumption of highly salted foods is common in Western diets and contributes significantly to metabolic disorders such as hypertension, renal dysfunction and diabetes. Sodium appetite, or the desire of terrestrial animals to seek and consume sodium-containing salts, is a behaviour mediated by a set of evolutionarily conserved neuronal systems. In these studies, we tested whether this instinctive behavioural drive is influenced by the G-protein-coupled relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the neuropeptide relaxin-3, because relaxin-3-RXFP3 signalling can modulate arousal, motivation and ingestive behaviours. Intracerebroventricular (i.c.v.) infusion of the selective RXFP3 antagonist, R3(B1-22)R, reduced in a dose-dependent manner the volume of 0.3 m NaCl solution consumed when offered to sodium-depleted C57Bl/6J wild-type mice, relative to vehicle-treated control animals. Notably, i.c.v. R3(B1-22)R infusion did not alter 0.3 m NaCl consumption relative to vehicle in sodium-depleted Rxfp3 knockout mice, confirming the pharmacological specificity of this effect. Furthermore, i.c.v. R3(B1-22)R did not alter the volume of water consumed by wild-type mice in three tests where water drinking was the normal physiological response, suggesting that the ability of R3(B1-22)R to reduce activated salt appetite is specific and not due to a generalized reduction in drinking behaviour. These findings identify, for the first time, that endogenous relaxin-3-RXFP3 signalling is a powerful mediator of salt appetite in mice and further elucidate the functional role of the relaxin-3-RXFP3 system in the integrative control of motivated behaviours.
Collapse
Affiliation(s)
- Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Lesley L Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Michael J McKinley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Derek A Denton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Office of the Dean, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
42
|
INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell Tissue Res 2015; 363:579-88. [PMID: 26077926 PMCID: PMC4735252 DOI: 10.1007/s00441-015-2213-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/08/2015] [Indexed: 01/04/2023]
Abstract
INSL3 (insulin-like peptide 3) is a relaxin peptide family member expressed by Leydig cells in the vertebrate testis. In mammals, INSL3 mediates testicular descent during embryogenesis but information on its function in adults is limited. In fish, the testes remain in the body cavity, although the insl3 gene is still expressed, suggesting yet undiscovered, evolutionary older functions. Anti-Müllerian hormone (Amh), in addition to inhibiting spermatogonial differentiation and androgen release, inhibits the Fsh (follicle-stimulating hormone)-induced increase in insl3 transcript levels in zebrafish testis. Therefore, the two growth factors might have antagonistic effects. We examine human INSL3 (hINSL3) effects on zebrafish germ cell proliferation/differentiation and androgen release by using a testis tissue culture system. hINSL3 increases the proliferation of type A undifferentiated (Aund) but not of type A differentiating (Adiff) spermatogonia, while reducing the proliferation of Sertoli cells associated with proliferating Aund. Since the area occupied by Aund decreases and that of Adiff increases, we conclude that hINSL3 recruits Aund into differentiation; this is supported by the hINSL3-induced down-regulation of nanos2 transcript levels, a marker of single Aund spermatogonia in zebrafish and other vertebrates. Pulse-chase experiments with a mitosis marker also indicate that hINSL3 promotes spermatogonial differentiation. However, hINSL3 does not modulate basal or Fsh-stimulated androgen release or growth factor transcript levels, including those of amh. Thus, hINSL3 seems to recruit Aund spermatogonia into differentiation, potentially mediating an Fsh effect on spermatogenesis.
Collapse
|
43
|
Haidar M, Lam M, Chua BE, Smith CM, Gundlach AL. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency. Neurochem Res 2015; 41:481-91. [PMID: 26023064 DOI: 10.1007/s11064-015-1621-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative 'ascending arousal system', which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of 'behavioural despair', bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3-10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Monica Lam
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.,Faculty of Health Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,INC Research, Oakleigh, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
44
|
Haugaard-Kedström LM, Hossain MA, Daly NL, Bathgate RAD, Rinderknecht E, Wade JD, Craik DJ, Rosengren KJ. Solution structure, aggregation behavior, and flexibility of human relaxin-2. ACS Chem Biol 2015; 10:891-900. [PMID: 25547165 DOI: 10.1021/cb500918v] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Relaxin is a member of the relaxin/insulin peptide hormone superfamily and is characterized by a two-chain structure constrained by three disulfide bonds. Relaxin is a pleiotropic hormone and involved in a number of physiological and pathogenic processes, including collagen and cardiovascular regulation and tissue remodelling during pregnancy and cancer. Crystallographic and ultracentrifugation experiments have revealed that the human form of relaxin, H2 relaxin, self-associates into dimers, but the significance of this is poorly understood. Here, we present the NMR structure of a monomeric, amidated form of H2 relaxin and compare its features and behavior in solution to those of native H2 relaxin. The overall structure of H2 relaxin is retained in the monomeric form. H2 relaxin amide is fully active at the relaxin receptor RXFP1 and thus dimerization is not required for biological activity. Analysis of NMR chemical shifts and relaxation parameters identified internal motion in H2 relaxin at the pico-nanosecond and milli-microsecond time scales, which is commonly seen in other relaxin and insulin peptides and might be related to function.
Collapse
Affiliation(s)
| | | | - Norelle L. Daly
- Centre for
Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland 4878, Australia
| | | | - Ernst Rinderknecht
- Corthera, c/o
Novartis Corporation, San Carlos, California 94070, United States
| | | | | | - K. Johan Rosengren
- School
of Natural Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
45
|
Bergeron LH, Willcox JM, Alibhai FJ, Connell BJ, Saleh TM, Wilson BC, Summerlee AJS. Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 2015; 156:638-46. [PMID: 25456068 PMCID: PMC4298330 DOI: 10.1210/en.2014-1676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pregnancy hormone relaxin protects tissue from ischemic damage. The ability of relaxin-3, a relaxin paralog, to do so has not been explored. The cerebral expression levels of these peptides and their receptors make them logical targets for study in the ischemic brain. We assessed relaxin peptide-mediated protection, relative relaxin family peptide receptor (RXFP) involvement, and protective mechanisms. Sprague-Dawley rats receiving permanent (pMCAO) or transient middle cerebral artery occlusions (tMCAO) were treated with relaxin peptides, and brains were collected for infarct analysis. Activation of the endothelial nitric oxide synthase pathway was evaluated as a potential protective mechanism. Primary cortical rat astrocytes were exposed to oxygen glucose deprivation and treated with relaxin peptides, and viability was examined. Receptor involvement was explored using RXFP3 antagonist or agonist treatment and real-time PCR. Relaxin and relaxin-3 reduced infarct size after pMCAO. Both peptides activated endothelial nitric oxide synthase. Because relaxin-3 has not previously been associated with this pathway and displays promiscuous RXFP binding, we explored the receptor contribution. Expression of rxfp1 was greater than that of rxfp3 in rat brain, although peptide binding at either receptor resulted in similar overall protection after pMCAO. Only RXFP3 activation reduced infarct size after tMCAO. In astrocytes, rxfp3 gene expression was greater than that of rxfp1. Selective activation of RXFP3 maintained astrocyte viability after oxygen glucose deprivation. Relaxin peptides are protective during the early stages of ischemic stroke. Differential responses among treatments and models suggest that RXFP1 and RXFP3 initiate different protective mechanisms. This preliminary work is a pivotal first step in identifying the clinical implications of relaxin peptides in ischemic stroke.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Brain/pathology
- Cells, Cultured
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Male
- Random Allocation
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Peptide/agonists
- Receptors, Peptide/antagonists & inhibitors
- Recombinant Proteins/therapeutic use
- Relaxin/pharmacology
- Relaxin/therapeutic use
Collapse
Affiliation(s)
- Lindsay H Bergeron
- Department of Biomedical Sciences (L.H.B., J.M.W., F.J.A., A.J.S.S.), Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G2W1; Department of Biomedical Sciences (B.J.C., T.M.S.), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A4P3; and Department of Biology (B.C.W.), Acadia University, Wolfville, Nova Scotia, Canada B4P2R6
| | | | | | | | | | | | | |
Collapse
|
46
|
Kristensson L, Mayer G, Ploj K, Wetterlund M, Arlbrandt S, Björquist A, Wissing BM, Castaldo M, Larsson N. Partial agonist activity of R3(BΔ23-27)R/I5 at RXFP3--investigation of in vivo and in vitro pharmacology. Eur J Pharmacol 2015; 747:123-31. [PMID: 25496752 DOI: 10.1016/j.ejphar.2014.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/05/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Relaxin family peptide receptor 3 (RXFP3) is a G-protein coupled receptor mainly expressed in the brain and involved in appetite regulation. Previous studies in lean Wistar rats during the light phase have shown that the chimeric peptide R3(BΔ23-27)R/I5 suppresses food intake stimulated by an RXFP3 agonist, but has no effect on food intake when administered alone. We wanted to further investigate if R3(BΔ23-27)R/I5 on its own is able to antagonize the basal tone of the relaxin-3/RXFP3 system and therefore characterized the pharmacology of R3(BΔ23-27)R/I5 in vivo and in vitro. R3(BΔ23-27)R/I5 was intracerebroventricularly (ICV) injected in diet induced obese (DIO) Wistar rats and food intake was automatically measured during the dark phase when feeding drive is high. In our hands, R3(BΔ23-27)R/I5 alone did not have a significant effect on food intake during 24h following administration. Consistent with previous results, relaxin-3 stimulated food intake in satiated lean rats. R3(BΔ23-27)R/I5 was characterized in vitro using [(35)S]-GTPγS binding and cAMP assays, both assessing Gαi-protein mediated signalling, and dynamic mass redistribution (DMR) assays capturing the integrated cell response. R3(BΔ23-27)R/I5 showed partial agonist activity in all three functional assays. Thus, since R3(BΔ23-27)R/I5 displays partial RXFP3 agonist properties in vitro, further in vivo studies including additional tool compounds are needed to address if antagonizing relaxin-3/RXFP3 basal tone is a therapeutically relevant mechanism to regulate food intake and body weight.
Collapse
Affiliation(s)
- Lisbeth Kristensson
- Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Gaëll Mayer
- Respiratory, Inflammatory and Autoimmune iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden; Cardiovascular and Metabolic Diseases iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Karolina Ploj
- Cardiovascular and Metabolic Diseases iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden; DSM Laboratory Animal Science, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Martina Wetterlund
- Cardiovascular and Metabolic Diseases iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Susanne Arlbrandt
- Respiratory, Inflammatory and Autoimmune iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Anna Björquist
- Cardiovascular and Metabolic Diseases iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Britt-Marie Wissing
- Respiratory, Inflammatory and Autoimmune iMED, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Marie Castaldo
- Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden
| | - Niklas Larsson
- Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 3, S-431 83 Mölndal, Sweden.
| |
Collapse
|
47
|
Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol 2014; 171:2827-41. [PMID: 24641548 DOI: 10.1111/bph.12623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/03/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Relaxin family peptide receptor 3 (RXFP3) is expressed in brain areas important for processing sensory information and feeding, suggesting that it may be a target for anti-anxiety and anti-obesity drugs. We examined the effects of H3 relaxin, the biased agonist H2 relaxin and the antagonist, R3(BΔ23-27)R/I5, on RXFP3 signalling to establish their suitability as tools to assess the physiological roles of RXFP3. EXPERIMENTAL APPROACH The signalling profile of the RXFP3 ligands was determined using reporter gene assays, multiplexed signalling assays and direct examination of receptor-G protein and receptor-β-arrestin interactions using BRET. KEY RESULTS H2 relaxin activated p38MAPK and ERK1/2 with lower efficacy than H3 relaxin, but had similar efficacy for JNK1/2 phosphorylation. H2 or H3 relaxin activation of p38MAPK, JNK1/2 or ERK1/2 involved Pertussis toxin-sensitive G-proteins. R3(BΔ23-27)R/I5 blocked H3 relaxin AP-1 reporter gene activation, but not H2 relaxin AP-1 activation or H3 relaxin NF-κB activation. R3(BΔ23-27)R/I5 activated the SRE reporter, but did not inhibit either H2 or H3 relaxin SRE activation. R3(BΔ23-27)R/I5 blocked H3 relaxin-stimulated p38MAPK and ERK1/2 phosphorylation, but was a weak partial agonist for p38MAPK and ERK1/2 signalling. p38MAPK activation by R3(BΔ23-27)R/I5 was G protein-independent. H3 relaxin-activated RXFP3 interacts with Gαi2 , Gαi3 , Gαo A and Gαo B whereas H2 relaxin or R3(BΔ23-27)R/I5 induce interactions only with Gαi2 or Gαo B . Only H3 relaxin promoted RXFP3/β-arrestin interactions that were blocked by R3(BΔ23-27)R/I5. CONCLUSION AND IMPLICATIONS Understanding signalling profile of drugs acting at RXFP3 is essential for development of therapies targeting this receptor.
Collapse
Affiliation(s)
- M Kocan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
48
|
Arroyo JI, Hoffmann FG, Opazo JC. Evolution of the relaxin/insulin-like gene family in anthropoid primates. Genome Biol Evol 2014; 6:491-9. [PMID: 24493383 PMCID: PMC3971578 DOI: 10.1093/gbe/evu023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The relaxin/insulin-like gene family includes signaling molecules that perform a variety of physiological roles mostly related to reproduction and neuroendocrine regulation. Several previous studies have focused on the evolutionary history of relaxin genes in anthropoid primates, with particular attention on resolving the duplication history of RLN1 and RLN2 genes, which are found as duplicates only in apes. These studies have revealed that the RLN1 and RLN2 paralogs in apes have a more complex history than their phyletic distribution would suggest. In this regard, alternative scenarios have been proposed to explain the timing of duplication, and the history of gene gain and loss along the organismal tree. In this article, we revisit the question and specifically reconstruct phylogenies based on coding and noncoding sequence in anthropoid primates to readdress the timing of the duplication event giving rise to RLN1 and RLN2 in apes. Results from our phylogenetic analyses based on noncoding sequence revealed that the duplication event that gave rise to the RLN1 and RLN2 occurred in the last common ancestor of catarrhine primates, between ∼44.2 and 29.6 Ma, and not in the last common ancestor of apes or anthropoids, as previously suggested. Comparative analyses based on coding and noncoding sequence suggests an event of convergent evolution at the sequence level between co-ortholog genes, the single-copy RLN gene found in New World monkeys and the RLN1 gene of apes, where changes in a fraction of the convergent sites appear to be driven by positive selection.
Collapse
Affiliation(s)
- José Ignacio Arroyo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | |
Collapse
|
49
|
Hossain MA, Wade JD. Synthetic relaxins. Curr Opin Chem Biol 2014; 22:47-55. [DOI: 10.1016/j.cbpa.2014.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/01/2022]
|
50
|
Hosken IT, Sutton SW, Smith CM, Gundlach AL. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 2014; 278:167-75. [PMID: 25257104 DOI: 10.1016/j.bbr.2014.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
Anatomical and pharmacological evidence suggests the neuropeptide, relaxin-3, is the preferred endogenous ligand for the relaxin family peptide-3 receptor (RXFP3) and suggests a number of putative stress- and arousal-related roles for RXFP3 signalling. However, in vitro and in vivo evidence demonstrates exogenous relaxin-3 can activate other relaxin peptide family receptors, and the role of relaxin-3/RXFP3 signalling in specific brain circuits and associated behaviours in mice is not well described. In this study, we characterised the behaviour of cohorts of male and female Rxfp3 gene knockout (KO) mice (C57/B6J(RXFP3TM1/DGen)), relative to wild-type (WT) littermates to determine if this receptor KO strain has a similar phenotype to its ligand KO equivalent. Rxfp3 KO mice displayed similar performance to WT littermates in several acute behavioural paradigms designed to gauge motor coordination (rotarod test), spatial memory (Y-maze), depressive-like behaviour (repeat forced-swim test) and sensorimotor gating (prepulse inhibition of acoustic startle). Notably however, male and female Rxfp3 KO mice displayed robust and consistent (dark phase) hypoactivity on voluntary home-cage running wheels (∼20-60% less activity/h), and a small but significant decrease in anxiety-like behavioural traits in the elevated plus maze and light/dark box paradigms. Importantly, this phenotype is near identical to that observed in two independent lines of relaxin-3 KO mice, suggesting these phenotypes are due to the elimination of ligand or receptor and RXFP3-linked signalling. Furthermore, this behavioural characterisation of Rxfp3 KO mice identifies them as a useful experimental model for studying RXFP3-linked signalling and assessing the selectivity and/or potential off-target actions of RXFP3 agonists and antagonists, which could lead to an improved understanding of dysfunctional arousal in mental health disorders, including depression, anxiety, insomnia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ihaia T Hosken
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Steven W Sutton
- Neuroscience Drug Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|