1
|
Hamuro Y. Interpretation of Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:819-828. [PMID: 38639434 PMCID: PMC11067899 DOI: 10.1021/jasms.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
This paper sheds light on the meaning of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) data. HDX-MS data provide not structural information but dynamic information on an analyte protein. First, the reaction mechanism of backbone amide HDX reaction is considered and the correlation between the parameters from an X-ray crystal structure and the protection factors of HDX reactions of cytochrome c is evaluated. The presence of H-bonds in a protein structure has a strong influence on HDX rates which represent protein dynamics, while the solvent accessibility only weakly affects the HDX rates. Second, the energy diagrams of the HDX reaction at each residue in the presence and absence of perturbation are described. Whereas the free energy change upon mutation can be directly measured by the HDX rates, the free energy change upon ligand binding may be complicated due to the presence of unbound analyte protein in the protein-ligand mixture. Third, the meanings of HDX and other biophysical techniques are explained using a hypothetical protein folding well. The shape of the protein folding well describes the protein dynamics and provides Boltzmann distribution of open and closed states which yield HDX protection factors, while a protein's crystal structure represents a snapshot near the bottom of the well. All biophysical data should be consistent yet provide different information because they monitor different parts of the same protein folding well.
Collapse
|
2
|
Meng Q, Song YL, Zhou C, He H, Zhang N, Zhou H. A hydrogen-deuterium exchange mass spectrometry-based protocol for protein-small molecule interaction analysis. BIOPHYSICS REPORTS 2023; 9:99-111. [PMID: 37753061 PMCID: PMC10518522 DOI: 10.52601/bpr.2023.230006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 09/28/2023] Open
Abstract
Protein-small molecule interaction is vital in regulating protein functions and controlling various cellular processes. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein-small molecule interactions, however, to accurately probe the conformational dynamics of the protein upon small molecule binding, the HDX-MS experimental conditions should be carefully controlled and optimized. Here, we present the detailed continuous-labeling, bottom-up HDX-MS protocol for studying protein-small molecule interactions. We took a side-by-side HDX kinetics comparison of the Hsp90N protein with or without the treatment of small molecules (i.e., Radicicol, Geldanamycin) for displaying conformational changes induced by molecular interactions between Hsp90N and small molecules. Our sensitive and robust experimental protocol can facilitate the novice to quickly carry out the structural characterization of protein-small molecule interactions.
Collapse
Affiliation(s)
- Qian Meng
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Li Song
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Han He
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Buckley PT, Chan R, Fernandez J, Luo J, Lacey KA, DuMont AL, O'Malley A, Brezski RJ, Zheng S, Malia T, Whitaker B, Zwolak A, Payne A, Clark D, Sigg M, Lacy ER, Kornilova A, Kwok D, McCarthy S, Wu B, Morrow B, Nemeth-Seay J, Petley T, Wu S, Strohl WR, Lynch AS, Torres VJ. Multivalent human antibody-centyrin fusion protein to prevent and treat Staphylococcus aureus infections. Cell Host Microbe 2023; 31:751-765.e11. [PMID: 37098341 DOI: 10.1016/j.chom.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.
Collapse
Affiliation(s)
- Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA.
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Jinquan Luo
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Randall J Brezski
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Songmao Zheng
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Thomas Malia
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Adam Zwolak
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Desmond Clark
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Martin Sigg
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Eilyn R Lacy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Anna Kornilova
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Debra Kwok
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Steve McCarthy
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Bingyuan Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Brian Morrow
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Ted Petley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - Sam Wu
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, USA
| | | | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Langone Health, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
4
|
Xiao K, Zhao Y, Choi M, Liu H, Blanc A, Qian J, Cahill TJ, Li X, Xiao Y, Clark LJ, Li S. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 2018; 13:1403-1428. [PMID: 29844522 DOI: 10.1038/nprot.2018.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen-deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes. HDXMS measures changes in solvent accessibility and hydrogen bonding upon complex formation; a decrease in HDX rate could account for newly formed intermolecular or intramolecular interactions. To distinguish between inter- and intramolecular interactions, we use a CXMS method to determine the position of direct interface regions by trapping intermolecular residues in close proximity to various cross-linkers (e.g., disuccinimidyl adipate (DSA)) of different lengths and reactive groups. Both MS-based experiments are performed on high-resolution mass spectrometers (e.g., an Orbitrap Elite hybrid mass spectrometer). The physiological relevance of the interactions identified through HDXMS and CXMS is investigated by transiently co-expressing cysteine mutant pairs, one mutant on each protein at the discovered interfaces, in an appropriate cell line, such as HEK293. Disulfide-trapped protein complexes are formed within cells spontaneously or are facilitated by addition of oxidation reagents such as H2O2 or diamide. Western blotting analysis, in the presence and absence of reducing reagents, is used to determine whether the disulfide bonds are formed in the proposed complex interface in physiologically relevant milieus. The procedure described here requires 1-2 months. We demonstrate this approach using the β2-adrenergic receptor-β-arrestin1 complex as the model system.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Biomedical Mass Spectrometry Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yang Zhao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minjung Choi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adi Blanc
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiang Qian
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas J Cahill
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Xue Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Yunfang Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa J Clark
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sheng Li
- Department of Chemistry, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Claesen J, Burzykowski T. Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:649-667. [PMID: 27602546 DOI: 10.1002/mas.21519] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 05/08/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Hydrogen/Deuterium exchange (HDX) has been applied, since the 1930s, as an analytical tool to study the structure and dynamics of (small) biomolecules. The popularity of using HDX to study proteins increased drastically in the last two decades due to the successful combination with mass spectrometry (MS). Together with this growth in popularity, several technological advances have been made, such as improved quenching and fragmentation. As a consequence of these experimental improvements and the increased use of protein-HDXMS, large amounts of complex data are generated, which require appropriate analysis. Computational analysis of HDXMS requires several steps. A typical workflow for proteins consists of identification of (non-)deuterated peptides or fragments of the protein under study (local analysis), or identification of the deuterated protein as a whole (global analysis); determination of the deuteration level; estimation of the protection extent or exchange rates of the labile backbone amide hydrogen atoms; and a statistically sound interpretation of the estimated protection extent or exchange rates. Several algorithms, specifically designed for HDX analysis, have been proposed. They range from procedures that focus on one specific step in the analysis of HDX data to complete HDX workflow analysis tools. In this review, we provide an overview of the computational methods and discuss outstanding challenges. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:649-667, 2017.
Collapse
Affiliation(s)
- Jürgen Claesen
- I-BioStat, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, Diepenbeek 3590, Belgium
| | - Tomasz Burzykowski
- I-BioStat, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, Diepenbeek 3590, Belgium
- Statistics and Medical informatics Unit, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
6
|
Zhu S, Khatun R, Lento C, Sheng Y, Wilson DJ. Enhanced Binding Affinity via Destabilization of the Unbound State: A Millisecond Hydrogen–Deuterium Exchange Study of the Interaction between p53 and a Pleckstrin Homology Domain. Biochemistry 2017; 56:4127-4133. [DOI: 10.1021/acs.biochem.7b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaolong Zhu
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Rahima Khatun
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Yi Sheng
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre
for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
7
|
Hamuro Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:486-497. [PMID: 28108962 DOI: 10.1007/s13361-016-1571-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/02/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
8
|
Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 2016; 5:12792. [PMID: 26836308 PMCID: PMC4821807 DOI: 10.7554/elife.12792] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022] Open
Abstract
Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell-based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen-resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition. Around one in every eight women will be diagnosed with breast cancer in their lifetime. Hormone-based therapies – also referred to antiestrogen drugs – target a protein called estrogen receptor alpha and are effective treatments for the majority of these cancers. Unfortunately, about half of patients will develop recurrent breast cancers even though the cancer continues to produce the target of the drugs. The estrogen receptor alpha drives breast cancer in a number of ways, many of which require the receptor to be activated by binding to the hormone estrogen. When estrogen binds it causes the receptor to change shape to expose a surface where other proteins called coactivators can bind. Once a coactivator is bound, the estrogen receptor is active and signals the cancer cell to grow, divide, invade local tissues, and spread to new sites in the body. Antiestrogen drugs competitively block the binding of estrogen to the receptor and cause the receptor to take on a different shape that inhibits the binding of the coactivator. However, recent studies identified mutations at specific sites in the gene that encodes estrogen receptor alpha in a large subset of patients with breast cancers that have spread. These mutations make the receptor resistant to antiestrogen drugs, and two mutations (called Y537S and D538G) account for approximately 70% of cases. However, it was not clear how these mutations altered the activity of estrogen receptor alpha at the molecular level. Fanning, Mayne, Dharmarajan et al. now show these two most common mutations allow estrogen receptor alpha to bind to the coactivator in the absence of hormone. This unfortunately also reduces the effectiveness of one of the mostly widely administered antiestrogen therapies – a drug called tamoxifen. However, Fanning, Mayne, Dharmarajan et al. also show that the newer and more potent antiestrogens that are currently under examination in clinical trials should be highly effective at treating the cancers with the mutated versions of estrogen receptor alpha. Applying the knowledge gained from these new findings toward the development of new antiestrogens could help reverse the impact of these common mutations. If successful, these new drugs will provide life-saving treatments for many breast cancer patients.
Collapse
Affiliation(s)
- Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | | | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Teresa A Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Scott J Novick
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bradley Green
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Srinivas Panchamukhi
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, United States
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| |
Collapse
|
9
|
Srinivasan S, Dharmarajan V, Reed DK, Griffin PR, Schmid SL. Identification and function of conformational dynamics in the multidomain GTPase dynamin. EMBO J 2016; 35:443-57. [PMID: 26783363 DOI: 10.15252/embj.201593477] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/13/2023] Open
Abstract
Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen-deuterium exchange coupled with mass spectrometry revealed global nucleotide- and membrane-binding-dependent conformational changes, as well as the existence of an allosteric relay element in the α2(S) helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a 'closed' conformation docked near the stalk to an 'open' conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross-linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self-assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy-causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin-catalyzed membrane fission.
Collapse
Affiliation(s)
| | | | - Dana Kim Reed
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Seger ST, Breinholt J, Faber JH, Andersen MD, Wiberg C, Schjødt CB, Rand KD. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation. Anal Chem 2015; 87:5973-80. [PMID: 25978680 DOI: 10.1021/ac504782v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) to map the impact of the new disulfide bond on the conformational dynamics of this new hGH variant. Compared to wild type hGH, the variant exhibits reduced loop dynamics, indicating a stabilizing effect of the introduced disulfide bond. Furthermore, the disulfide bond exhibits longer ranging effects, stabilizing a short α-helix quite distant from the mutation sites, but also rendering a part of the α-helical hGH core slightly more dynamic. In the regions where the hGH variant exhibits a different deuterium uptake than the wild type protein, electron transfer dissociation (ETD) fragmentation has been used to pinpoint the residues responsible for the observed differences (HDX-ETD). Finally, by use of surface plasmon resonance (SPR) measurements, we show that the new disulfide bond does not compromise receptor affinity. Our work highlight the analytical potential of HDX-ETD combined with functional assays to guide protein engineering.
Collapse
Affiliation(s)
- Signe T Seger
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark.,‡Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Jens Breinholt
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Johan H Faber
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Mette D Andersen
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Charlotte Wiberg
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Christine B Schjødt
- †Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Kasper D Rand
- ‡Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| |
Collapse
|
11
|
Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VL. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:43-56. [PMID: 22012689 PMCID: PMC3889642 DOI: 10.1007/s13361-011-0267-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 05/12/2023]
Abstract
Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca(2+)-independent phospholipase A(2). The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.
Collapse
Affiliation(s)
- Tong Liu
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, 9500 Gilman Drive, mc 0656, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chalmers MJ, Pascal BD, Willis S, Zhang J, Iturria SJ, Dodge JA, Griffin PR. Methods for the Analysis of High Precision Differential Hydrogen Deuterium Exchange Data. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 302:59-68. [PMID: 21528013 PMCID: PMC3081588 DOI: 10.1016/j.ijms.2010.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry has been widely applied to the characterization of protein dynamics. More recently, differential HDX has been shown to be effective for the characterization of ligand binding. Previously we have described a fully automated HDX system for use as a ligand screening platform. Here we describe and validate the required data analysis workflow to facilitate the use of HDX as a robust approach for ligand screening. Following acquisition of HDX data at a single on-exchange time point (n ≥ 3), one way analysis of variance in conjunction with the Tukey multiple comparison procedure is used to establish the significance of any measured difference. Analysis results are graphed with respect to a single peptide, ligand or group of ligands, or displayed as an overview within a heat map. For the heat map display, only Δ%D values with a Tukey-adjusted P value less than 0.05 are colored. Hierarchical clustering is used to bin compounds with highly similar HDX signatures. The workflow is evaluated with a small data set showing the ligand binding domain (LDB) of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) screened against 10 functionally selective ligands. More significantly, data for the vitamin D receptor (VDR) in complex with 87 ligands are presented. To highlight the robustness and precision of our automated HDX platform we analyzed the data from 4191 replicate HDX measurements acquired over an eight month timeframe. Ninety six percent of these measurements were within 10 percent of the mean value. Work has begun to integrate these analysis and graphing components within our HDX software suite.
Collapse
Affiliation(s)
- Michael J. Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
- The Scripps Research Molecular Screening Center, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
| | - Bruce D. Pascal
- Translational Research Institute, Informatics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
| | - Scooter Willis
- Translational Research Institute, Informatics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
| | - Jun Zhang
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
| | - Stephen J. Iturria
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Jeffery A. Dodge
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
- The Scripps Research Molecular Screening Center, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458
| |
Collapse
|
13
|
Ramisetty SR, Washburn MP. Unraveling the dynamics of protein interactions with quantitative mass spectrometry. Crit Rev Biochem Mol Biol 2011; 46:216-28. [PMID: 21438726 DOI: 10.3109/10409238.2011.567244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Knowledge of structure and dynamics of proteins and protein complexes is important to unveil the molecular basis and mechanisms involved in most biological processes. Protein complex dynamics can be defined as the changes in the composition of a protein complex during a cellular process. Protein dynamics can be defined as conformational changes in a protein during enzyme activation, for example, when a protein binds to a ligand or when a protein binds to another protein. Mass spectrometry (MS) combined with affinity purification has become the analytical tool of choice for mapping protein-protein interaction networks and the recent developments in the quantitative proteomics field has made it possible to identify dynamically interacting proteins. Furthermore, hydrogen/deuterium exchange MS is emerging as a powerful technique to study structure and conformational dynamics of proteins or protein assemblies in solution. Methods have been developed and applied for the identification of transient and/or weak dynamic interaction partners and for the analysis of conformational dynamics of proteins or protein complexes. This review is an overview of existing and recent developments in studying the overall dynamics of in vivo protein interaction networks and protein complexes using MS-based methods.
Collapse
|
14
|
Coales SJ, E SY, Lee JE, Ma A, Morrow JA, Hamuro Y. Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3585-3592. [PMID: 21108306 DOI: 10.1002/rcm.4814] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Backbone amide hydrogen exchange rates can be used to describe the dynamic properties of a protein. Amide hydrogen exchange rates in a native protein may vary from milliseconds (ms) to several years. Ideally, the rates of all amide hydrogens of the analyte protein can be determined individually. To achieve this goal, monitoring of a wider time window is critical, in addition to high sequence coverage and high sequence resolution. Significant improvements have been made to hydrogen/deuterium exchange mass spectrometry methods in the past decade for better sequence coverage and higher sequence resolution. On the other hand, little effort has been made to expand the experimental time window to accurately determine exchange rates of amide hydrogens. Many fast exchanging amide hydrogens are completely exchanged before completion of a typical short exchange time point (10-30 s) and many slow exchanging amide hydrogens do not start exchanging before a typical long exchanging time point (1-3 h). Here various experimental conditions, as well as a quenched-flow apparatus, are utilized to monitor cytochrome c amide hydrogen exchange behaviors over more than eight orders of magnitude (0.0044-1 000 000 s), when converted into the standard exchange condition (pH 7 and 23°C).
Collapse
Affiliation(s)
- Stephen J Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hansen MJK, Olsen JG, Bernichtein S, O'Shea C, Sigurskjold BW, Goffin V, Kragelund BB. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding. J Mol Recognit 2010; 24:533-47. [PMID: 20842635 DOI: 10.1002/jmr.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 01/03/2023]
Abstract
The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low pH than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ∼6.8 making histidine residues obvious candidates for examination. From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology.
Collapse
Affiliation(s)
- Mathilde J Kaas Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. Chem Rev 2010; 109:839-60. [PMID: 19196002 DOI: 10.1021/cr800373w] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- G Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
17
|
Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange. J Virol 2010; 84:10311-21. [PMID: 20660185 DOI: 10.1128/jvi.00688-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction.
Collapse
|
18
|
Kaltashov IA, Bobst CE, Abzalimov RR, Berkowitz SA, Houde D. Conformation and dynamics of biopharmaceuticals: transition of mass spectrometry-based tools from academe to industry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:323-37. [PMID: 19963397 PMCID: PMC2827695 DOI: 10.1016/j.jasms.2009.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 05/12/2023]
Abstract
Mass spectrometry plays a very visible role in biopharmaceutical industry, although its use in development, characterization, and quality control of protein drugs is mostly limited to the analysis of covalent structure (amino acid sequence and post-translational modifications). Despite the centrality of protein conformation to biological activity, stability, and safety of biopharmaceutical products, the expanding arsenal of mass spectrometry-based methods that are currently available to probe higher order structure and conformational dynamics of biopolymers did not, until recently, enjoy much attention in the industry. This is beginning to change as a result of recent work demonstrating the utility of these experimental tools for various aspects of biopharmaceutical product development and manufacturing. In this work, we use a paradigmatic protein drug interferon beta-1a as an example to illustrate the utility of mass spectrometry as a powerful tool not only to assess the integrity of higher order structure of a protein drug, but also to predict consequences of its degradation at a variety of levels.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
19
|
Sharma S, Zheng H, Huang YJ, Ertekin A, Hamuro Y, Rossi P, Tejero R, Acton TB, Xiao R, Jiang M, Zhao L, Ma LC, Swapna GVT, Aramini JM, Montelione GT. Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 2009; 76:882-94. [PMID: 19306341 PMCID: PMC2739808 DOI: 10.1002/prot.22394] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three-dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of (1)H/(2)H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N- and C-terminal tails were evaluated using (1)H-(15)N HSQC and (1)H-(15)N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS-based truncated construct for a 77-residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination.
Collapse
Affiliation(s)
- Seema Sharma
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
| | - Yuanpeng J. Huang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Asli Ertekin
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | | | - Paolo Rossi
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Roberto Tejero
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Mei Jiang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Li Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - James M. Aramini
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Mayer CL, Snyder WK, Swietlicka MA, Vanschoiack AD, Austin CR, McFarland BJ. Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies. BMC Res Notes 2009; 2:135. [PMID: 19604395 PMCID: PMC2717102 DOI: 10.1186/1756-0500-2-135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background We previously developed a set of rationally designed mutant MICA protein ligands for the NKG2D immunoreceptor in which MICA was mutated at residues that do not contact NKG2D. Some of these MICA mutants, predicted by RosettaDesign to be destabilized, bound NKG2D with affinities enhanced by more than an order of magnitude when evaluated by surface plasmon resonance (SPR). Findings Small-zone size-exclusion chromatography (SEC) detected persistent high-affinity MICA mutant-NKG2D complexes in solution as early-eluting peaks. The SEC binding assay used standard protein purification instrumentation to evaluate complex stability, qualitatively paralleled the SPR results, and successfully discriminated among complexes that differed only in on-rates. We used the SEC binding assay, along with SPR, to assess the results of a follow-up design strategy targeting the non-interfacial redesigned region. Both SEC and SPR agreed that these mutations did not enhance affinity as much as previous mutants. When the SEC binding assay was run in 1 M urea, only the highest affinity complex was detected. Conclusion This SEC binding assay provides a correlation with SPR results for protein complex affinities, detecting changes in complex on-rates, and tunable to lower sensitivity with 1 M urea. The SEC binding assay is complementary to other protein design evaluation methods, can be adapted to the undergraduate research laboratory, and may provide additional structural information about changes in hydrodynamic radii from elution times. Our assay allowed us to conclude that further alteration of MICA at non-contacting residues is unlikely to further enhance NKG2D affinity.
Collapse
Affiliation(s)
- Chad L Mayer
- Department of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third Avenue West, Seattle, WA 98119-1997, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Coales SJ, Tuske SJ, Tomasso JC, Hamuro Y. Epitope mapping by amide hydrogen/deuterium exchange coupled with immobilization of antibody, on-line proteolysis, liquid chromatography and mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:639-647. [PMID: 19170039 DOI: 10.1002/rcm.3921] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The epitope of horse cytochrome c against monoclonal antibody E8 was determined using amide hydrogen/deuterium (H/D) exchange combined with immobilized antibody, on-line pepsin proteolysis, liquid chromatography (LC), and mass spectrometry (MS). The results were generally in good agreement with contact residues identified by an X-ray co-crystal structure of the E8-cytochrome c complex and results obtained by H/D exchange with nuclear magnetic resonance (NMR) spectrometry. The H/D exchange reaction of cytochrome c was carried out in the presence or absence of immobilized E8 antibody. Regions that gained less deuterium in the presence of the antibody than in its absence are defined as the epitope by the H/D exchange MS method. Control experiments were carefully designed to help identify the epitope with high confidence.
Collapse
Affiliation(s)
- Stephen J Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | | | | | | |
Collapse
|
22
|
Principal determinants leading to transition state formation of a protein-protein complex, orientation trumps side-chain interactions. Proc Natl Acad Sci U S A 2009; 106:2559-64. [PMID: 19196954 DOI: 10.1073/pnas.0809800106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding transition state (TS) is the rate-limiting step for transient molecular interactions. This important step in the molecular recognition process, however, is largely understood only at a qualitative level. To establish a more quantitative picture of the TS structure, we exploit a set of biophysical techniques that have provided major insights in protein folding applications. As a model system representing the large class of "weakly charged" protein-protein interactions, we examine the binding of a variety of human growth hormone (hGH) variants to the human growth hormone receptor (hGHR) and the human prolactin receptor (hPRLR). hGH variants were chosen to probe different features of the TS structure, based on their highly reengineered interfaces. Both Eyring and urea (m value) analyses suggest that the majority of binding surface burial occurs after TS. A comprehensive phi analysis showed that individual hGH interface residues do not contribute energetically to the stability of the TS, but there is a TS "hot spot" in the receptor. Zinc dependence studies that take advantage of an endogenous tetracoordinated interfacial metal binding demonstrate that surfaces of the molecules have attained a high orientational complementarity by the time the TS is reached. The model that best fits these data are that a "knobs-into-holes" process precisely aligns the two molecular interfaces in forming the TS structure. Surprisingly, most of the thermodynamic character of the binding reaction is focused in the fine-tuning process occurring after TS.
Collapse
|
23
|
Hamuro Y, Tomasso JC, Coales SJ. A Simple Test To Detect Hydrogen/Deuterium Scrambling during Gas-Phase Peptide Fragmentation. Anal Chem 2008; 80:6785-90. [DOI: 10.1021/ac800645f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852
| | - Justine C. Tomasso
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852
| | - Stephen J. Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852
| |
Collapse
|
24
|
Schuster MC, Ricklin D, Papp K, Molnar KS, Coales SJ, Hamuro Y, Sfyroera G, Chen H, Winters MS, Lambris JD. Dynamic structural changes during complement C3 activation analyzed by hydrogen/deuterium exchange mass spectrometry. Mol Immunol 2008; 45:3142-51. [PMID: 18456336 DOI: 10.1016/j.molimm.2008.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/18/2022]
Abstract
Proteolytic cleavage of component C3 to C3b is a central step in the activation of complement. Whereas C3 is largely biologically inactive, C3b is directly involved in various complement activities. While the recently described crystal structures of C3 and C3b provide a molecular basis of complement activation, they do not reflect the dynamic changes that occur in solution. In addition, the available C3b structures diverge in some important aspects. Here we have utilized hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to investigate relative changes in the solution-phase structures of C3 and C3b. By combining two forms of mass spectrometry we could maximize the primary sequence coverage of C3b and demonstrate the feasibility of this method for large plasma proteins. While the majority of the 82 peptides that could be followed over time showed only minor alterations in HDX, we observed clear changes in solvent accessibility for 16 peptides, primarily in the alpha-chain (alpha'NT, MG6-8, CUB, TED, C345C domains). Most of these peptides could be directly linked to the structural transitions visible in the crystal structures and revealed additional information about the probability of the structural variants of C3b. In addition, a discontinuous cluster of seven peptides in the MG3, MG6, LNK and alpha'NT domains showed a decreased accessibility after activation to C3b. Although no gross conformational changes are detected in the crystal structure, this area may reflect a structurally flexible region in solution that contributes to C3 activation and function.
Collapse
Affiliation(s)
- Michael C Schuster
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Coales SJ, Tomasso JC, Hamuro Y. Effects of electrospray capillary temperature on amide hydrogen exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1367-71. [PMID: 18381619 DOI: 10.1002/rcm.3512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Amide hydrogen/deuterium (H/D) exchange coupled with proteolysis, high-perfeomance liquid chromatographic (HPLC) separation and mass spectrometry (MS) has become a powerful tool to study protein dynamics in solution. Prior to the execution of H/D exchange experiments, various experimental parameters have to be set, including proteolysis, HPLC, and MS conditions. Here we investigate the effects of electrospray capillary temperature on deuterium retention in backbone amides of various pepsin-generated cytochrome c peptides. Lower capillary temperature generally helps retain more deuterium than higher capillary temperature. When the capillary temperature was 150 degrees C, on average 26% more deuterium was retained than when the capillary temperature was set at 250 degrees C. The effects of capillary temperature varied depending on the ions monitored. There was little difference in deuterium retention among different charge state species of the same peptide at 150 degrees C. However, a lower charge state ion loses more deuterium atoms going from 150 degrees C to 250 degrees C than the corresponding higher charge state species. These results indicate that the capillary temperature should be optimized not only to maximize the signal-to-noise of each ion followed in H/D exchange experiments, but also to minimize the deuterium loss of the ions. Also the loss of deuterium in several ions, especially lower charge state ones, should be monitored in the optimization, as the temperature effects vary among ions and are more significant for lower charge state ions.
Collapse
Affiliation(s)
- Stephen J Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | | | | |
Collapse
|
26
|
Pre-folding IkappaBalpha alters control of NF-kappaB signaling. J Mol Biol 2008; 380:67-82. [PMID: 18511071 DOI: 10.1016/j.jmb.2008.02.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 01/15/2023]
Abstract
Transcription complex components frequently show coupled folding and binding but the functional significance of this mode of molecular recognition is unclear. IkappaBalpha binds to and inhibits the transcriptional activity of NF-kappaB via its ankyrin repeat (AR) domain. The beta-hairpins in ARs 5-6 in IkappaBalpha are weakly-folded in the free protein, and their folding is coupled to NF-kappaB binding. Here, we show that introduction of two stabilizing mutations in IkappaBalpha AR 6 causes ARs 5-6 to fold cooperatively to a conformation similar to that in NF-kappaB-bound IkappaBalpha. Free IkappaBalpha is degraded by a proteasome-dependent but ubiquitin-independent mechanism, and this process is slower for the pre-folded mutants both in vitro and in cells. Interestingly, the pre-folded mutants bind NF-kappaB more weakly, as shown by both surface plasmon resonance and isothermal titration calorimetry in vitro and immunoprecipitation experiments from cells. One consequence of the weaker binding is that resting cells containing these mutants show incomplete inhibition of NF-kappaB activation; they have significant amounts of nuclear NF-kappaB. Additionally, the weaker binding combined with the slower rate of degradation of the free protein results in reduced levels of nuclear NF-kappaB upon stimulation. These data demonstrate clearly that the coupled folding and binding of IkappaBalpha is critical for its precise control of NF-kappaB transcriptional activity.
Collapse
|
27
|
Zhou HX, Qin S, Tjong H. Modeling Protein–Protein and Protein–Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Zhao S, Choy BSF, Kornblatt MJ. Effects of the G376E and G157D mutations on the stability of yeast enolase--a model for human muscle enolase deficiency. FEBS J 2007; 275:97-106. [PMID: 18070103 DOI: 10.1111/j.1742-4658.2007.06177.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The first known human enolase deficiency was reported in 2001 [Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A, Jann S, Keller A, Ciscato P, Galbiati S, Chiveri L et al. (2001) Ann Neurol50, 202-207]. The subject had inherited two mutated genes for beta-enolase. These mutations changed glycine 156 to aspartate and glycine 374 to glutamate. In order to study the effects of these changes on the structure and stability of enolase, we have introduced the corresponding changes (G157D and G376E) into yeast enolase. The two variants are correctly folded. They are less stable than wild-type enolase with respect to thermal denaturation, and both have increased Kd values for subunit dissociation. At 37 degrees C, in the presence of salt, both are partially dissociated and are extensively cleaved by trypsin. Under the same conditions, wild-type enolase is fully dimeric and is only slightly cleaved by trypsin. However, wild-type enolase is also extensively cleaved if it is partially dissociated. The identification of the cleavage sites and spectral studies of enolase have revealed some of the structural differences between the dimeric and monomeric forms of this enzyme.
Collapse
Affiliation(s)
- Songping Zhao
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| | | | | |
Collapse
|
29
|
Jomain JB, Tallet E, Broutin I, Hoos S, van Agthoven J, Ducruix A, Kelly PA, Kragelund BB, England P, Goffin V. Structural and Thermodynamic Bases for the Design of Pure Prolactin Receptor Antagonists. J Biol Chem 2007; 282:33118-31. [PMID: 17785459 DOI: 10.1074/jbc.m704364200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.
Collapse
Affiliation(s)
- Jean-Baptiste Jomain
- INSERM U845, Centre de Recherche Croissance et Signalisation, Equipe PRL, GH et Tumeurs, Faculté de Médecine Necker, 156 Rue de Vaugirard, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hamuro Y, Molnar KS, Coales SJ, OuYang B, Simorellis AK, Pochapsky TC. Hydrogen-deuterium exchange mass spectrometry for investigation of backbone dynamics of oxidized and reduced cytochrome P450cam. J Inorg Biochem 2007; 102:364-70. [PMID: 18023482 DOI: 10.1016/j.jinorgbio.2007.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/22/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022]
Abstract
Backbone dynamics of the camphor monoxygenase cytochrome P450(cam) (CYP101) as a function of oxidation/ligation state of the heme iron were investigated via hydrogen/deuterium exchange (H/D exchange) as monitored by mass spectrometry. Main chain amide NH hydrogens can exchange readily with solvent and the rate of this exchange depends upon, among other things, dynamic fluctuations in local structural elements. A fluxional region of the polypeptide will exchange more quickly with solvent than one that is more constrained. In most regions of the enzyme, exchange rates were similar between oxidized high-spin camphor-bound and reduced camphor- and CO-bound CYP101 (CYP-S and CYP-S-CO, respectively). However, in regions of the protein that have previously been implicated in substrate access by structural and molecular dynamics investigations, the reduced enzyme shows significantly slower exchange rates than the oxidized CYP-S. This observation corresponds to increased flexibility of the oxidized enzyme relative to the reduced form. Structural features previously found to be perturbed in CYP-S-CO upon binding of the biologically relevant effector and reductant putidaredoxin (Pdx) as determined by nuclear magnetic resonance are also more protected from exchange in the reduced state. To our knowledge, this study represents the first experimental investigation of backbone dynamics within the P450 family using this methodology.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103 Monmouth Junction, NJ 08852, United States
| | | | | | | | | | | |
Collapse
|
31
|
Lengyel CSE, Willis LJ, Mann P, Baker D, Kortemme T, Strong RK, McFarland BJ. Mutations designed to destabilize the receptor-bound conformation increase MICA-NKG2D association rate and affinity. J Biol Chem 2007; 282:30658-66. [PMID: 17690100 DOI: 10.1074/jbc.m704513200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MICA is a major histocompatibility complex-like protein that undergoes a structural transition from disorder to order upon binding its immunoreceptor, NKG2D. We redesigned the disordered region of MICA with RosettaDesign to increase NKG2D binding. Mutations that stabilize this region were expected to increase association kinetics without changing dissociation kinetics, increase affinity of interaction, and reduce entropy loss upon binding. MICA mutants were stable in solution, and they were amenable to surface plasmon resonance evaluation of NKG2D binding kinetics and thermodynamics. Several MICA mutants bound NKG2D with enhanced affinity, kinetic changes were primarily observed during association, and thermodynamic changes in entropy were as expected. However, none of the 15 combinations of mutations predicted to stabilize the receptor-bound MICA conformation enhanced NKG2D affinity, whereas all 10 mutants predicted to be destabilized bound NKG2D with increased on-rates. Five of these had affinities enhanced by 0.9-1.8 kcal/mol over wild type by one to three non-contacting substitutions. Therefore, in this case, mutations designed to mildly destabilize a protein enhanced association and affinity.
Collapse
Affiliation(s)
- Candice S E Lengyel
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, Washington 98119, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Benesch JLP, Ruotolo BT, Simmons DA, Robinson CV. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 2007; 107:3544-67. [PMID: 17649985 DOI: 10.1021/cr068289b] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin L P Benesch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
33
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:407-418. [PMID: 17326037 DOI: 10.1002/jms.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
34
|
Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G. The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 2007; 17:67-76. [PMID: 17239579 DOI: 10.1016/j.sbi.2007.01.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/13/2006] [Accepted: 01/10/2007] [Indexed: 11/16/2022]
Abstract
The formation of specific protein interactions plays a crucial role in most, if not all, biological processes, including signal transduction, cell regulation, the immune response and others. Recent advances in our understanding of the molecular architecture of protein-protein binding sites, which facilitates such diversity in binding affinity and specificity, are enabling us to address key questions. What is the amino acid composition of binding sites? What are interface hotspots? How are binding sites organized? What are the differences between tight and weak interacting complexes? How does water contribute to binding? Can the knowledge gained be translated into protein design? And does a universal code for binding exist, or is it the architecture and chemistry of the interface that enable diverse but specific binding solutions?
Collapse
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
35
|
Thanos CD, DeLano WL, Wells JA. Hot-spot mimicry of a cytokine receptor by a small molecule. Proc Natl Acad Sci U S A 2006; 103:15422-7. [PMID: 17032757 PMCID: PMC1592646 DOI: 10.1073/pnas.0607058103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-protein complexes remain enticing, but extremely challenging, targets for small-molecule drug discovery. In a rare example described earlier, a high-affinity small molecule, SP4206 (Kd approximately 70 nM), was found to block binding of the IL-2alpha receptor (IL-2Ralpha) to IL-2 (Kd approximately 10 nM). Recently, the structure of the IL-2/IL-2Ralpha complex was solved [Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N., Garcia, K. C. (2005) Science 308:1477-1480]. Using structural and functional analysis, we compare how SP4206 mimics the 83-fold larger IL-2Ralpha in binding IL-2. The binding free energy per contact atom (ligand efficiency) for SP4206 is about twice that of the receptor because of a smaller, but overlapping, contact epitope that insinuates into grooves and cavities not accessed by the receptor. Despite its independent design, the small molecule has a similar, but more localized, charge distribution compared with IL-2Ralpha. Mutational studies show that SP4206 targets virtually the same critical "hot-spot" residues on IL-2 that drive binding of IL-2Ralpha. Moreover, a mutation that enhances binding to the IL-2Ralpha near these hot spots also enhances binding to SP4206. Although the protein and small molecule do bind the same hot spot, they trap very different conformations of IL-2 because of its flexible nature. Our studies suggest that precise structural mimics of receptors are not required for high-affinity binding of small molecules, and they show that there are multiple solutions to tight binding at shared and adaptive hot spots.
Collapse
Affiliation(s)
- Christopher D. Thanos
- *Sunesis Pharmaceuticals, 341 Oyster Point Boulevard, South San Francisco, CA 94080
- Catalyst Biosciences, Inc., 290 Utah Avenue, South San Francisco, CA 94080
| | - Warren L. DeLano
- *Sunesis Pharmaceuticals, 341 Oyster Point Boulevard, South San Francisco, CA 94080
- DeLano Scientific LLC, 400 Oyster Point Boulevard, Suite 213, South San Francisco, CA 94080; and
| | - James A. Wells
- *Sunesis Pharmaceuticals, 341 Oyster Point Boulevard, South San Francisco, CA 94080
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|