1
|
Motamedi S, Amleshi RS, Javar BA, Shams P, Kohlmeier KA, Shabani M. Cannabis during pregnancy: A way to transfer an impairment to later life. Birth Defects Res 2023; 115:1327-1344. [PMID: 37318343 DOI: 10.1002/bdr2.2207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
Epidemiological studies examining the influence of cannabis across the lifespan show that exposure to cannabis during gestation or during the perinatal period is associated with later-life mental health issues that manifest during childhood, adolescence, and adulthood. The risk of later-life negative outcomes following early exposure is particularly high in persons who have specific genetic variants, implying that cannabis usage interacts with genetics to heighten mental health risks. Prenatal and perinatal exposure to psychoactive components has been shown in animal research to be associated with long-term effects on neural systems relevant to psychiatric and substance use disorders. The long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal and perinatal exposure to cannabis are discussed in this article. Animal and human studies, as well as in vivo neuroimaging methods, are used to provide insights into the changes induced in the brain by cannabis. Here, based on the literature from both animal models and humans, it can be concluded that prenatal cannabis exposure alters the developmental route of several neuronal regions with correlated functional consequences evidenced as changes in social behavior and executive functions throughout life.
Collapse
Affiliation(s)
- Sina Motamedi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnoush Akbari Javar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Shams
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Mueller HS, Fowler CE, Dalin S, Moiso E, Udomlumleart T, Garg S, Hemann MT, Lees JA. Acquired resistance to PRMT5 inhibition induces concomitant collateral sensitivity to paclitaxel. Proc Natl Acad Sci U S A 2021; 118:e2024055118. [PMID: 34408017 PMCID: PMC8403834 DOI: 10.1073/pnas.2024055118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic regulators play key roles in cancer and are increasingly being targeted for treatment. However, for many, little is known about mechanisms of resistance to the inhibition of these regulators. We have generated a model of resistance to inhibitors of protein arginine methyltransferase 5 (PRMT5). This study was conducted in KrasG12D;Tp53-null lung adenocarcinoma (LUAD) cell lines. Resistance to PRMT5 inhibitors (PRMT5i) arose rapidly, and barcoding experiments showed that this resulted from a drug-induced transcriptional state switch, not selection of a preexisting population. This resistant state is both stable and conserved across variants arising from distinct LUAD lines. Moreover, it brought with it vulnerabilities to other chemotherapeutics, especially the taxane paclitaxel. This paclitaxel sensitivity depended on the presence of stathmin 2 (STMN2), a microtubule regulator that is specifically expressed in the resistant state. Remarkably, STMN2 was also essential for resistance to PRMT5 inhibition. Thus, a single gene is required for both acquisition of resistance to PRMT5i and collateral sensitivity to paclitaxel in our LUAD cells. Accordingly, the combination of PRMT5i and paclitaxel yielded potent and synergistic killing of the murine LUAD cells. Importantly, the synergy between PRMT5i and paclitaxel also extended to human cancer cell lines. Finally, analysis of The Cancer Genome Atlas patient data showed that high STMN2 levels correlate with complete regression of tumors in response to taxane treatment. Collectively, this study reveals a recurring mechanism of PRMT5i resistance in LUAD and identifies collateral sensitivities that have potential clinical relevance.
Collapse
Affiliation(s)
- Helen S Mueller
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin E Fowler
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Simona Dalin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Enrico Moiso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tee Udomlumleart
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Salil Garg
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A Lees
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Hahn I, Voelzmann A, Parkin J, Fülle JB, Slater PG, Lowery LA, Sanchez-Soriano N, Prokop A. Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLoS Genet 2021; 17:e1009647. [PMID: 34228717 PMCID: PMC8284659 DOI: 10.1371/journal.pgen.1009647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other's localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.
Collapse
Affiliation(s)
- Ines Hahn
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Andre Voelzmann
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Jill Parkin
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Judith B. Fülle
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Paula G. Slater
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| |
Collapse
|
4
|
Klim JR, Pintacuda G, Nash LA, Guerra San Juan I, Eggan K. Connecting TDP-43 Pathology with Neuropathy. Trends Neurosci 2021; 44:424-440. [PMID: 33832769 DOI: 10.1016/j.tins.2021.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 01/22/2023]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43), a multifunctional nucleic acid-binding protein, is a primary component of insoluble aggregates associated with several devastating nervous system disorders; mutations in TARDBP, its encoding gene, are a cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we review established and emerging roles of TDP-43 and consider how its dysfunction impinges on RNA homeostasis in the nervous system, thereby contributing to neural degeneration. Notably, improper splicing of the axonal growth-associated factor STMN2 has recently been connected to TDP-43 dysfunction, providing a mechanistic link between TDP-43 proteinopathies and neuropathy. This review highlights how a deep understanding of the function of TDP-43 in the brain might be leveraged to develop new targeted therapies for several neurological disorders.
Collapse
Affiliation(s)
- Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Di Paolo A, Eastman G, Mesquita-Ribeiro R, Farias J, Macklin A, Kislinger T, Colburn N, Munroe D, Sotelo Sosa JR, Dajas-Bailador F, Sotelo-Silveira JR. PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. RNA (NEW YORK, N.Y.) 2020; 26:1637-1653. [PMID: 32747606 PMCID: PMC7566564 DOI: 10.1261/rna.075424.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Programmed cell death 4 (PDCD4) protein is a tumor suppressor that inhibits translation through the mTOR-dependent initiation factor EIF4A, but its functional role and mRNA targets in neurons remain largely unknown. Our work identified that PDCD4 is highly expressed in axons and dendrites of CNS and PNS neurons. Using loss- and gain-of-function experiments in cortical and dorsal root ganglia primary neurons, we demonstrated the capacity of PDCD4 to negatively control axonal growth. To explore PDCD4 transcriptome and translatome targets, we used Ribo-seq and uncovered a list of potential targets with known functions as axon/neurite outgrowth regulators. In addition, we observed that PDCD4 can be locally synthesized in adult axons in vivo, and its levels decrease at the site of peripheral nerve injury and before nerve regeneration. Overall, our findings demonstrate that PDCD4 can act as a new regulator of axonal growth via the selective control of translation, providing a target mechanism for axon regeneration and neuronal plasticity processes in neurons.
Collapse
Affiliation(s)
- Andrés Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto M5S 1A1, Canada
| | - Nancy Colburn
- Former Chief of Laboratory of Cancer Prevention at the National Cancer Institute-NIH at Frederick, Maryland 21702, USA
| | - David Munroe
- Former Laboratory of Molecular Technologies, LEIDOS at Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - José R Sotelo Sosa
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias UdelaR, Montevideo 11400, Uruguay
| |
Collapse
|
6
|
Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos. Int J Mol Sci 2019; 21:ijms21010168. [PMID: 31881740 PMCID: PMC6982252 DOI: 10.3390/ijms21010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron’s axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake.
Collapse
|
7
|
Chasman D, Iyer N, Fotuhi Siahpirani A, Estevez Silva M, Lippmann E, McIntosh B, Probasco MD, Jiang P, Stewart R, Thomson JA, Ashton RS, Roy S. Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Syst 2019; 9:167-186.e12. [PMID: 31302154 DOI: 10.1016/j.cels.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Neuroepithelial stem cells (NSC) from different anatomical regions of the embryonic neural tube's rostrocaudal axis can differentiate into diverse central nervous system tissues, but the transcriptional regulatory networks governing these processes are incompletely understood. Here, we measure region-specific NSC gene expression along the rostrocaudal axis in a human pluripotent stem cell model of early central nervous system development over a 72-h time course, spanning the hindbrain to cervical spinal cord. We introduce Escarole, a probabilistic clustering algorithm for non-stationary time series, and combine it with prior-based regulatory network inference to identify genes that are regulated dynamically and predict their upstream regulators. We identify known regulators of patterning and neural development, including the HOX genes, and predict a direct regulatory connection between the transcription factor POU3F2 and target gene STMN2. We demonstrate that POU3F2 is required for expression of STMN2, suggesting that this regulatory connection is important for region specificity of NSCs.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nisha Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Maria Estevez Silva
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ethan Lippmann
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian McIntosh
- Regenerative Biology Theme, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mitchell D Probasco
- Regenerative Biology Theme, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Regenerative Biology Theme, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Regenerative Biology Theme, Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Regenerative Biology Theme, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|
8
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Richardson KA, Hester AK, McLemore GL. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system. Neurotoxicol Teratol 2016; 58:5-14. [PMID: 27567698 DOI: 10.1016/j.ntt.2016.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the intrauterine milieu via the introduction of exogenous CBs alter the fetal ECSS, predisposing the offspring to abnormalities in cognition and altered emotionality. Based on recent experimental evidence that we will review here, we argue that young women who become pregnant should immediately take a "pregnant pause" from using marijuana.
Collapse
Affiliation(s)
- Kimberlei A Richardson
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Allison K Hester
- Howard University College of Medicine, Department of Pharmacology, 520 W Street, NW, Suite 3408, Washington, DC 20059, United States.
| | - Gabrielle L McLemore
- Morgan State University, Department of Biology-SCMMS, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States.
| |
Collapse
|
10
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
11
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
12
|
Tortoriello G, Morris CV, Alpar A, Fuzik J, Shirran SL, Calvigioni D, Keimpema E, Botting CH, Reinecke K, Herdegen T, Courtney M, Hurd YL, Harkany T. Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 2014; 33:668-85. [PMID: 24469251 DOI: 10.1002/embj.201386035] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.
Collapse
Affiliation(s)
- Giuseppe Tortoriello
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang S, Kwan P, Baum L. The potential role of CAMSAP1L1 in symptomatic epilepsy. Neurosci Lett 2013; 556:146-51. [PMID: 24148305 DOI: 10.1016/j.neulet.2013.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
In a recent genome-wide association study (GWAS) of symptomatic epilepsy in the Chinese population, the most significant single nucleotide polymorphism (SNP) allele was rs2292096 [G] (P=1.0×10(-8), odds ratio [OR]=0.63), in the CAMSAP1L1 gene (also known as CAMSAP2). Here, we report that rs2292096 genotypes tended to associate with expression of CAMSAP1L1 RNA in the temporal lobe (p=0.054) and hippocampus (p=0.20) of epilepsy surgery patients, with expression tending to increase with the G allele. CAMSAP1L1 and β-tubulin double immunofluorescence exhibited partial overlap. CAMSAP1L1 siRNA transfection of human SH-SY5Y neuroblastoma cells treated with or without retinoic acid reduced the CAMSAP1L1 protein level nearly 60% and stimulated neurite outgrowth, as measured by total length, number of processes and number of branches. Therefore, the rs2292096 G allele of CAMSAP1L1, which was associated with reduced risk of symptomatic epilepsy, tended to associate with increased expression of CAMSAP1L1, which represses neurite outgrowth. Greater neurite growth in response to brain insults might increase formation of ectopic neural circuits and thus the risk of epileptogenesis.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
14
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
15
|
Wu QF, Yang L, Li S, Wang Q, Yuan XB, Gao X, Bao L, Zhang X. Fibroblast Growth Factor 13 Is a Microtubule-Stabilizing Protein Regulating Neuronal Polarization and Migration. Cell 2012; 149:1549-64. [DOI: 10.1016/j.cell.2012.04.046] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/08/2012] [Accepted: 04/11/2012] [Indexed: 01/24/2023]
|
16
|
Nectoux J, Florian C, Delepine C, Bahi-Buisson N, Khelfaoui M, Reibel S, Chelly J, Bienvenu T. Altered microtubule dynamics in Mecp2-deficient astrocytes. J Neurosci Res 2012; 90:990-8. [DOI: 10.1002/jnr.23001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
|
17
|
Girard C, Liu S, Adams D, Lacroix C, Sinéus M, Boucher C, Papadopoulos V, Rupprecht R, Schumacher M, Groyer G. Axonal regeneration and neuroinflammation: roles for the translocator protein 18 kDa. J Neuroendocrinol 2012; 24:71-81. [PMID: 21951109 DOI: 10.1111/j.1365-2826.2011.02215.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a traumatic injury of the nervous system or in the course of a neurodegenerative disease, the speed of axonal regeneration and the control of the inflammatory response are fundamental parameters of functional recovery. Spontaneous regeneration takes place in the peripheral nervous system, although the process is slow and often incomplete. There is currently no efficient treatment for enhancing axonal regeneration, including elongation speed and functional reinnervation. Ligands of the translocator protein 18 kDa (TSPO) are currently under investigation as therapeutic means for promoting neuroprotection, accelerating axonal regeneration and modulating inflammation. The mechanisms of action of TSPO ligands involve the regulation of mitochondrial activity and the stimulation of steroid biosynthesis. In the peripheral nervous system, TSPO expression is strongly up-regulated after injury, primarily in Schwann cells and macrophages, but also in neurones. Its levels return to low control values when nerve regeneration is completed, strongly supporting an important role in regenerative processes. We have demonstrated a role for the benzoxazine etifoxine in promoting axonal regeneration in the lesioned rat sciatic nerve, either after freeze-injury or complete transection. Etifoxine is already clinically approved for the treatment of anxiety disorders (Stresam(®) , Biocodex, Gentilly, France). Daily treatment with etifoxine resulted in a two-fold acceleration in axonal regeneration, as well as in a marked improvement of both the speed and quality of functional recovery. The neuroregenerative effects of etifoxine are likely to be mediated by TSPO, and they may involve an increased synthesis of pregnenolone and its metabolites, such as progesterone. After freeze-injury of the sciatic nerve, administration of etifoxine also strongly reduced the number of activated macrophages and decreased the production of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β. Thus, this drug offers promise for the treatment of peripheral nerve injuries and axonal neuropathies. It may also be used as a lead compound in the development of new TSPO-based neuroprotective approaches.
Collapse
Affiliation(s)
- C Girard
- UMR788 Inserm and University Paris-Sud 11, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Little is known about how the neuronal cytoskeleton is regulated when a dendrite decides whether to branch or not. Previously, we reported that postsynaptic density protein 95 (PSD-95) acts as a stop signal for dendrite branching. It is yet to be elucidated how PSD-95 affects the cytoskeleton and how this regulation relates to the dendritic arbor. Here, we show that the SH3 (src homology 3) domain of PSD-95 interacts with a proline-rich region within the microtubule end-binding protein EB3. Overexpression of PSD-95 or mutant EB3 results in a decreased lifetime of EB3 comets in dendrites. In line with these data, transfected rat neurons show that overexpression of PSD-95 results in less organized microtubules at dendritic branch points and decreased dendritogensis. The interaction between PSD-95 and EB3 elucidates a function for a novel region of EB3 and provides a new and important mechanism for the regulation of microtubules in determining dendritic morphology.
Collapse
|
19
|
Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nat Neurosci 2011; 14:305-13. [DOI: 10.1038/nn.2755] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/13/2011] [Indexed: 01/20/2023]
|
20
|
Cheishvili D, Maayan C, Cohen-Kupiec R, Lefler S, Weil M, Ast G, Razin A. IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia. Hum Mol Genet 2011; 20:1585-94. [PMID: 21273291 DOI: 10.1093/hmg/ddr036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deficiency in the IKAP/Elp1 protein leads to the recessive sensory autosomal congenital neuropathy which is called familial dysautonomia (FD). This protein was originally identified as a role player in transcriptional elongation being a subunit of the RNAPII transcriptional Elongator multi-protein complex. Subsequently, IKAP/Elp1 was shown to play various functions in the cytoplasm. Here, we describe experiments performed with IKAP/Elp1 downregulated cell lines and FD-derived cells and tissues. Immunostaining of the cytoskeleton component α-tubulin in IKAP/Elp1 downregulated cells revealed disorganization of the microtubules (MTs) that was reflected in aberrant cell shape and process formation. In contrast to a recent report on the decrease in α-tubulin acetylation in IKAP/Elp1 downregulated cells, we were unable to observe any effect of IKAP/Elp1 deficiency on α-tubulin acetylation in the FD cerebrum and in a variety of IKAP/Elp1 downregulated cell lines. To explore possible candidates involved in the observed aberrations in MTs, we focused on superior cervical ganglion-10 protein (SCG10), also called STMN2, which is known to be an MT destabilizing protein. We have found that SCG10 is upregulated in the IKAP/Elp1-deficient FD cerebrum, FD fibroblasts and in IKAP/Elp1 downregulated neuroblastoma cell line. To better understand the effect of IKAP/Elp1 deficiency on SCG10 expression, we investigated the possible involvement of RE-1-silencing transcription factor (REST), a known repressor of the SCG10 gene. Indeed, REST was downregulated in the IKAP/Elp1-deficient FD cerebrum and IKAP/Elp1 downregulated neuroblastoma cell line. These results could shed light on a possible link between IKAP/Elp1 deficiency and cytoskeleton destabilization.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Sobczak A, Debowska K, Blazejczyk M, Kreutz MR, Kuznicki J, Wojda U. Calmyrin1 binds to SCG10 protein (stathmin2) to modulate neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1025-37. [PMID: 21215777 DOI: 10.1016/j.bbamcr.2010.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 02/03/2023]
Abstract
Calmyrin1 (CaMy1) is an EF-hand Ca(2+)-binding protein expressed in several cell types, including brain neurons. Using a yeast two-hybrid screen of a human fetal brain cDNA library, we identified SCG10 protein (stathmin2) as a CaMy1 partner. SCG10 is a microtubule-destabilizing factor involved in neuronal growth during brain development. We found increased mRNA and protein levels of CaMy1 during neuronal development, which paralleled the changes in SCG10 levels. In developing primary rat hippocampal neurons in culture, CaMy1 and SCG10 colocalized in cell soma, neurites, and growth cones. Pull-down, coimmunoprecipitation, and proximity ligation assays demonstrated that the interaction between CaMy1 and SCG10 is direct and Ca(2+)-dependent in vivo and requires the C-terminal domain of CaMy1 (residues 99-192) and the N-terminal domain of SCG10 (residues 1-35). CaMy1 did not interact with stathmin1, a protein that is homologous with SCG10 but lacks the N-terminal domain characteristic of SCG10. CaMy1 interfered with SCG10 inhibitory activity in a microtubule polymerization assay. Moreover, CaMy1 overexpression inhibited SCG10-mediated neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. This CaMy1 activity did not occur when an N-terminally truncated SCG10 mutant unable to interact with CaMy1 was expressed. Altogether, these data suggest that CaMy1 via SCG10 couples Ca(2+) signals with the dynamics of microtubules during neuronal outgrowth in the developing brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Adam Sobczak
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Alves MMM, Osinga J, Verheij JBGM, Metzger M, Eggen BJL, Hofstra RMW. Mutations in SCG10 are not involved in Hirschsprung disease. PLoS One 2010; 5:e15144. [PMID: 21187955 PMCID: PMC3004862 DOI: 10.1371/journal.pone.0015144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/25/2010] [Indexed: 02/01/2023] Open
Abstract
Hirschsprung disease (HSCR) is a congenital malformation characterized by the absence of enteric neurons in the distal part of the colon. Several genes have been implicated in the development of this disease that together account for 20% of all cases, implying that other genes are involved. Since HSCR is frequently associated with other congenital malformations, the functional characterization of the proteins encoded by the genes involved in these syndromes can provide insights into the protein-network involved in HSCR development. Recently, we found that KBP, encoded by the gene involved in a HSCR- associated syndrome called Goldberg-Shprintzen syndrome, interacts with SCG10, a stathmin-like protein. To determine if SCG10 is involved in the etiology of HSCR, we determined SCG10 expression levels during development and screened 85 HSCR patients for SCG10 mutations. We showed that SCG10 expression increases during development but no germline mutation was found in any of these patients. In conclusion, this study shows that SCG10 is not directly implicated in HSCR development. However, an indirect involvement of SCG10 cannot be ruled out as this can be due to a secondary effect caused by its direct interactors.
Collapse
Affiliation(s)
- Maria M. M. Alves
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Osinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joke B. G. M. Verheij
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Metzger
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Bart J. L. Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert M. W. Hofstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Alves MM, Burzynski G, Delalande JM, Osinga J, van der Goot A, Dolga AM, de Graaff E, Brooks AS, Metzger M, Eisel ULM, Shepherd I, Eggen BJL, Hofstra RMW. KBP interacts with SCG10, linking Goldberg-Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Hum Mol Genet 2010; 19:3642-51. [PMID: 20621975 PMCID: PMC7297230 DOI: 10.1093/hmg/ddq280] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the
Kinesin Binding Protein (KBP)
gene, which encodes a protein of which the precise function is largely unclear. We show that
KBP
expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10
in vivo
. To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and
in vitro
binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.
Collapse
Affiliation(s)
- Maria M Alves
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Proper regulation of MT (microtubule) dynamics is essential for various vital processes, including the segregation of chromosomes, directional cell migration and differentiation. MT assembly and disassembly is modulated by a complex network of intracellular factors that co-operate or antagonize each other, are highly regulated in space and time and are thus attuned to the cell cycle and differentiation processes. While we only begin to appreciate how the concerted action of MT stabilizers and destabilizers shapes different MT patterns, a clear picture of how individual factors affect the MT structure is emerging. In this paper, we review the current knowledge about proteins that modulate MT dynamic instability.
Collapse
|
25
|
Manna T, Thrower DA, Honnappa S, Steinmetz MO, Wilson L. Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin. J Biol Chem 2009; 284:15640-9. [PMID: 19359244 PMCID: PMC2708860 DOI: 10.1074/jbc.m900343200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/18/2009] [Indexed: 11/06/2022] Open
Abstract
Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two alpha:beta tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser(16), Ser(25), Ser(38), and Ser(63)) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser(16) or Ser(63), and doubly phosphorylated at Ser(25) and Ser(38), on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser(16) or Ser(63) strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser(25) and Ser(38) did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser(16) and Ser(63) and support the hypothesis that selective targeting by Ser(16)-specific or Ser(63)-specific kinases provides complimentary mechanisms for regulating microtubule function.
Collapse
Affiliation(s)
- Tapas Manna
- From the Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106 and
| | - Douglas A. Thrower
- From the Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106 and
| | - Srinivas Honnappa
- Biomolecular Research, Structural Biology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Michel O. Steinmetz
- Biomolecular Research, Structural Biology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Leslie Wilson
- From the Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106 and
| |
Collapse
|
26
|
Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009; 10:319-32. [PMID: 19377501 DOI: 10.1038/nrn2631] [Citation(s) in RCA: 771] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the past decade enormous advances have been made in our understanding of the basic molecular machinery that is involved in the development of neuronal polarity. Far from being mere structural elements, microtubules are emerging as key determinants of neuronal polarity. Here we review the current understanding of the regulation of microtubule assembly, organization and dynamics in axons and dendrites. These studies provide new insight into microtubules' function in neuronal development and their potential contribution to plasticity.
Collapse
|
27
|
Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 2009; 514:240-58. [PMID: 19296534 DOI: 10.1002/cne.22009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (approximately 11%), CA1 (14-22%), and motor cortex (approximately 16%). A decreased spine head size (approximately 9%) and an increased spine neck length (approximately 12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14-26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT.
Collapse
Affiliation(s)
- Pavel V Belichenko
- Neuroscience Institute at Stanford University, Stanford, CA 94305-5489, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wolff J. Plasma membrane tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1415-33. [PMID: 19328773 DOI: 10.1016/j.bbamem.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 01/17/2023]
Abstract
The association of tubulin with the plasma membrane comprises multiple levels of penetration into the bilayer: from integral membrane protein, to attachment via palmitoylation, to surface binding, and to microtubules attached by linker proteins to proteins in the membrane. Here we discuss the soundness and weaknesses of the chemical and biochemical evidence marshaled to support these associations, as well as the mechanisms by which tubulin or microtubules may regulate functions at the plasma membrane.
Collapse
Affiliation(s)
- J Wolff
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Dave RH, Saengsawang W, Yu JZ, Donati R, Rasenick MM. Heterotrimeric G-proteins interact directly with cytoskeletal components to modify microtubule-dependent cellular processes. Neurosignals 2009; 17:100-8. [PMID: 19212143 DOI: 10.1159/000186693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/05/2008] [Indexed: 01/07/2023] Open
Abstract
A large percentage of current drugs target G-protein-coupled receptors, which couple to well-known signaling pathways involving cAMP or calcium. G-proteins themselves may subserve a second messenger function. Here, we review the role of tubulin and microtubules in directly mediating effects of heterotrimeric G-proteins on neuronal outgrowth, shape and differentiation. G-protein-tubulin interactions appear to be regulated by neurotransmitter activity, and, in turn, regulate the location of Galpha in membrane microdomains (such as lipid rafts) or the cytosol. Tubulin binds with nanomolar affinity to Gsalpha, Gialpha1 and Gqalpha (but not other Galpha subunits) as well as Gbeta(1)gamma(2) subunits. Galpha subunits destabilize microtubules by stimulating tubulin's GTPase, while Gbetagamma subunits promote microtubule stability. The same region on Gsalpha that binds adenylyl cyclase and Gbetagamma also interacts with tubulin, suggesting that cytoskeletal proteins are novel Galpha effectors. Additionally, intracellular Gialpha-GDP, in concert with other GTPase proteins and Gbetagamma, regulates the position of the mitotic spindle in mitosis. Thus, G-protein activation modulates cell growth and differentiation by directly altering microtubule stability. Further studies are needed to fully establish a structural mechanism of this interaction and its role in synaptic plasticity.
Collapse
Affiliation(s)
- Rahul H Dave
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Il 60612-7342, USA
| | | | | | | | | |
Collapse
|
30
|
Varju P, Chang KC, Hrabovszky E, Merchenthaler I, Liposits Z. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1–7 cells. Neurochem Int 2009; 54:119-34. [DOI: 10.1016/j.neuint.2008.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 01/27/2023]
|
31
|
Burzynski GM, Delalande JM, Shepherd I. Characterization of spatial and temporal expression pattern of SCG10 during zebrafish development. Gene Expr Patterns 2009; 9:231-7. [PMID: 19272335 DOI: 10.1016/j.gep.2008.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/08/2008] [Accepted: 12/22/2008] [Indexed: 12/30/2022]
Abstract
SCG10 (Superior Cervical Ganglia 10, STMN2) is a member of the stathmin family of proteins. Stathmins regulate microtubule dynamics by inhibiting polymerization and promoting their depolymerization. SCG10 is believed to be a neuronal-specific stathmin that is enriched in the growth cones of developing neurons and plays a role in regulating neurite outgrowth. In all species examined so far, SCG10 is expressed in both the CNS and PNS. We have cloned two zebrafish SCG10 homologues and have determined the temporal and spatial expression pattern of both of these genes by RT-PCR and in situ hybridization. RT-PCR shows that both transcripts are expressed maternally and zygotically through at least 5 days. In situ hybridization analysis reveals that both SCG10 orthologues have dynamic, spatial expression patterns that are nearly identical to each other. Initially, these orthologues are expressed in discrete areas of the forebrain, midbrain, and hindbrain, as well as in the anterior and posterior lateral line ganglia and transiently in the spinal cord Rohon-Beard neurons. From 48hpf onwards, the level of expression of both genes increases and becomes mainly restricted to the anterior CNS (the forebrain region, retina, optic tectum, and hindbrain), and to the cranial ganglia. From 72 to 96hpf, SCG10 genes are also expressed in the developing neurons in the gut and in the surrounding intestinal mesenchyme. Our results provide a starting point for future studies that will investigate the in vivo function of SCG10 orthologues in zebrafish neural development.
Collapse
Affiliation(s)
- Grzegorz M Burzynski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
32
|
Etifoxine improves peripheral nerve regeneration and functional recovery. Proc Natl Acad Sci U S A 2008; 105:20505-10. [PMID: 19075249 DOI: 10.1073/pnas.0811201106] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerves show spontaneous regenerative responses, but recovery after injury or peripheral neuropathies (toxic, diabetic, or chronic inflammatory demyelinating polyneuropathy syndromes) is slow and often incomplete, and at present no efficient treatment is available. Using well-defined peripheral nerve lesion paradigms, we assessed the therapeutic usefulness of etifoxine, recently identified as a ligand of the translocator protein (18 kDa) (TSPO), to promote axonal regeneration, modulate inflammatory responses, and improve functional recovery. We found by histologic analysis that etifoxine therapy promoted the regeneration of axons in and downstream of the lesion after freeze injury and increased axonal growth into a silicone guide tube by a factor of 2 after nerve transection. Etifoxine also stimulated neurite outgrowth in PC12 cells, and the effect was even stronger than for specific TSPO ligands. Etifoxine treatment caused a marked reduction in the number of macrophages after cryolesion within the nerve stumps, which was rapid in the proximal and delayed in the distal nerve stumps. Functional tests revealed accelerated and improved recovery of locomotion, motor coordination, and sensory functions in response to etifoxine. This work demonstrates that etifoxine, a clinically approved drug already used for the treatment of anxiety disorders, is remarkably efficient in promoting acceleration of peripheral nerve regeneration and functional recovery. Its possible mechanism of action is discussed, with reference to the neurosteroid concept. This molecule, which easily enters nerve tissues and regulates multiple functions in a concerted manner, offers promise for the treatment of peripheral nerve injuries and axonal neuropathies.
Collapse
|
33
|
Li YH, Ghavampur S, Bondallaz P, Will L, Grenningloh G, Pu Schel AW. Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem 2008; 284:363-371. [PMID: 18996843 DOI: 10.1074/jbc.m808126200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The GTPase Rnd1 affects actin dynamics antagonistically to Rho and has been implicated in the regulation of neurite outgrowth, dendrite development, and axon guidance. Here we show that Rnd1 interacts with the microtubule regulator SCG10. This interaction requires a central domain of SCG10 comprising about 40 amino acids located within the N-terminal-half of a putative alpha-helical domain and is independent of phosphorylation at the four identified phosphorylation sites that regulate SCG10 activity. Rnd1 enhances the microtubule destabilizing activity of SCG10 and both proteins colocalize in neurons. Knockdown of Rnd1 or SCG10 by RNAi suppressed axon extension, indicating a critical role for both proteins during neuronal differentiation. Overexpression of Rnd1 in neurons induces the formation of multiple axons. The effect of Rnd1 on axon extension depends on SCG10. These results indicate that SCG10 acts as an effector downstream of Rnd1 to regulate axon extensions by modulating microtubule organization.
Collapse
Affiliation(s)
- Ying-Hua Li
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland
| | - Sharang Ghavampur
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland
| | - Percy Bondallaz
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland
| | - Lena Will
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland
| | - Gabriele Grenningloh
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland
| | - Andreas W Pu Schel
- Abteilung Molekularbiologie, Institut fu¨r Allgemeine Zoologie und Genetik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Schloßplatz 5, D-48149 Mu¨nster, Germany and the Center for Psychiatric Neuroscience, Department of Psychiatry-Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1008 Prilly, Switzerland.
| |
Collapse
|
34
|
Lyons DA, Naylor SG, Mercurio S, Dominguez C, Talbot WS. KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development 2008; 135:599-608. [PMID: 18192286 DOI: 10.1242/dev.012377] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations in Kif1-binding protein/KIAA1279 (KBP) cause the devastating neurological disorder Goldberg-Shprintzen syndrome (GSS) in humans. The cellular function of KBP and the basis of the symptoms of GSS, however, remain unclear. Here, we report the identification and characterization of a zebrafish kbp mutant. We show that kbp is required for axonal outgrowth and maintenance. In vivo time-lapse analysis of neuronal development shows that the speed of early axonal outgrowth is reduced in both the peripheral and central nervous systems in kbp mutants. Ultrastructural studies reveal that kbp mutants have disruption to axonal microtubules during outgrowth. These results together suggest that kbp is an important regulator of the microtubule dynamics that drive the forward propulsion of axons. At later stages, we observe that many affected axons degenerate. Ultrastructural analyses at these stages demonstrate mislocalization of axonal mitochondria and a reduction in axonal number in the peripheral, central and enteric nervous systems. We propose that kbp is an important regulator of axonal development and that axonal cytoskeletal defects underlie the nervous system defects in GSS.
Collapse
Affiliation(s)
- David A Lyons
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
35
|
Westerlund N, Zdrojewska J, Courtney MJ, Coffey ET. Superior cervical ganglion-10 protein as a molecular effector of c-Jun N-terminal kinase 1: implications for the therapeutic targeting of Jun N-terminal kinase in nerve regeneration. Expert Opin Ther Targets 2007; 12:31-43. [DOI: 10.1517/14728222.12.1.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|