1
|
Kerr D, Suwatthee T, Maltseva S, Lee KYC. Binding equations for the lipid composition dependence of peripheral membrane-binding proteins. Biophys J 2024; 123:885-900. [PMID: 38433448 PMCID: PMC10995427 DOI: 10.1016/j.bpj.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.
Collapse
Affiliation(s)
- Daniel Kerr
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Tiffany Suwatthee
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Sofiya Maltseva
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagmin-like proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Sci 2024; 33:e4850. [PMID: 38038838 PMCID: PMC10731544 DOI: 10.1002/pro.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | - Sherleen Tran
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | | - Hai Lin
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | |
Collapse
|
3
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A Conserved Electrostatic Membrane-Binding Surface in Synaptotagmin-Like Proteins Revealed Using Molecular Phylogenetic Analysis and Homology Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548768. [PMID: 37502952 PMCID: PMC10369986 DOI: 10.1101/2023.07.13.548768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver
| | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver
| | | |
Collapse
|
4
|
Xia B, Chi H, Zhang B, Lu Z, Liu H, Lu F, Zhu P. Computational Insights and In Silico Characterization of a Novel Mini-Lipoxygenase from Nostoc Sphaeroides and Its Application in the Quality Improvement of Steamed Bread. Int J Mol Sci 2023; 24:ijms24097941. [PMID: 37175648 PMCID: PMC10177866 DOI: 10.3390/ijms24097941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In this study, a putative mini-lipoxygenase gene from cyanobacteria, Nostoc sphaeroides (NsLOX), was cloned and expressed in E. coli BL21. NsLOX displayed only 26.62% structural identity with the reported LOX from Cyanothece sp., indicating it as a novel LOX. The purified NsLOX showed the maximum activity at pH 8.0 and 15 °C, with superior stability at a pH range from 6.0 to 13.0, retaining about 40% activity at 40 °C for 90 min. Notably, NsLOX exhibited the highest specific activity of 78,080 U/mg towards linoleic acid (LA), and the kinetic parameters-Km, kcat, and kcat/Km-attain values of 19.46 μM, 9199.75 s-1, and 473.85 μM-1 s-1, respectively. Moreover, the activity of NsLOX was obviously activated by Ca2+, but it was completely inhibited by Zn2+ and Cu2+. Finally, NsLOX was supplied in steamed bread and contributed even better improved bread quality than the commercial LOX. These results suggest NsLOX as a promising substitute of current commercial LOX for application in the food industry.
Collapse
Affiliation(s)
- Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huawei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Gordon MT, Ziemba BP, Falke JJ. Single-molecule studies reveal regulatory interactions between master kinases PDK1, AKT1, and PKC. Biophys J 2021; 120:5657-5673. [PMID: 34673053 DOI: 10.1016/j.bpj.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Leukocyte migration is controlled by a leading-edge chemosensory pathway that generates the regulatory lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), a growth signal, thereby driving leading-edge expansion up attractant gradients toward sites of infection, inflammation, or tissue damage. PIP3 also serves as an important growth signal in growing cells and oncogenesis. The kinases PDK1, AKT1 or PKB, and PKCα are key components of a plasma-membrane-based PIP3 and Ca2+ signaling circuit that regulates these processes. PDK1 and AKT1 are recruited to the membrane by PIP3, whereas PKCα is recruited to the membrane by Ca2+. All three of these master kinases phosphoregulate an array of protein targets. For example, PDK1 activates AKT1, PKCα, and other AGC kinases by phosphorylation at key sites. PDK1 is believed to form PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by a PDK1-interacting fragment (PIF) interaction between the PDK1 PIF pocket and the PIF motif of the AGC binding partner. Here, we present the first, to our knowledge, single-molecule studies of full-length PDK1 and AKT1 on target membrane surfaces, as well as their interaction with full-length PKCα. These studies directly detect membrane-bound PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by PIF interactions formed at physiological ligand concentrations. PKCα exhibits eightfold higher PDK1 affinity than AKT1 and can competitively displace AKT1 from PDK1-AKT1 heterodimers. Ensemble activity measurements under matched conditions reveal that PDK1 activates AKT1 via a cis mechanism by phosphorylating an AKT1 molecule in the same PDK1-AKT1 heterodimer, whereas PKCα acts as a competitive inhibitor of this phosphoactivation reaction by displacing AKT1 from PDK1. Overall, the findings provide insights into the binding and regulatory interactions of the three master kinases on their target membrane and suggest that a recently described tumor suppressor activity of PKC isoforms may arise from its ability to downregulate PDK1-AKT1 phosphoactivation in the PIP3-PDK1-AKT1-mTOR pathway linked to cell growth and oncogenesis.
Collapse
Affiliation(s)
- Moshe T Gordon
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
6
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Characterization of PROPPIN-Phosphoinositide Binding by Stopped-Flow Fluorescence Spectroscopy. Methods Mol Biol 2021. [PMID: 33481242 DOI: 10.1007/978-1-0716-1142-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PROPPINs (β-propellers that bind polyphosphoinositides) are a protein family that binds preferentially phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) via its FRRG motif. PROPPINs are involved in autophagic functions, but their molecular mechanism is still elusive. To unravel the molecular mechanism of PROPPINs, it is essential to understand the PROPPIN-phosphoinositide binding. Here, we describe a protocol to study the kinetics of the PROPPIN-phosphoinositide binding using a fluorescence resonance energy transfer (FRET) stopped-flow approach. We use FRET between fluorophore-labeled protein and fluorophore-labeled liposomes, monitoring the increase of the acceptor emission in labeled liposomes after the protein-membrane binding. Through this approach, we studied the kinetics of the PROPPIN Atg18 (Autophagy-related protein 18) from Pichia angusta (PaAtg18) and a mutant of its FRRG motif, called FTTG mutant. Stopped-flow experiments demonstrated that the main function of the FRRG motif is to retain, instead of to drive, Atg18 to the membrane, decreasing the Atg18 dissociation rate. Furthermore, this method is suitable for the study of other PI-binding proteins.
Collapse
|
8
|
The G-Protein Rab5A Activates VPS34 Complex II, a Class III PI3K, by a Dual Regulatory Mechanism. Biophys J 2020; 119:2205-2218. [PMID: 33137306 DOI: 10.1016/j.bpj.2020.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.
Collapse
|
9
|
Rapid exposure of macrophages to drugs resolves four classes of effects on the leading edge sensory pseudopod: Non-perturbing, adaptive, disruptive, and activating. PLoS One 2020; 15:e0233012. [PMID: 32469878 PMCID: PMC7259666 DOI: 10.1371/journal.pone.0233012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Leukocyte migration is controlled by a membrane-based chemosensory pathway on the leading edge pseudopod that guides cell movement up attractant gradients during the innate immune and inflammatory responses. This study employed single cell and population imaging to investigate drug-induced perturbations of leading edge pseudopod morphology in cultured, polarized RAW macrophages. The drugs tested included representative therapeutics (acetylsalicylic acid, diclofenac, ibuprofen, acetaminophen) as well as control drugs (PDGF, Gö6976, wortmannin). Notably, slow addition of any of the four therapeutics to cultured macrophages, mimicking the slowly increasing plasma concentration reported for standard oral dosage in patients, yielded no detectable change in pseudopod morphology. This finding is consistent with the well established clinical safety of these drugs. However, rapid drug addition to cultured macrophages revealed four distinct classes of effects on the leading edge pseudopod: (i) non-perturbing drug exposures yielded no detectable change in pseudopod morphology (acetylsalicylic acid, diclofenac); (ii) adaptive exposures yielded temporary collapse of the extended pseudopod and its signature PI(3,4,5)P3 lipid signal followed by slow recovery of extended pseudopod morphology (ibuprofen, acetaminophen); (iii) disruptive exposures yielded long-term pseudopod collapse (Gö6976, wortmannin); and (iv) activating exposures yielded pseudopod expansion (PDGF). The novel observation of adaptive exposures leads us to hypothesize that rapid addition of an adaptive drug overwhelms an intrinsic or extrinsic adaptation system yielding temporary collapse followed by adaptive recovery, while slow addition enables gradual adaptation to counteract the drug perturbation in real time. Overall, the results illustrate an approach that may help identify therapeutic drugs that temporarily inhibit the leading edge pseudopod during extreme inflammation events, and toxic drugs that yield long term inhibition of the pseudopod with negative consequences for innate immunity. Future studies are needed to elucidate the mechanisms of drug-induced pseudopod collapse, as well as the mechanisms of adaptation and recovery following some inhibitory drug exposures.
Collapse
|
10
|
Katti S, Igumenova TI. Interference of pH buffer with Pb 2+-peripheral domain interactions: obstacle or opportunity? Metallomics 2020; 12:164-172. [PMID: 32051983 DOI: 10.1039/d0mt00002g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pb2+ is a xenobiotic metal ion that competes for Ca2+-binding sites in proteins. Using the peripheral Ca2+-sensing domains of Syt1, we show that the chelating pH buffer Bis-Tris enables identification and functional characterization of high-affinity Pb2+ sites that are likely to be targeted by bioavailable Pb2+.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| | | |
Collapse
|
11
|
Katti S, Nyenhuis SB, Her B, Cafiso DS, Igumenova TI. Partial Metal Ion Saturation of C2 Domains Primes Synaptotagmin 1-Membrane Interactions. Biophys J 2020; 118:1409-1423. [PMID: 32075747 DOI: 10.1016/j.bpj.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is an integral membrane protein whose phospholipid-binding tandem C2 domains, C2A and C2B, act as Ca2+ sensors of neurotransmitter release. Our objective was to understand the role of individual metal-ion binding sites of these domains in the membrane association process. We used Pb2+, a structural and functional surrogate of Ca2+, to generate the protein states with well-defined protein-metal ion stoichiometry. NMR experiments revealed that binding of one divalent metal ion per C2 domain results in loss of conformational plasticity of the loop regions, potentially pre-organizing them for additional metal-ion and membrane-binding events. In C2A, a divalent metal ion in site 1 is sufficient to drive its weak association with phosphatidylserine-containing membranes, whereas in C2B, it enhances the interactions with the signaling lipid phosphatidylinositol-4,5-bisphosphate. In full-length Syt1, both Pb2+-complexed C2 domains associate with phosphatidylserine-containing membranes. Electron paramagnetic resonance experiments show that the extent of membrane insertion correlates with the occupancy of the C2 metal ion sites. Together, our results indicate that upon partial metal ion saturation of the intra-loop region, Syt1 adopts a dynamic, partially membrane-bound state. The properties of this state, such as conformationally restricted loop regions and positioning of C2 domains in close proximity to anionic lipid headgroups, "prime" Syt1 for cooperative binding of a full complement of metal ions and deeper membrane insertion.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Sarah B Nyenhuis
- Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, Virginia
| | - Bin Her
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - David S Cafiso
- Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, Virginia
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
12
|
Yang Y, Shu C, Li P, Igumenova TI. Structural Basis of Protein Kinase Cα Regulation by the C-Terminal Tail. Biophys J 2019; 114:1590-1603. [PMID: 29642029 DOI: 10.1016/j.bpj.2017.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 10/17/2022] Open
Abstract
Protein kinase C (PKC) isoenzymes are multi-modular proteins activated at the membrane surface to regulate signal transduction processes. When activated by second messengers, PKC undergoes a drastic conformational and spatial transition from the inactive cytosolic state to the activated membrane-bound state. The complete structure of either state of PKC remains elusive. We demonstrate, using NMR spectroscopy, that the isolated Ca2+-sensing membrane-binding C2 domain of the conventional PKCα interacts with a conserved hydrophobic motif of the kinase C-terminal region, and we report a structural model of the complex. Our data suggest that the C-terminal region plays a dual role in regulating the PKC activity: activating, through sensitization of PKC to intracellular Ca2+ oscillations; and auto-inhibitory, through its interaction with a conserved positively charged region of the C2 domain.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Chang Shu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
13
|
Katti S, Her B, Srivastava AK, Taylor AB, Lockless SW, Igumenova TI. High affinity interactions of Pb 2+ with synaptotagmin I. Metallomics 2018; 10:1211-1222. [PMID: 30063057 DOI: 10.1039/c8mt00135a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lead (Pb) is a potent neurotoxin that disrupts synaptic neurotransmission. We report that Synaptotagmin I (SytI), a key regulator of Ca2+-evoked neurotransmitter release, has two high-affinity Pb2+ binding sites that belong to its cytosolic C2A and C2B domains. The crystal structures of Pb2+-complexed C2 domains revealed that protein-bound Pb2+ ions have holodirected coordination geometries and all-oxygen coordination spheres. The on-rate constants of Pb2+ binding to the C2 domains of SytI are comparable to those of Ca2+ and are diffusion-limited. In contrast, the off-rate constants are at least two orders of magnitude smaller, indicating that Pb2+ can serve as both a thermodynamic and kinetic trap for the C2 domains. We demonstrate, using NMR spectroscopy, that population of these sites by Pb2+ ions inhibits further Ca2+ binding despite the existing coordination vacancies. Our work offers a unique insight into the bioinorganic chemistry of Pb(ii) and suggests a mechanism by which low concentrations of Pb2+ ions can interfere with the Ca2+-dependent function of SytI in the cell.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Del Vecchio K, Stahelin RV. Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 2018; 50:1-10. [PMID: 29426977 DOI: 10.1007/s10863-018-9745-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 2018; 28:236-248.e5. [PMID: 29337076 DOI: 10.1016/j.cub.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Microtubule and actin filament molecular motors such as kinesin-1 and myosin-Ic (Myo1c) transport and remodel membrane-bound vesicles; however, it is unclear how they coordinate to accomplish these tasks. We introduced kinesin-1- and Myo1c-bound giant unilamellar vesicles (GUVs) into a micropatterned in vitro cytoskeletal matrix modeled after the subcellular architecture where vesicular sorting and membrane remodeling are observed. This array was composed of sparse microtubules intersecting regions dense with actin filaments, and revealed that Myo1c-dependent tethering of GUVs enabled kinesin-1-driven membrane deformation and tubulation. Membrane remodeling at actin/microtubule intersections was modulated by lipid composition and the addition of the Bin-Amphiphysin-Rvs-domain (BAR-domain) proteins endophilin or FCH-domain-only (FCHo). Myo1c not only tethered microtubule-transported cargo, but also transported, deformed, and tubulated GUVs along actin filaments in a lipid-composition- and BAR-protein-responsive manner. These results suggest a mechanism for actin-based involvement in vesicular transport and remodeling of intracellular membranes, and implicate lipid composition as a key factor in determining whether vesicles will undergo transport, deformation, or tubulation driven by opposing actin and microtubule motors and BAR-domain proteins.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Serapion Pyrpassopoulos
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
16
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
17
|
Morales KA, Yang Y, Cole TR, Igumenova TI. Dynamic Response of the C2 Domain of Protein Kinase Cα to Ca 2+ Binding. Biophys J 2017; 111:1655-1667. [PMID: 27760353 DOI: 10.1016/j.bpj.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Ca2+-dependent conserved-region 2 (C2) domains target their host signaling proteins to anionic membranes. The Ca2+-binding event is a prerequisite for membrane association. Here, we investigate multiscale metal-ion-dependent dynamics of the C2 domain of protein kinase Cα (C2α) using NMR spectroscopy. Interactions with metal ions attenuate microsecond-timescale motions of the loop regions, indicating that preorganization of the metal-binding loops occurs before membrane insertion. Binding of a full complement of Ca2+ ions has a profound effect on the millisecond-timescale dynamics of the N- and C-terminal regions of C2α. We propose that Ca2+ binding allosterically destabilizes the terminal regions of C2α and thereby facilitates the conformational rearrangement necessary for full membrane insertion and activation of protein kinase Cα.
Collapse
Affiliation(s)
- Krystal A Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Yuan Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
18
|
Katti S, Nyenhuis SB, Her B, Srivastava AK, Taylor AB, Hart PJ, Cafiso DS, Igumenova TI. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions. Biochemistry 2017; 56:3283-3295. [PMID: 28574251 DOI: 10.1021/acs.biochem.7b00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca2+-dependent manner. In these cases, membrane association is triggered by Ca2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd2+, in lieu of Ca2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd2+-complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca2+ ion binding to the C2 domain loop regions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Sarah B Nyenhuis
- Department of Chemistry and Biophysics Program, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Bin Her
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Atul K Srivastava
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - P John Hart
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - David S Cafiso
- Department of Chemistry and Biophysics Program, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University , 300 Olsen Boulevard, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 2017; 110:1811-1825. [PMID: 27119641 DOI: 10.1016/j.bpj.2016.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.
Collapse
|
20
|
Alwarawrah M, Wereszczynski J. Investigation of the Effect of Bilayer Composition on PKCα-C2 Domain Docking Using Molecular Dynamics Simulations. J Phys Chem B 2016; 121:78-88. [PMID: 27997184 DOI: 10.1021/acs.jpcb.6b10188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein kinase Cα (PKCα) enzyme is a member of a broad family of serine/threonine kinases, which are involved in varied cellular signaling pathways. The initial step of PKCα activation involves the C2 subunit docking with the cell membrane, which is followed by interactions of the C1 domains with diacylglycerol (DAG) in the membrane. Notably, the molecular mechanisms of these interactions remain poorly understood, especially what effects, if any, DAG may have on the initial C2 docking. To further understand this process, we have performed a series of conventional molecular dynamics simulations to systematically investigate the interaction between PKCα-C2 domains and lipid bilayers with different compositions to examine the effects of POPS, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycerol (POG) on domain docking. Our results show that the PKCα-C2 domain does not interact with the bilayer surface in the absence of POPS and PIP2. In contrast, the inclusion of POPS and PIP2 to the bilayer resulted in strong domain docking in both perpendicular and parallel orientations, whereas the further inclusion of POG resulted in only parallel domain docking. In addition, lysine residues in the C2 domain formed hydrogen bonds with PIP2 molecule bilayers containing POG. These effects were further explored with umbrella sampling calculations to estimate the free energy of domain docking to the lipid bilayer in the presence of one or two PIP2 molecules. The results show that the binding of one or two PIP2 molecules is thermodynamically favorable, although stronger in bilayers lacking POG. However, in POG-containing bilayers, the binding mode of the C2 domain appears to be more flexible, which may have implications for activation of full-length PKCα. Together, our results shed new insights into the process of C2 bilayer binding and suggest new mechanisms for the roles of different phospholipids in the activation process of PKCα.
Collapse
Affiliation(s)
- Mohammad Alwarawrah
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| |
Collapse
|
21
|
Novel Features of DAG-Activated PKC Isozymes Reveal a Conserved 3-D Architecture. J Mol Biol 2016; 428:121-141. [DOI: 10.1016/j.jmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/01/2015] [Indexed: 01/17/2023]
|
22
|
Abstract
Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method.
Collapse
|
23
|
Lee SY, Giladi M, Bohbot H, Hiller R, Chung KY, Khananshvili D. Structure‐dynamic basis of splicing‐dependent regulation in tissue‐specific variants of the sodium‐calcium exchanger. FASEB J 2015; 30:1356-66. [DOI: 10.1096/fj.15-282251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Su Youn Lee
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | - Moshe Giladi
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Hilla Bohbot
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Reuben Hiller
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Ka Young Chung
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | | |
Collapse
|
24
|
Zhang W, Liu J, Hu X, Li P, Leak RK, Gao Y, Chen J. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Stroke 2015; 46:2943-50. [PMID: 26374481 DOI: 10.1161/strokeaha.115.010815] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. METHODS Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. RESULTS n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. CONCLUSIONS n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival.
Collapse
Affiliation(s)
- Wenting Zhang
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.).
| | - Jia Liu
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.)
| | - Xiaoming Hu
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.)
| | - Peiying Li
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.)
| | - Rehana K Leak
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.)
| | - Yanqin Gao
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.)
| | - Jun Chen
- From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.).
| |
Collapse
|
25
|
Chon NL, Osterberg JR, Henderson J, Khan HM, Reuter N, Knight JD, Lin H. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry 2015; 54:5696-711. [DOI: 10.1021/acs.biochem.5b00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nara Lee Chon
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - J. Ryan Osterberg
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Jack Henderson
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hanif M. Khan
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Nathalie Reuter
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Jefferson D. Knight
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
26
|
Abstract
Protein kinase C (PKC) is a family of Ser/Thr kinases that regulate a multitude of cellular processes through participation in the phosphoinositide signaling pathway. Significant research efforts have been directed at understanding the structure, function, and regulatory modes of the enzyme since its discovery and identification as the first receptor for tumor-promoting phorbol esters. The activation of PKC involves a transition from the cytosolic autoinhibited latent form to the membrane-associated active form. The membrane recruitment step is accompanied by the conformational rearrangement of the enzyme, which relieves autoinhibitory interactions and thereby allows PKC to phosphorylate its targets. The multidomain structure and intrinsic flexibility of PKC present remarkable challenges and opportunities for the biophysical and structural biology studies of this class of enzymes and their interactions with membranes, the major focus of this Current Topic. I will highlight the recent advances in the field, outline the current challenges, and identify areas where biophysics and structural biology approaches can provide insight into the isoenzyme-specific regulation of PKC activity.
Collapse
|
27
|
Harishchandra RK, Neumann BM, Gericke A, Ross AH. Biophysical methods for the characterization of PTEN/lipid bilayer interactions. Methods 2015; 77-78:125-35. [PMID: 25697761 PMCID: PMC4388815 DOI: 10.1016/j.ymeth.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.
Collapse
Affiliation(s)
- Rakesh K Harishchandra
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Alonzo H Ross
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
28
|
Vasquez JK, Chantranuvatana K, Giardina DT, Coffman MD, Knight JD. Lateral diffusion of proteins on supported lipid bilayers: additive friction of synaptotagmin 7 C2A-C2B tandem domains. Biochemistry 2014; 53:7904-13. [PMID: 25437758 PMCID: PMC4278679 DOI: 10.1021/bi5012223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The
synaptotagmin (Syt) family of proteins contains tandem C2 domains,
C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress,
the role and extent of interdomain interactions between C2A and C2B
in membrane binding remain unclear. To test whether the two domains
interact on a planar lipid bilayer (i.e., experience thermodynamic
interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and
C2AB domains from human Syt7 was measured using total internal reflection
fluorescence microscopy with single-particle tracking. The C2AB tandem
exhibits a lateral diffusion constant approximately half the value
of the isolated single domains and does not change when additional
residues are engineered into the C2A–C2B linker. This is the
expected result if C2A and C2B are separated when membrane-bound;
theory predicts that C2AB diffusion would be faster if the two domains
were close enough together to have interdomain contact. Stopped-flow
measurements of membrane dissociation kinetics further support an
absence of interdomain interactions, as dissociation kinetics of the
C2AB tandem remain unchanged when rigid or flexible linker extensions
are included. Together, the results suggest that the two C2 domains
of Syt7 bind independently to planar membranes, in contrast to reported
interdomain cooperativity in Syt1.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | | | | | | | | |
Collapse
|
29
|
Monteiro ME, Sarmento MJ, Fernandes F. Role of calcium in membrane interactions by PI(4,5)P₂-binding proteins. Biochem Soc Trans 2014; 42:1441-6. [PMID: 25233429 DOI: 10.1042/bst20140149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca²⁺ and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P₂] are key agents in membrane-associated signalling events. Their temporal and spatial regulation is crucial for activation or recruitment of proteins in the plasma membrane. In fact, the interaction of several signalling proteins with PI(4,5)P₂ has been shown to be tightly regulated and dependent on the presence of Ca²⁺, with co-operative binding in some cases. In these proteins, PI(4,5)P₂ and Ca²⁺ binding typically occurs at different binding sites. In addition, several PI(4,5)P₂-binding proteins are known targets of calmodulin (CaM), which, depending on the presence of calcium, can compete with PI(4,5)P₂ for protein interaction, translating Ca²⁺ transient microdomains into variations of PI(4,5)P₂ lateral organization in time and space. The present review highlights different examples of calcium-dependent PI(4,5)P₂-binding proteins and discusses the possible impact of this dual regulation on fine-tuning of protein activity by triggering target membrane binding in the presence of subtle changes in the levels of calcium or PI(4,5)P₂.
Collapse
Affiliation(s)
- Marina E Monteiro
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Sarmento
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Fábio Fernandes
- *Centro de Química-Física Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Egea-Jiménez AL, Fernández-Martínez AM, Pérez-Lara Á, de Godos A, Corbalán-García S, Gómez-Fernández JC. Phosphatidylinositol-4,5-bisphosphate enhances anionic lipid demixing by the C2 domain of PKCα. PLoS One 2014; 9:e95973. [PMID: 24763383 PMCID: PMC3999146 DOI: 10.1371/journal.pone.0095973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
The C2 domain of PKCα (C2α) induces fluorescence self-quenching of NBD-PS in the presence of Ca2+, which is interpreted as the demixing of phosphatidylserine from a mixture of this phospholipid with phosphatidylcholine. Self-quenching of NBD-PS was considerably increased when phosphatidylinositol-4,5-bisphosphate (PIP2) was present in the membrane. When PIP2 was the labeled phospholipid, in the form of TopFluor-PIP2, fluorescence self-quenching induced by the C2 domain was also observed, but this was dependent on the presence of phosphatidylserine. An independent indication of the phospholipid demixing effect given by the C2α domain was obtained by using 2H-NMR, since a shift of the transition temperature of deuterated phosphatidylcholine was observed as a consequence of the addition of the C2α domain, but only in the presence of PIP2. The demixing induced by the C2α domain may have a physiological significance since it means that the binding of PKCα to membranes is accompanied by the formation of domains enriched in activating lipids, like phosphatidylserine and PIP2. The formation of these domains may enhance the activation of the enzyme when it binds to membranes containing phosphatidylserine and PIP2.
Collapse
Affiliation(s)
- Antonio L. Egea-Jiménez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana M. Fernández-Martínez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ángel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana de Godos
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
31
|
Antal CE, Violin JD, Kunkel MT, Skovsø S, Newton AC. Intramolecular conformational changes optimize protein kinase C signaling. ACTA ACUST UNITED AC 2014; 21:459-469. [PMID: 24631122 DOI: 10.1016/j.chembiol.2014.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/31/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
Abstract
Optimal tuning of enzyme signaling is critical for cellular homeostasis. We use fluorescence resonance energy transfer reporters in live cells to follow conformational transitions that tune the affinity of a multidomain signal transducer, protein kinase C (PKC), for optimal response to second messengers. This enzyme comprises two diacylglycerol sensors, the C1A and C1B domains, that have a sufficiently high intrinsic affinity for ligand so that the enzyme would be in a ligand-engaged, active state if not for mechanisms that mask its domains. We show that both diacylglycerol sensors are exposed in newly synthesized PKC and that conformational transitions following priming phosphorylations mask the domains so that the lower affinity sensor, the C1B domain, is the primary diacylglycerol binder. The conformational rearrangements of PKC serve as a paradigm for how multimodule transducers optimize their dynamic range of signaling.
Collapse
Affiliation(s)
- Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan D Violin
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Maya T Kunkel
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Søs Skovsø
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Institute for Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Ziemba BP, Li J, Landgraf KE, Knight JD, Voth GA, Falke JJ. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α. Biochemistry 2014; 53:1697-713. [PMID: 24559055 PMCID: PMC3971957 DOI: 10.1021/bi4016082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Protein
kinase C-α (PKCα) is a member of the conventional
family of protein kinase C isoforms (cPKCs) that regulate diverse
cellular signaling pathways, share a common activation mechanism,
and are linked to multiple pathologies. The cPKC domain structure
is modular, consisting of an N-terminal pseudosubstrate peptide, two
inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase
domain. Mature, cytoplasmic cPKCs are inactive until they are switched
on by a multistep activation reaction that occurs largely on the plasma
membrane surface. Often, this activation begins with a cytoplasmic
Ca2+ signal that triggers C2 domain targeting to the plasma
membrane where it binds phosphatidylserine (PS) and phosphatidylinositol
4,5-bisphosphate (PIP2). Subsequently, the appearance of
the signaling lipid diacylglycerol (DAG) activates the membrane-bound
enzyme by recruiting the inhibitory pseudosubstrate and one or both
C1 domains away from the kinase domain. To further investigate this
mechanism, this study has utilized single-molecule total internal
reflection fluorescence microscopy (TIRFM) to quantitate the binding
and lateral diffusion of full-length PKCα and fragments missing
specific domain(s) on supported lipid bilayers. Lipid binding events,
and events during which additional protein is inserted into the bilayer,
were detected by their effects on the equilibrium bound particle density
and the two-dimensional diffusion rate. In addition to the previously
proposed activation steps, the findings reveal a major, undescribed,
kinase-inactive intermediate. On bilayers containing PS or PS and
PIP2, full-length PKCα first docks to the membrane
via its C2 domain, and then its C1A domain embeds itself in the bilayer
even before DAG appears. The resulting pre-DAG intermediate with membrane-bound
C1A and C2 domains is the predominant state of PKCα while it
awaits the DAG signal. The newly detected, membrane-embedded C1A domain
of this pre-DAG intermediate confers multiple useful features, including
enhanced membrane affinity and longer bound state lifetime. The findings
also identify the key molecular step in kinase activation: because
C1A is already membrane-embedded in the kinase off state, recruitment
of C1B to the bilayer by DAG or phorbol ester is the key regulatory
event that stabilizes the kinase on state. More broadly, this study
illustrates the power of single-molecule methods in elucidating the
activation mechanisms and hidden regulatory states of membrane-bound
signaling proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | | | |
Collapse
|
33
|
Falke JJ, Ziemba BP. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells. Chem Phys Lipids 2014; 182:73-9. [PMID: 24451847 DOI: 10.1016/j.chemphyslip.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca(2+) signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca(2+), while highlighting key questions for future research.
Collapse
Affiliation(s)
- Joseph J Falke
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
34
|
Signaling through C2 domains: more than one lipid target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1536-47. [PMID: 24440424 DOI: 10.1016/j.bbamem.2014.01.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
C2 domains are membrane-binding modules that share a common overall fold: a single compact Greek-key motif organized as an eight-stranded anti-parallel β-sandwich consisting of a pair of four-stranded β-sheets. A myriad of studies have demonstrated that in spite of sharing the common structural β-sandwich core, slight variations in the residues located in the interconnecting loops confer C2 domains with functional abilities to respond to different Ca(2+) concentrations and lipids, and to signal through protein-protein interactions as well. This review summarizes the main structural and functional findings on Ca(2+) and lipid interactions by C2 domains, including the discovery of the phosphoinositide-binding site located in the β3-β4 strands. The wide variety of functions, together with the different Ca(2+) and lipid affinities of these domains, converts this superfamily into a crucial player in many functions in the cell and more to be discovered. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
35
|
Guillén J, Ferrer-Orta C, Buxaderas M, Pérez-Sánchez D, Guerrero-Valero M, Luengo-Gil G, Pous J, Guerra P, Gómez-Fernández JC, Verdaguer N, Corbalán-García S. Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proc Natl Acad Sci U S A 2013; 110:20503-8. [PMID: 24302762 PMCID: PMC3870689 DOI: 10.1073/pnas.1316179110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins containing C2 domains are the sensors for Ca(2+) and PI(4,5)P2 in a myriad of secretory pathways. Here, the use of a free-mounting system has enabled us to capture an intermediate state of Ca(2+) binding to the C2A domain of rabphilin 3A that suggests a different mechanism of ion interaction. We have also determined the structure of this domain in complex with PI(4,5)P2 and IP3 at resolutions of 1.75 and 1.9 Å, respectively, unveiling that the polybasic cluster formed by strands β3-β4 is involved in the interaction with the phosphoinositides. A comparative study demonstrates that the C2A domain is highly specific for PI(4,5)P2/PI(3,4,5)P3, whereas the C2B domain cannot discriminate among any of the diphosphorylated forms. Structural comparisons between C2A domains of rabphilin 3A and synaptotagmin 1 indicated the presence of a key glutamic residue in the polybasic cluster of synaptotagmin 1 that abolishes the interaction with PI(4,5)P2. Together, these results provide a structural explanation for the ability of different C2 domains to pull plasma and vesicle membranes close together in a Ca(2+)-dependent manner and reveal how this family of proteins can use subtle structural changes to modulate their sensitivity and specificity to various cellular signals.
Collapse
Affiliation(s)
- Jaime Guillén
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Cristina Ferrer-Orta
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Mònica Buxaderas
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Dolores Pérez-Sánchez
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Guerrero-Valero
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Ginés Luengo-Gil
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Joan Pous
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
- Institute for Research in Biomedicine, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Pablo Guerra
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Nuria Verdaguer
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
36
|
Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophys Rev 2013; 6:3-14. [PMID: 28509956 DOI: 10.1007/s12551-013-0125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022] Open
Abstract
Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.
Collapse
|
37
|
Abstract
The present study resolves the molecular mechanism behind the key first steps in the action of an essential immune protein, cytotoxic lymphocyte perforin, binding to the plasma membrane of a target cell and initiation of pore formation.
Collapse
|
38
|
Lyakhova TA, Knight JD. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids. Chem Phys Lipids 2013; 182:29-37. [PMID: 24184645 DOI: 10.1016/j.chemphyslip.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/19/2013] [Indexed: 11/30/2022]
Abstract
Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.
Collapse
Affiliation(s)
- Tatyana A Lyakhova
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA.
| |
Collapse
|
39
|
Giladi M, Michaeli L, Almagor L, Bar-On D, Buki T, Ashery U, Khananshvili D, Hirsch JA. The C2B domain is the primary Ca2+ sensor in DOC2B: a structural and functional analysis. J Mol Biol 2013; 425:4629-41. [PMID: 23994332 DOI: 10.1016/j.jmb.2013.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
Abstract
DOC2B (double-C2 domain) protein is thought to be a high-affinity Ca(2+) sensor for spontaneous and asynchronous neurotransmitter release. To elucidate the molecular features underlying its physiological role, we determined the crystal structures of its isolated C2A and C2B domains and examined their Ca(2+)-binding properties. We further characterized the solution structure of the tandem domains (C2AB) using small-angle X-ray scattering. In parallel, we tested structure-function correlates with live cell imaging tools. We found that, despite striking structural similarity, C2B binds Ca(2+) with considerably higher affinity than C2A. The C2AB solution structure is best modeled as two domains with a highly flexible orientation and no difference in the presence or absence of Ca(2+). In addition, kinetic studies of C2AB demonstrate that, in the presence of unilamellar vesicles, Ca(2+) binding is stabilized, as reflected by the ~10-fold slower rate of Ca(2+) dissociation than in the absence of vesicles. In cells, isolated C2B translocates to the plasma membrane (PM) with an EC50 of 400 nM while the C2A does not translocate at submicromolar Ca(2+) concentrations, supporting the biochemical observations. Nevertheless, C2AB translocates to the PM with an ~2-fold lower EC50 and to a greater extent than C2B. Our results, together with previous studies, reveal that the C2B is the primary Ca(2+) sensing unit in DOC2B, whereas C2A enhances the interaction of C2AB with the PM.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Egea-Jiménez AL, Pérez-Lara Á, Corbalán-García S, Gómez-Fernández JC. Phosphatidylinositol 4,5-bisphosphate decreases the concentration of Ca2+, phosphatidylserine and diacylglycerol required for protein kinase C α to reach maximum activity. PLoS One 2013; 8:e69041. [PMID: 23874859 PMCID: PMC3707892 DOI: 10.1371/journal.pone.0069041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
The C2 domain of PKCα possesses two different binding sites, one for Ca(2+) and phosphatidylserine and a second one that binds PIP2 with very high affinity. The enzymatic activity of PKCα was studied by activating it with large unilamellar lipid vesicles, varying the concentration of Ca(2+) and the contents of dioleylglycerol (DOG), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphadidylserine (POPS) in these model membranes. The results showed that PIP2 increased the Vmax of PKCα and, when the PIP2 concentration was 5 mol% of the total lipid in the membrane, the addition of 2 mol% of DOG did not increase the activity. In addition PIP2 decreases K0.5 of Ca(2+) more than 3-fold, that of DOG almost 5-fold and that of POPS by a half. The K0.5 values of PIP2 amounted to only 0.11 µM in the presence of DOG and 0.39 in its absence, which is within the expected physiological range for the inner monolayer of a mammalian plasma membrane. As a consequence, PKCα may be expected to operate near its maximum capacity even in the absence of a cell signal producing diacylglycerol. Nevertheless, we have shown that the presence of DOG may also help, since the K0.5 for PIP2 notably decreases in its presence. Taken together, these results underline the great importance of PIP2 in the activation of PKCα and demonstrate that in its presence, the most important cell signal for triggering the activity of this enzyme is the increase in the concentration of cytoplasmic Ca(2+).
Collapse
Affiliation(s)
- Antonio L. Egea-Jiménez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Ángel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
41
|
Ziemba BP, Falke JJ. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core. Chem Phys Lipids 2013; 172-173:67-77. [DOI: 10.1016/j.chemphyslip.2013.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 11/15/2022]
|
42
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Ward KE, Bhardwaj N, Vora M, Chalfant CE, Lu H, Stahelin RV. The molecular basis of ceramide-1-phosphate recognition by C2 domains. J Lipid Res 2013; 54:636-648. [PMID: 23277511 PMCID: PMC3617939 DOI: 10.1194/jlr.m031088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A₂ (cPLA₂α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain β-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA₂α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg⁵⁹, Arg⁶¹, and His⁶² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN
| | - Nitin Bhardwaj
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Mohsin Vora
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| | - Charles E Chalfant
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, the Massey Cancer Center, and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| |
Collapse
|
44
|
Calcium-dependent isoforms of protein kinase C mediate glycine-induced synaptic enhancement at the calyx of Held. J Neurosci 2013; 32:13796-804. [PMID: 23035091 DOI: 10.1523/jneurosci.2158-12.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Depolarization of presynaptic terminals that arises from activation of presynaptic ionotropic receptors, or somatic depolarization, can enhance neurotransmitter release; however, the molecular mechanisms mediating this plasticity are not known. Here we investigate the mechanism of this enhancement at the calyx of Held synapse, in which presynaptic glycine receptors depolarize presynaptic terminals, elevate resting calcium levels, and potentiate release. Using knock-out mice of the calcium-sensitive PKC isoforms (PKC(Ca)), we find that enhancement of evoked but not spontaneous synaptic transmission by glycine is mediated primarily by PKC(Ca). Measurements of calcium at the calyx of Held indicate that deficits in synaptic modulation in PKC(Ca) knock-out mice occur downstream of presynaptic calcium increases. Glycine enhances synaptic transmission primarily by increasing the effective size of the pool of readily releasable vesicles. Our results reveal that PKC(Ca) can enhance evoked neurotransmitter release in response to calcium increases caused by small presynaptic depolarizations.
Collapse
|
45
|
Zhang W, Shen Y, Xiong G, Guo Y, Deng L, Li B, Yang J, Qi C. Crystal structure of human Intersectin-2L C2 domain. Biochem Biophys Res Commun 2012; 431:76-80. [PMID: 23274495 DOI: 10.1016/j.bbrc.2012.12.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023]
Abstract
Intersectin-2L (ITSN-2L) is a long isoform of ITSN family, which is a multimodule scaffolding protein functioning in membrane-associated molecular trafficking and signal transduction pathways. ITSN-2L possesses a carboxy-terminal extension encoding a Dbl homology domain (DH), a pleckstrin homology domain (PH) and a C2 domain, suggesting that it could act as a guanine nucleotide exchange factor for Rho-like GTPases. But the role of C2 domain is obscure in this process. Here we report the crystal structure of human ITSN-2L C2 domain at 1.56Å resolution. The sequence and structural alignment of ITSN-2L C2 domain with other members of C2 domain protein family indicate its vital cellular roles in membrane trafficking, the generation of lipid-second messengers and activation of GTPases. Moreover, our data show the possible roles of ITSN-2L C2 domain in regulating the activity of Cdc42.
Collapse
Affiliation(s)
- Wei Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Brandt DS, Coffman MD, Falke JJ, Knight JD. Hydrophobic contributions to the membrane docking of synaptotagmin 7 C2A domain: mechanistic contrast between isoforms 1 and 7. Biochemistry 2012; 51:7654-64. [PMID: 22966849 DOI: 10.1021/bi3007115] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synaptotagmin (Syt) triggers Ca(2+)-dependent membrane fusion via its tandem C2 domains, C2A and C2B. The 17 known human isoforms are active in different secretory cell types, including neurons (Syt1 and others) and pancreatic β cells (Syt7 and others). Here, quantitative fluorescence measurements reveal notable differences in the membrane docking mechanisms of Syt1 C2A and Syt7 C2A to vesicles comprised of physiological lipid mixtures. In agreement with previous studies, the Ca(2+) sensitivity of membrane binding is much higher for Syt7 C2A. We report here for the first time that this increased sensitivity is due to the slower target membrane dissociation of Syt7 C2A. Association and dissociation rate constants for Syt7 C2A are found to be ~2-fold and ~60-fold slower than Syt1 C2A, respectively. Furthermore, the membrane dissociation of Syt7 C2A but not Syt1 C2A is slowed by Na(2)SO(4) and trehalose, solutes that enhance the hydrophobic effect. Overall, the simplest model consistent with these findings proposes that Syt7 C2A first docks electrostatically to the target membrane surface and then inserts into the bilayer via a slow hydrophobic mechanism. In contrast, the membrane docking of Syt1 C2A is known to be predominantly electrostatic. Thus, these two highly homologous domains exhibit distinct mechanisms of membrane binding correlated with their known differences in function.
Collapse
Affiliation(s)
- Devin S Brandt
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
47
|
Ward KE, Ropa JP, Adu-Gyamfi E, Stahelin RV. C2 domain membrane penetration by group IVA cytosolic phospholipase A₂ induces membrane curvature changes. J Lipid Res 2012; 53:2656-66. [PMID: 22991194 DOI: 10.1194/jlr.m030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA(2)α binds zwitterionic lipids such as phosphatidylcholine in a Ca(2+)-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA(2)α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA(2)α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA(2)α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA(2)α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA(2)α.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA
| | | | | | | |
Collapse
|
48
|
Pérez-Lara A, Egea-Jiménez AL, Ausili A, Corbalán-García S, Gómez-Fernández JC. The membrane binding kinetics of full-length PKCα is determined by membrane lipid composition. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1434-42. [PMID: 22842589 DOI: 10.1016/j.bbalip.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Protein kinase Cα (PKCα) is activated by its translocation to the membrane. Activity assays show the importance of PIP(2) in determining the specific activity of this enzyme. A FRET stopped flow fluorescence study was carried out to monitor the rapid kinetics of protein binding to model membranes containing POPC/POPS/DOG and eventually PIP(2). The results best fitted a binding mechanism in which protein bound to the membrane following a two-phase mechanism with a first bimolecular reaction followed by a slow unimolecular reaction. In the absence of PIP(2), the rapid protein binding rate was especially dependent on POPS concentration. Formation of the slow high affinity complex during the second phase seems to involve specific interactions with POPS and DOG since it is only sensitive to changes within relatively low concentration ranges of these lipids. Both the association and dissociation rate constants fell in the presence of PIP(2). We propose a model in which PKCα binds to the membranes via a two-step mechanism consisting of the rapid membrane initial recruitment of PKCα driven by interactions with POPS and/or PIP(2) although interactions with DOG are involved too. PKCα searches on the lipid bilayer in two dimensions to establish interactions with its specific ligands.
Collapse
Affiliation(s)
- Angel Pérez-Lara
- Instituto Murciano de Investigaciones Biomédicas, Regional Campus of International Excellence "Campus Mare Nostrum", Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain
| | | | | | | | | |
Collapse
|
49
|
Morales KA, Igumenova TI. Synergistic effect of Pb(2+) and phosphatidylinositol 4,5-bisphosphate on C2 domain-membrane interactions. Biochemistry 2012; 51:3349-60. [PMID: 22475207 DOI: 10.1021/bi201850h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca(2+)-responsive C2 domains are peripheral membrane modules that target their host proteins to anionic membranes upon binding Ca(2+) ions. Several C2 domain-containing proteins, such as protein kinase C isoenzymes (PKCs), have been identified as molecular targets of Pb(2+), a known environmental toxin. We demonstrated previously that the C2 domain from PKCα (C2α) binds Pb(2+) with high affinity and undergoes membrane insertion in the Pb(2+)-complexed form. The objective of this work was to determine the effect of phosphatidylinositol 4,5-bisphosphate (PIP(2)) on the C2α-Pb(2+) interactions. Using nuclear magnetic resonance (NMR) experiments, we show that Pb(2+) and PIP(2) synergistically enhance each other's affinity for C2α. Moreover, the affinity of C2α for PIP(2) increases upon progressive saturation of the metal-binding sites. Combining the NMR data with the results of protein-to-membrane Förster resonance energy transfer and vesicle sedimentation experiments, we demonstrate that PIP(2) can influence two aspects of C2α-Pb(2+)-membrane interactions: the affinity of C2α for Pb(2+) and the association of Pb(2+) with the anionic sites on the membrane. Both factors may contribute to the toxic effect of Pb(2+) resulting from the aberrant modulation of PKCα activity. Finally, we propose a mechanism for Pb(2+) outcompeting Ca(2+) from membrane-bound C2α.
Collapse
Affiliation(s)
- Krystal A Morales
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843-2128, USA
| | | |
Collapse
|
50
|
Järving R, Lõokene A, Kurg R, Siimon L, Järving I, Samel N. Activation of 11R-Lipoxygenase Is Fully Ca2+-Dependent and Controlled by the Phospholipid Composition of the Target Membrane. Biochemistry 2012; 51:3310-20. [DOI: 10.1021/bi201690z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reet Järving
- Department
of Chemistry, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia
| | - Aivar Lõokene
- Department
of Chemistry, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, Nooruse St 1, 50411 Tartu, Estonia
| | - Liina Siimon
- Department
of Chemistry, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia
| | - Ivar Järving
- Department
of Chemistry, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia
| | - Nigulas Samel
- Department
of Chemistry, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia
| |
Collapse
|