1
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Herrera VE, Charles TP, Scott TG, Prather KY, Nguyen NT, Sohl CD, Thomas LM, Richter-Addo GB. Insights into Nitrosoalkane Binding to Myoglobin Provided by Crystallography of Wild-Type and Distal Pocket Mutant Derivatives. Biochemistry 2023; 62:1406-1419. [PMID: 37011611 PMCID: PMC10338068 DOI: 10.1021/acs.biochem.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Nitrosoalkanes (R-N═O; R = alkyl) are biological intermediates that form from the oxidative metabolism of various amine (RNH2) drugs or from the reduction of nitroorganics (RNO2). RNO compounds bind to and inhibit various heme proteins. However, structural information on the resulting Fe-RNO moieties remains limited. We report the preparation of ferrous wild-type and H64A sw MbII-RNO derivatives (λmax 424 nm; R = Me, Et, Pr, iPr) from the reactions of MbIII-H2O with dithionite and nitroalkanes. The apparent extent of formation of the wt Mb derivatives followed the order MeNO > EtNO > PrNO > iPrNO, whereas the order was the opposite for the H64A derivatives. Ferricyanide oxidation of the MbII-RNO derivatives resulted in the formation of the ferric MbIII-H2O precursors with loss of the RNO ligands. X-ray crystal structures of the wt MbII-RNO derivatives at 1.76-2.0 Å resoln. revealed N-binding of RNO to Fe and the presence of H-bonding interactions between the nitroso O-atoms and distal pocket His64. The nitroso O-atoms pointed in the general direction of the protein exterior, and the hydrophobic R groups pointed toward the protein interior. X-ray crystal structures for the H64A mutant derivatives were determined at 1.74-1.80 Å resoln. An analysis of the distal pocket amino acid surface landscape provided an explanation for the differences in ligand orientations adopted by the EtNO and PrNO ligands in their wt and H64A structures. Our results provide a good baseline for the structural analysis of RNO binding to heme proteins possessing small distal pockets.
Collapse
Affiliation(s)
- Viridiana E. Herrera
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| | - Tatyana P. Charles
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
| | - Tiala G. Scott
- Department of Chemistry and Physics, Ivory V. Nelson Science Center, Lincoln University, Lincoln University, PA, 19352
| | - Kiana Y. Prather
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Nancy T. Nguyen
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Christal D. Sohl
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology and Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73071
| |
Collapse
|
3
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
4
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
5
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
6
|
Chintapalli SV, Anishkin A, Adams SH. Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin. Arch Biochem Biophys 2018; 655:56-66. [PMID: 30092229 DOI: 10.1016/j.abb.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Myoglobin, besides its role in oxygen turnover, has gained recognition as a potential regulator of lipid metabolism. Previously, we confirmed the interaction of fatty acids and acylcarnitines with Oxy-Myoglobin, using both molecular dynamic simulations and Isothermal Titration Calorimetry studies. However, those studies were limited to testing only the binding sites derived from homology to fatty acid binding proteins and predictions using automated docking. To explore the entry mechanisms of the lipid ligands into myoglobin, we conducted molecular dynamic simulations of murine Oxy- and Deoxy-Mb structures with palmitate or palmitoylcarnitine starting at different positions near the protein surface. The simulations indicated that both ligands readily (under ∼10-20 ns) enter the Oxy-Mb structure through a dynamic area ("portal region") near heme, known to be the entry point for small molecule gaseous ligands like O2, CO and NO. The entry is not observed with Deoxy-Mb where lipid ligands move away from protein surface, due to a compaction of the entry portal and the heme-containing crevice in the Mb protein upon O2 removal. The results suggest quick spontaneous binding of lipids to Mb driven by hydrophobic interactions, strongly enhanced by oxygenation, and consistent with the emergent role of Mb in lipid metabolism.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
7
|
Sharma SK, Kim H, Rogler PJ, A Siegler M, Karlin KD. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization. J Biol Inorg Chem 2016; 21:729-43. [PMID: 27350154 PMCID: PMC5003086 DOI: 10.1007/s00775-016-1369-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.
Collapse
Affiliation(s)
- Savita K Sharma
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hyun Kim
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
8
|
Pietra F. On the Quest of Dioxygen by Monomeric Sarcosine Oxidase. A Molecular Dynamics Investigation. Chem Biodivers 2015; 12:1163-71. [DOI: 10.1002/cbdv.201400362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 11/09/2022]
|
9
|
Pietra F. Binding pockets and pathways for dioxygen through the KijD3 N-oxygenase in complex with flavin mononucleotide cofactor and a 3-aminoglucose substrate: predictions from molecular dynamics simulations. Chem Biodivers 2015; 11:1151-62. [PMID: 25146761 DOI: 10.1002/cbdv.201400081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/12/2022]
Abstract
In this work, two protein systems, Kij3D-FMN-AKM-O2 and Kij3D-FMN-O2 , made of KijD3 N-oxygenase, flavin mononucleotide (FMN) cofactor, dTDP-3-amino-2,3,6-trideoxy-4-keto-3-methyl-D-glucose (AKM) substrate, and dioxygen (O2), have been assembled by adding a molecule of O2, and removing (or not) AKM, to crystal data for the Kij3D-FMN-AKM complex. Egress of AKM and O2 from these systems was then investigated by applying a tiny external random force, in turn, to their center of mass in the course of molecular dynamics in explicit H2 O. It turned out that the wide AKM channel, even when emptied, does not constitute the main route for O2 egress. Other routes appear to be also viable, while various binding pockets (BPs) outside the active center are prone to trap O2. By reversing the reasoning, these can also be considered as routes for uptake of O2 by the protein, before or after AKM uptake, while BPs may serve as reservoirs of O2. This shows that the small molecule O2 is capable of permeating the protein by exploiting all nearby interstices that are created on thermal fluctuations of the protein, rather than having necessarily to look for farther, permanent channels.
Collapse
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze, Palazzo Ducale, Lucca I-55100, (phone/fax: +39-0583-417336).
| |
Collapse
|
10
|
Pietra F. Molecular Dynamics Simulation of Dioxygen Pathways through Mini Singlet Oxygen Generator (miniSOG), a Genetically Encoded Marker and Killer Protein. Chem Biodivers 2014; 11:1883-91. [DOI: 10.1002/cbdv.201400125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 11/08/2022]
|
11
|
Pietra F. Binding Pockets and Permeation Channels for Dioxygen through Cofactorless 3-Hydroxy-2-methylquinolin-4-one 2,4-Dioxygenase in Association with Its Natural Substrate, 3-Hydroxy-2-methylquinolin-4(1H)-one. A Perspective from Molecular Dynamics Simulations. Chem Biodivers 2014; 11:861-71. [DOI: 10.1002/cbdv.201400054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 11/07/2022]
|
12
|
Pietra F. On Dioxygen Permeation through a Dehydrogenase-Pyrroloquinoline Quinone Complex. A Molecular-Dynamics Investigation. Chem Biodivers 2014; 11:209-16. [DOI: 10.1002/cbdv.201300314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 11/10/2022]
|
13
|
Pietra F. On the pathways of biologically relevant diatomic gases through proteins. Dioxygen and heme oxygenase from the perspective of molecular dynamics. Chem Biodivers 2013; 10:556-68. [PMID: 23576342 DOI: 10.1002/cbdv.201200434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 11/07/2022]
Abstract
This work deals with dioxygen (O2 ) binding sites and pathways through inducible human heme oxygenase (HO-1). The experimentally known distal binding site 1, and sites 2-3 above it, could be reproduced by means of non-deterministic random-acceleration molecular-dynamics (RAMD) simulations. In addition, RAMD revealed the proximal binding site 5, a deeply-seated binding site 4, which lies behind heme, as well as a few gates communicating with the external medium. In getting from site 1 to the main gate, which lies on the protein front opposed to site 4, O2 follows chiefly the shortest direct pathway. Less frequently, O2 visits intermediate sites 2, 4, or 5 along longer pathways. A similarity between HO-1, myoglobin, and cytoglobin in using, for diatomic gas delivery, the direct shortest pathway from the heme center to the surrounding medium, is emphasized. Otherwise, comparing other proteins and diatomic gases, each system reveals its peculiarities as to sites, gates, and pathways. Thus, relating these properties to the physiological functions of the proteins remains in general a challenge for future studies.
Collapse
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze, Palazzo Ducale, I-55100 Lucca.
| |
Collapse
|
14
|
Pietra F. Gates and Binding Pockets for Nitric Oxide with Cytochrome c′, According to Molecular Dynamics. Chem Biodivers 2013; 10:1574-88. [DOI: 10.1002/cbdv.201300164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze, Palazzo Ducale, Lucca I-55100 (phone/fax: +39-0583-417336).
| |
Collapse
|
15
|
Pietra F. From Dioxygen Storing to Dioxygen Sensing with Neuroglobins: An Insight from Molecular Mechanics. Chem Biodivers 2013; 10:963-75. [DOI: 10.1002/cbdv.201300060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/06/2022]
|
16
|
Scorciapino MA, Spiga E, Vezzoli A, Mrakic-Sposta S, Russo R, Fink B, Casu M, Gussoni M, Ceccarelli M. Structure–Function Paradigm in Human Myoglobin: How a Single-Residue Substitution Affects NO Reactivity at Low pO2. J Am Chem Soc 2013; 135:7534-44. [DOI: 10.1021/ja400213t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Alessandra Vezzoli
- Institute for Bioimaging and
Molecular Physiology, Consiglio Nazionale delle Ricerche (CNR), Segrate (MI), Italy
| | - Simona Mrakic-Sposta
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Rosaria Russo
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Bruno Fink
- Noxygen Science Transfer and Diagnostics GmbH, Elzach, Germany
| | | | - Maristella Gussoni
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
- Institute for Macromolecular
Studies, CNR, Milan, Italy
| | - Matteo Ceccarelli
- Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), UOS, Cagliari, Italy
| |
Collapse
|
17
|
Pietra F. On the Pathways for CO Egress from Carboxy Human Cytoglobin. A Molecular-Dynamics Investigation. Chem Biodivers 2013; 10:86-95. [DOI: 10.1002/cbdv.201200374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Indexed: 11/07/2022]
|
18
|
Boechi L, Arrar M, Martí MA, Olson JS, Roitberg AE, Estrin DA. Hydrophobic effect drives oxygen uptake in myoglobin via histidine E7. J Biol Chem 2013; 288:6754-62. [PMID: 23297402 DOI: 10.1074/jbc.m112.426056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation state, its conformation, and ligand migration in Mb is hotly debated. We used molecular dynamics simulations to first address the effect of His-E7 protonation on its conformation. We observed the expected shift from the closed to the open conformation upon protonation, but more importantly, noted a significant difference between the conformations of the two neutral histidine tautomers. We further computed free energy profiles for oxygen migration in each of the possible His-E7 states as well as in two instructive Mb mutants: Ala-E7 and Trp-E7. Our results show that even in the closed conformation, the His-E7 gate does not create a large barrier to oxygen migration and permits oxygen entry with only a small rotation of the imidazole side chain and movement of the E helix. We identify, instead, a hydrophobic site in the E7 channel that can accommodate an apolar diatomic ligand and enhances ligand uptake particularly in the open His-E7 conformation. This rate enhancement is diminished in the closed conformation. Taken together, our results provide a new conceptual framework for the histidine gate hypothesis.
Collapse
Affiliation(s)
- Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Física/Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Birukou I, Soman J, Olson JS. Blocking the gate to ligand entry in human hemoglobin. J Biol Chem 2010; 286:10515-29. [PMID: 21193395 DOI: 10.1074/jbc.m110.176271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
His(E7) to Trp replacements in HbA lead to markedly biphasic bimolecular CO rebinding after laser photolysis. For isolated mutant subunits, the fraction of fast phase increases with increasing [CO], suggesting a competition between binding to an open conformation with an empty E7 channel and relaxation to blocked or closed, slowly reacting states. The rate of conformational relaxation of the open state is ∼18,000 s(-1) in α subunits and ∼10-fold faster in β subunits, ∼175,000 s(-1). Crystal structures were determined for tetrameric α(WT)β(Trp-63) HbCO, α(Trp-58)β(WT) deoxyHb, and Trp-64 deoxy- and CO-Mb as controls. In Trp-63(E7) βCO, the indole side chain is located in the solvent interface, blocking entry into the E7 channel. Similar blocked Trp-64(E7) conformations are observed in the mutant Mb crystal structures. In Trp-58(E7) deoxy-α subunits, the indole side chain fills both the channel and the distal pocket, forming a completely closed state. The bimolecular rate constant for CO binding, k'(CO), to the open conformations of both mutant Hb subunits is ∼80-90 μm(-1) s(-1), whereas k'(CO) for the completely closed states is 1000-fold slower, ∼0.08 μm(-1) s(-1). A transient intermediate with k'(CO) ≈ 0.7 μm(-1) s(-1) is observed after photolysis of Trp-63(E7) βCO subunits and indicates that the indole ring blocks the entrance to the E7 channel, as observed in the crystal structures of Trp(E7) deoxyMb and βCO subunits. Thus, either blocking or completely filling the E7 channel dramatically slows bimolecular binding, providing strong evidence that the E7 channel is the major pathway (≥90%) for ligand entry in human hemoglobin.
Collapse
Affiliation(s)
- Ivan Birukou
- Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
21
|
Blouin GC, Olson JS. The stretching frequencies of bound alkyl isocyanides indicate two distinct ligand orientations within the distal pocket of myoglobin. Biochemistry 2010; 49:4968-76. [PMID: 20476740 DOI: 10.1021/bi100172c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The FTIR spectra for alkyl isocyanides (CNRs) change from a single nu(CN) band centered at approximately 2175 cm(-1) to two peaks at approximately 2075 and approximately 2125 cm(-1) upon binding to sperm whale myoglobin (Mb). The low- and high-frequency peaks have been assigned to in and out conformations, respectively. In the in conformation, the ligand is pointing toward the protein interior, and the distal His64(E7) is in a closed position, donates a H-bond to the bound isocyano group, enhances back-bonding, and lowers the C-N bond order. In the out conformation, the ligand side chain points toward solvent through a channel opened by outward rotation of His64. Loss of positive polarity near the binding site causes an increase in C-N bond order. Support for this interpretation is threefold: (1) similar shifts to lower frequency occur for MbCO complexes when H-bond donation from His64(E7) occurs; (2) only one peak at approximately 2125 cm(-1), indicative of an apolar environment, is observed for CNRs bound to H64A or H64L Mb mutants or to chelated protoheme in soap micelles; and (3) the fraction of in conformation based on FTIR spectra correlates strongly with the fraction of geminate recombination after nanosecond laser photolysis. The in alkyl side chain conformation causes the photodissociated ligand to be "stuck" in the distal pocket, promoting internal rebinding, whereas the out conformation inhibits geminate recombination because part of the ligand is already in an open E7 channel, poised for rapid escape.
Collapse
Affiliation(s)
- George C Blouin
- Department of Biochemistry and Cell Biology and W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
22
|
Smith RD, Blouin GC, Johnson KA, Phillips GN, Olson JS. Straight-chain alkyl isocyanides open the distal histidine gate in crystal structures of myoglobin . Biochemistry 2010; 49:4977-86. [PMID: 20481504 PMCID: PMC4074459 DOI: 10.1021/bi1001739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystal structures of methyl, ethyl, propyl, and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a "closed" position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an "open" position, allowing the ligand side chain to point outward. A progressive increase in the population of the out conformer is observed with increasing ligand length in P2(1) crystals of native Mb at pH 7.0. This switch from in to out with increasing ligand size also occurs in solution as measured by the decrease in the relative intensity of the low-frequency ( approximately 2075 cm(-1)) versus high-frequency ( approximately 2125 cm(-1)) isocyano bands. In contrast, all four isocyanides in P6 crystals of wild-type recombinant Mb occupy the in conformation. However, mutating either His64 to Ala, creating a "hole" to solvent, or Phe46 to Val, freeing rotation of His64, causes bound butyl isocyanide to point completely outward in P6 crystals. Thus, the unfavorable hindrance caused with crowding a large alkyl side chain into the distal pocket appears to be roughly equal to that for pushing open the His(E7) gate and is easily affected by crystal packing. This structural conclusion supports the "side path" kinetic mechanism for O(2) release, in which the dissociated ligand first moves toward the protein interior and then encounters steric resistance, which is roughly equal to that for escaping to solvent through the His(E7) channel.
Collapse
Affiliation(s)
| | | | | | | | - John S. Olson
- CORRESPONDING AUTHOR FOOTNOTE. Author to whom correspondence should be addressed. Telephone 713-348-4762; Fax 713-348-5154;
| |
Collapse
|