1
|
Zhou Y, Utama B, Pratap S, Supandy A, Song X, Tran TT, Mehta HH, Arias CA, Shamoo Y. Enolpyruvate transferase MurAA A149E, identified during adaptation of Enterococcus faecium to daptomycin, increases stability of MurAA-MurG interaction. J Biol Chem 2023; 299:102912. [PMID: 36649910 PMCID: PMC9975281 DOI: 10.1016/j.jbc.2023.102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Daptomycin (DAP) is an antibiotic frequently used as a drug of last resort against vancomycin-resistant enterococci. One of the major challenges when using DAP against vancomycin-resistant enterococci is the emergence of resistance, which is mediated by the cell-envelope stress system LiaFSR. Indeed, inhibition of LiaFSR signaling has been suggested as a strategy to "resensitize" enterococci to DAP. In the absence of LiaFSR, alternative pathways mediating DAP resistance have been identified, including adaptive mutations in the enolpyruvate transferase MurAA (MurAAA149E), which catalyzes the first committed step in peptidoglycan biosynthesis; however, how these mutations confer resistance is unclear. Here, we investigated the biochemical basis for MurAAA149E-mediated adaptation to DAP to determine whether such an alternative pathway would undermine the potential efficacy of therapies that target the LiaFSR pathway. We found cells expressing MurAAA149E had increased susceptibility to glycoside hydrolases, consistent with decreased cell wall integrity. Furthermore, structure-function studies of MurAA and MurAAA149E using X-ray crystallography and biochemical analyses indicated only a modest decrease in MurAAA149E activity, but a 16-fold increase in affinity for MurG, which performs the last intracellular step of peptidoglycan synthesis. Exposure to DAP leads to mislocalization of cell division proteins including MurG. In Bacillus subtilis, MurAA and MurG colocalize at division septa and, thus, we propose MurAAA149E may contribute to DAP nonsusceptibility by increasing the stability of MurAA-MurG interactions to reduce DAP-induced mislocalization of these essential protein complexes.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Adeline Supandy
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Xinhao Song
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Truc T Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Heer H Mehta
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Cesar A Arias
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA; Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, Texas, USA.
| |
Collapse
|
2
|
Dewachter L, Brooks AN, Noon K, Cialek C, Clark-ElSayed A, Schalck T, Krishnamurthy N, Versées W, Vranken W, Michiels J. Deep mutational scanning of essential bacterial proteins can guide antibiotic development. Nat Commun 2023; 14:241. [PMID: 36646716 PMCID: PMC9842644 DOI: 10.1038/s41467-023-35940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Deep mutational scanning is a powerful approach to investigate a wide variety of research questions including protein function and stability. Here, we perform deep mutational scanning on three essential E. coli proteins (FabZ, LpxC and MurA) involved in cell envelope synthesis using high-throughput CRISPR genome editing, and study the effect of the mutations in their original genomic context. We use more than 17,000 variants of the proteins to interrogate protein function and the importance of individual amino acids in supporting viability. Additionally, we exploit these libraries to study resistance development against antimicrobial compounds that target the selected proteins. Among the three proteins studied, MurA seems to be the superior antimicrobial target due to its low mutational flexibility, which decreases the chance of acquiring resistance-conferring mutations that simultaneously preserve MurA function. Additionally, we rank anti-LpxC lead compounds for further development, guided by the number of resistance-conferring mutations against each compound. Our results show that deep mutational scanning studies can be used to guide drug development, which we hope will contribute towards the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| | | | | | | | | | - Thomas Schalck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | | | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
3
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Grabrijan K, Hrast M, Proj M, Dolšak A, Zdovc I, Imre T, Petri L, Ábrányi-Balogh P, Keserű GM, Gobec S. Covalent inhibitors of bacterial peptidoglycan biosynthesis enzyme MurA with chloroacetamide warhead. Eur J Med Chem 2022; 243:114752. [PMID: 36126388 DOI: 10.1016/j.ejmech.2022.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.
Collapse
Affiliation(s)
- Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Ana Dolšak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Tímea Imre
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology, Szt. Gellért tér 4., H-1117, Budapest, Hungary.
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
de Oliveira MVD, Furtado RM, da Costa KS, Vakal S, Lima AH. Advances in UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) Covalent Inhibition. Front Mol Biosci 2022; 9:889825. [PMID: 35936791 PMCID: PMC9346081 DOI: 10.3389/fmolb.2022.889825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan is a cross-linked polymer responsible for maintaining the bacterial cell wall integrity and morphology in Gram-negative and Gram-positive bacteria. The peptidoglycan pathway consists of the enzymatic reactions held in three steps: cytoplasmic, membrane-associated, and periplasmic. The Mur enzymes (MurA-MurF) are involved in a cytoplasmic stage. The UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme is responsible for transferring the enolpyruvate group from phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine (UNAG) to form UDP-N-acetylglucosamine enolpyruvate (EP-UNAG). Fosfomycin is a natural product analogous to PEP that acts on the MurA target enzyme via binding covalently to the key cysteine residue in the active site. Similar to fosfomycin, other MurA covalent inhibitors have been described with a warhead in their structure that forms a covalent bond with the molecular target. In MurA, the nucleophilic thiolate of Cys115 is pointed as the main group involved in the warhead binding. Thus, in this minireview, we briefly describe the main recent advances in the design of MurA covalent inhibitors.
Collapse
Affiliation(s)
| | - Renan Machado Furtado
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Kauê S. da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- *Correspondence: Anderson H. Lima,
| |
Collapse
|
6
|
Zhou ZY, Liu X, Cui JL, Wang JH, Wang ML, Zhang G. Endophytic fungi and their bioactive secondary metabolites in medicinal leguminosae plants: Nearly untapped medical resources. FEMS Microbiol Lett 2022; 369:6615458. [PMID: 35746878 DOI: 10.1093/femsle/fnac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
There are many species of Chinese traditional leguminosae family plants that are well known for their medicinal applications, such as Astragalus membranaceus, Catsia tora, Glycyrrhiza uralensis, Sophora flavescens and Albacia acacia. Their unique bioactive composition and internal phenological environment contribute to the formation of specific and unique endophytic fungal communities, which are important resources for new compounds used in a variety of pharmacological activities. Nonetheless, they have not been systematically studied. In the last decade, nearly 64 genera and thousands of species of endophytic fungi have been discovered from leguminosae plants, as well as 138 secondary metabolites (with 34 new compounds) including flavonoid, alkaloids, phenol, anthraquinone, macrolide, terpenoid, phytohormone and many more. They were shown to have diverse applications and benefits, such as antibacterial, antitumor, antioxidative, immunoregulatory and neuroprotective properties. Here, we provide a summarized overview with the aim of raising awareness of endophytic fungi from medicinal leguminosae plants and providing a comprehensive review of the discoveries of new natural products that may be of medicinal and pharmaceutical importance.
Collapse
Affiliation(s)
- Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang 712046, China
| |
Collapse
|
7
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Joshi S, Ray RR. New holistic approach for the management of biofilm‐associated infections by myco‐metabolites. J Basic Microbiol 2022; 62:1291-1306. [PMID: 35373364 DOI: 10.1002/jobm.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| | - Moupriya Nag
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Dibyajit Lahiri
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Tanmay Sarkar
- Department of Food Processing Technology Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal Malda India
| | - Siddhartha Pati
- Skills innovation & Academic network (SIAN) Institute‐ABC Balasore Odisha India
- NatNov Bioscience Private Limited Balasore Odisha India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit Sultan Qaboos University Maskat Oman
| | - Rina R. Ray
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| |
Collapse
|
8
|
Raina D, Kumar C, Kumar V, Khan IA, Saran S. Potential Inhibitors Targeting Escherichia coli UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): An Overview. Indian J Microbiol 2022; 62:11-22. [PMID: 35068599 PMCID: PMC8758813 DOI: 10.1007/s12088-021-00988-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges that is escalating and affecting humanity across the globe. To overcome this increasing burden of resistance, discovering novel hits by targeting the enzymes involved in peptidoglycan (murein) biosynthesis has always been considered better in antimicrobial drug discovery. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme has been identified as essential for Escherichia coli survival and catalyzes the early-stage step in bacterial cell wall synthesis. The present article gives a brief overview of the role of enzymes in peptidoglycan synthesis and MurA enzyme (previously known as MurZ in E. coli), in particular, including its structural and active site features. This review also provides an insight into the current knowledge of the reported MurA inhibitors, their mechanism of action and drawbacks of these hits that hinder their clinical trials, which would be helpful for synthesis and discovering potent molecules. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00988-6.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Chetan Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Inshad Ali Khan
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817 India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
9
|
Funes Chabán M, Hrast M, Frlan R, Graikioti DG, Athanassopoulos CM, Carpinella MC. Inhibition of MurA Enzyme from Escherichia coli and Staphylococcus aureus by Diterpenes from Lepechinia meyenii and Their Synthetic Analogs. Antibiotics (Basel) 2021; 10:1535. [PMID: 34943747 PMCID: PMC8698320 DOI: 10.3390/antibiotics10121535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Enzymes MurA and MurF, involved in bacterial cell wall synthesis, have been validated as targets for the discovery of novel antibiotics. A panel of plant-origin antibacterial diterpenes and synthetic analogs derived therefrom were investigated for their inhibitory properties on these enzymes from Escherichia coli and Staphylococcus aureus. Six compounds were proven to be effective for inhibiting MurA from both bacteria, with IC50 values ranging from 1.1 to 25.1 µM. To further mechanistically investigate the nature of binding and to explain the activity, these compounds were docked into the active site of MurA from E. coli. The aromatic ring of the active compounds showed a T-shaped π-π interaction with the phenyl ring of Phe328, and at least one hydrogen bond was formed between the hydroxy groups and Arg120 and/or Arg91. The results disclosed here establish new chemical scaffolds for the development of novel entities targeting MurA as potential antibiotics to combat the threat of pathogenic bacteria, particularly resistant strains.
Collapse
Affiliation(s)
- Macarena Funes Chabán
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina;
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (R.F.)
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (R.F.)
| | - Dafni G. Graikioti
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.G.G.); (C.M.A.)
| | - Constantinos M. Athanassopoulos
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.G.G.); (C.M.A.)
| | - María Cecilia Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina;
| |
Collapse
|
10
|
Scarpino A, Petri L, Knez D, Imre T, Ábrányi-Balogh P, Ferenczy GG, Gobec S, Keserű GM. WIDOCK: a reactive docking protocol for virtual screening of covalent inhibitors. J Comput Aided Mol Des 2021; 35:223-244. [PMID: 33458809 PMCID: PMC7904743 DOI: 10.1007/s10822-020-00371-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive docking method (Backus et al. in Nature 534:570–574, 2016) and extends it into a virtual screening tool by introducing facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when compound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measurements. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.
Collapse
Affiliation(s)
- Andrea Scarpino
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary.
| |
Collapse
|
11
|
Petri L, Ábrányi-Balogh P, Tímea I, Pálfy G, Perczel A, Knez D, Hrast M, Gobec M, Sosič I, Nyíri K, Vértessy BG, Jänsch N, Desczyk C, Meyer-Almes FJ, Ogris I, Golič Grdadolnik S, Iacovino LG, Binda C, Gobec S, Keserű GM. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments. Chembiochem 2020; 22:743-753. [PMID: 33030752 DOI: 10.1002/cbic.202000700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.
Collapse
Affiliation(s)
- László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Imre Tímea
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology &, MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Kinga Nyíri
- Genome Metabolism Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| | - Beáta G Vértessy
- Genome Metabolism Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary.,Department of Applied Biotechnology, Budapest University of Technology and Economics, Szt Gellért tér 4, 1111, Budapest, Hungary
| | - Niklas Jänsch
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Schnittspahnstraße 12, 64287, Darmstadt, Germany
| | - Charlotte Desczyk
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Schnittspahnstraße 12, 64287, Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Schnittspahnstraße 12, 64287, Darmstadt, Germany
| | - Iza Ogris
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Luca Giacinto Iacovino
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, 27100, Pavia, Italy
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, 27100, Pavia, Italy
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, 1117, Budapest, Hungary
| |
Collapse
|
12
|
Kossack R, Breinlinger S, Nguyen T, Moschny J, Straetener J, Berscheid A, Brötz-Oesterhelt H, Enke H, Schirmeister T, Niedermeyer THJ. Nostotrebin 6 Related Cyclopentenediones and δ-Lactones with Broad Activity Spectrum Isolated from the Cultivation Medium of the Cyanobacterium Nostoc sp. CBT1153. JOURNAL OF NATURAL PRODUCTS 2020; 83:392-400. [PMID: 31977209 DOI: 10.1021/acs.jnatprod.9b00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are an interesting source of biologically active natural products, especially chemically diverse and potent protease inhibitors. On our search for inhibitors of the trypanosomal cysteine protease rhodesain, we identified the homodimeric cyclopentenedione (CPD) nostotrebin 6 (1) and new related monomeric, dimeric, and higher oligomeric compounds as the active substances in the medium extract of Nostoc sp. CBT1153. The oligomeric compounds are composed of two core monomeric structures, a trisubstituted CPD or a trisubstituted unsaturated δ-lactone. Nostotrebin 6 thus far has been the only known cyanobacterial CPD. It has been found to be active in a broad variety of assays, indicating that it might be a pan-assay interference compound (PAIN). Thus, we compared the antibacterial and cytotoxic activities as well as the rhodesain inhibition of selected compounds. Because a compound with a δ-lactone instead of a CPD core structure was equally active as nostotrebin 6, the bioactivities of these compounds seem to be based on the phenolic substructures rather than the CPD moiety. While the dimers were roughly equally potent, the monomer displayed slightly weaker activity, suggesting that the compounds show unspecific activity depending upon the number of free phenolic hydroxy groups per molecule.
Collapse
Affiliation(s)
- Ronja Kossack
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Steffen Breinlinger
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Trang Nguyen
- Department of Microbiology/Biotechnology, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
| | - Julia Moschny
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Heike Enke
- Cyano Biotech GmbH , 12489 Berlin , Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry , University of Mainz , 55128 Mainz , Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
13
|
Issakhanian L, Behzadi P. Antimicrobial Agents and Urinary Tract Infections. Curr Pharm Des 2020; 25:1409-1423. [PMID: 31218955 DOI: 10.2174/1381612825999190619130216] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Urinary Tract Infections (UTIs); second-ranking infectious diseases are regarded as a significant global health care problem. The UTIs annually cost tens of millions of dollars for governments worldwide. The main reason behind these costs is incorrect or indefinite treatment. There are a wide range of gram-negative and grampositive bacteria which may cause UTIs in males and females, children and adults. Among gram-negative bacteria, some members of Enterobacteriaceae such as Escherichia coli (E.coli) strains have significant contribution in UTIs. Uropathogenic E.coli (UPEC) strains are recognized as typical bacterial agents for UTIs. Thus, sharp and accurate diagnostic tools are needed for detection and identification of the microbial causative agents of UTIs. In parallel with the utilization of suitable diagnostic methods-to reduce the number of UTIs, effective and definite treatment procedures are needed. Therefore, the prescription of accurate, specific and effective antibiotics and drugs may lead to a definite treatment. However, there are many cases related to UTIs which can be relapsed. Due to a diversity of opportunistic and pathogenic causative microbial agents of UTIs, the treatment procedures should be achieved by the related antimicrobial agents. In this review, common and effective antimicrobial agents which are often prescribed for UTIs caused by UPEC will be discussed. Moreover, we will have a sharp look at their (antimicrobials) molecular treatment mechanisms.
Collapse
Affiliation(s)
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Shan L, Wenling Q, Mauro P, Stefano B. Antibacterial Agents Targeting the Bacterial Cell Wall. Curr Med Chem 2020; 27:2902-2926. [PMID: 32003656 DOI: 10.2174/0929867327666200128103653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The introduction of antibiotics to treat bacterial infections either by killing or blocking their growth has been accompanied by the studies of mechanism that allows the drugs to kill the bacteria or to stop their proliferation. In such a scenario, the emergence of antibacterial agents active on the bacterial cell wall has been of fundamental importance in the fight against bacterial agents responsible for severe diseases. As a matter of fact, the cell wall, which plays many roles during the lifecycle, is an essential constituent of most bacteria. This overview focuses on the intracellular steps of peptidoglycan biosynthesis and the research of new antibacterial agents based on the enzymes involved in these early steps of the formation of cell membrane components.
Collapse
Affiliation(s)
- Li Shan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Qin Wenling
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Panunzio Mauro
- Isof-CNR Chemistry Department, Via Selmi, 2, 40126 Bologna, Italy
| | - Biondi Stefano
- BioVersys AG, C/o Technologiepark Basel, Hochbergerstrasse 60c, CH- 4057 Basel, Switzerland
| |
Collapse
|
15
|
Mihalovits LM, Ferenczy GG, Keserű GM. Catalytic Mechanism and Covalent Inhibition of UDP- N-Acetylglucosamine Enolpyruvyl Transferase (MurA): Implications to the Design of Novel Antibacterials. J Chem Inf Model 2019; 59:5161-5173. [PMID: 31715096 DOI: 10.1021/acs.jcim.9b00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the first step in the biosynthesis of the bacterial cell wall. This pathway is essential for the growth of bacteria but missing in mammals, that nominates MurA as an attractive antibacterial target. MurA has a flexible loop whose conformational change is known to be part of the activation mechanism of the enzyme. We have shown that the loop closed conformation makes the proton transfer from Cys115 to His394 possible by a low barrier exothermic process. QM/MM MD simulations revealed that the activated thiolate is able to react with phosphoenolpyruvate (PEP), the natural substrate of MurA. The binding free energy profile of several covalent inhibitors with various warheads reacting with the activated Cys115 was calculated by QM/MM MD simulations and confirmed that reaction barrier heights tend to separate active from inactive compounds. Our results give new insight into the catalytic mechanism and covalent inhibition of MurA and suggest that QM/MM MD simulations are able to support ligand design by providing sensible relative free energy barriers for covalent inhibitors with various warheads reacting with thiolate nucleophiles.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar tudósok körútja 2 , Budapest 1117 , Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar tudósok körútja 2 , Budapest 1117 , Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group , Research Centre for Natural Sciences , Magyar tudósok körútja 2 , Budapest 1117 , Hungary
| |
Collapse
|
16
|
Trotel-Aziz P, Abou-Mansour E, Courteaux B, Rabenoelina F, Clément C, Fontaine F, Aziz A. Bacillus subtilis PTA-271 Counteracts Botryosphaeria Dieback in Grapevine, Triggering Immune Responses and Detoxification of Fungal Phytotoxins. FRONTIERS IN PLANT SCIENCE 2019; 10:25. [PMID: 30733727 PMCID: PMC6354549 DOI: 10.3389/fpls.2019.00025] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 05/23/2023]
Abstract
Plant pathogens have evolved various strategies to enter hosts and cause diseases. Particularly Neofusicoccum parvum, a member of Botryosphaeria dieback consortium, can secrete the phytotoxins (-)-terremutin and (R)-mellein during grapevine colonization. The contribution of phytotoxins to Botryosphaeria dieback symptoms still remains unknown. Moreover, there are currently no efficient control strategies of this disease, and agro-environmental concerns have raised increasing interest in biocontrol strategies to limit disease spread in vineyards, especially by using some promising beneficial bacteria. Here, we first examined in planta the biocontrol capacity of Bacillus subtilis PTA-271 against N. parvum Np-Bt67 strain producing both (-)-terremutin and (R)-mellein. We then focused on the direct effects of PTA-271 on pathogen growth and the fate of pure phytotoxins, and explored the capacity of PTA-271 to induce or prime grapevine immunity upon pathogen infection or phytotoxin exposure. Results provided evidence that PTA-271 significantly protects grapevine cuttings against N. parvum and significantly primes the expression of PR2 (encoding a β-1,3-glucanase) and NCED2 (9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis) genes upon pathogen challenge. Using in vitro plantlets, we also showed that PTA-271 triggers the expression of salicylic acid- and jasmonic acid-responsive genes, including GST1 (encoding a glutathione-S-transferase) involved in detoxification process. However, in PTA-271-pretreated plantlets, exogenous (-)-terremutin strongly lowered the expression of most of upregulated genes, except GST1. Data also indicated that PTA-271 can detoxify both (-)-terremutin and (R)-mellein and antagonize N. parvum under in vitro conditions. Our findings highlight (-)-terremutin and (R)-mellein as key aggressive molecules produced by N. parvum that may weaken grapevine immunity to promote Botryosphaeria dieback symptoms. However, PTA-271 can efficiently attenuate Botryosphaeria dieback by enhancing some host immune responses and detoxifying both phytotoxins produced by N. parvum.
Collapse
Affiliation(s)
- Patricia Trotel-Aziz
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | | | - Barbara Courteaux
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Fanja Rabenoelina
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Florence Fontaine
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Aziz Aziz
- Research Unit EA 4707 RIBP, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
17
|
Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC, Harris RA, Mayfield RD. Genome-Wide Expression Profiles Drive Discovery of Novel Compounds that Reduce Binge Drinking in Mice. Neuropsychopharmacology 2018; 43:1257-1266. [PMID: 29251283 PMCID: PMC5916369 DOI: 10.1038/npp.2017.301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds, to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking. We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton's tyrosine kinase inhibitor) and pergolide (a dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or repurpose existing compounds and expedite treatment options.
Collapse
Affiliation(s)
- Laura B Ferguson
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Igor Ponomarev
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Pamela Metten
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Matthew Reilly
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - R Adron Harris
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Wang Q, Yang YB, Yang XQ, Miao CP, Li YQ, Liu SX, Luo N, Ding ZT, Zhao LX. Lovastatin analogues and other metabolites from soil-derived Aspergillus terreus YIM PH30711. PHYTOCHEMISTRY 2018; 145:146-152. [PMID: 29132077 DOI: 10.1016/j.phytochem.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Eight previously undescribed metabolites including of lovastatin analogues, a pair of diastereoisomers, a cyclopentenone dimer, and three polyketides were isolated from the culture of Aspergillus terreus YIM PH30711. Two types of unprecedented skeletons, benzene-cyclopentanone complex and linear polyketide, and an unusual dimer structure were determined by spectral analysis. Compound, 3α-hydroxy-3,5-dihydromonacolin L showed moderate activity against HMG-CoA reductase, with an inhibition ratio of 34% at the concentration of 50 μM, while lovastatin and dihydromonacolin K ethyl ester presented much stronger activity against HMGR with inhibition rates of 85% and 90% at the concentration of 50 μM, respectively. Aspereusin A was active against AChE with a ratio of 62% at the concentration of 50 μM, while its stereomers did not showed obvious inhibition (<10%). The configuration at C-4 of these three diastereoisomers was crucial in the inhibition against AChE, and the β-orientation of substituted methoxyl acrylic acid should be beneficial to the combining with AChE.
Collapse
Affiliation(s)
- Qiang Wang
- Yunnan Institute of Microbiology, College of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Bin Yang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xue-Qiong Yang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Yunnan Institute of Microbiology, College of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yi-Qing Li
- Yunnan Institute of Microbiology, College of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shi-Xi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Na Luo
- Yunnan Institute of Microbiology, College of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology, College of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
19
|
Lima AH, dos Santos AM, Alves CN, Lameira J. Computed insight into a peptide inhibitor preventing the induced fit mechanism of MurA enzyme fromPseudomonas aeruginosa. Chem Biol Drug Des 2016; 89:599-607. [DOI: 10.1111/cbdd.12882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/16/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos; Instituto de Ciências Exatas e Naturais; Universidade Federal do Pará; Belém PA Brasil
| | - Alberto M. dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos; Instituto de Ciências Exatas e Naturais; Universidade Federal do Pará; Belém PA Brasil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos; Instituto de Ciências Exatas e Naturais; Universidade Federal do Pará; Belém PA Brasil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos; Instituto de Ciências Exatas e Naturais; Universidade Federal do Pará; Belém PA Brasil
| |
Collapse
|
20
|
Yin Y, Cai M, Zhou X, Li Z, Zhang Y. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 2016; 100:7787-98. [PMID: 27455860 DOI: 10.1007/s00253-016-7733-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
The knowledge of biosynthesis gene clusters, production improving methods, and bioactivity mechanisms is very important for the development of filamentous fungi metabolites. Metabolic engineering and heterologous expression methods can be applied to improve desired metabolite production, when their biosynthesis pathways have been revealed. And, stable supplement is a necessary basis of bioactivity mechanism discovery and following clinical trial. Aspergillus terreus is an outstanding producer of many bioactive agents, and a large part of them are polyketides. In this review, we took polyketides from A. terreus as examples, focusing on 13 polyketide synthase (PKS) genes in A. terreus NIH 2624 genome. The biosynthesis pathways of nine PKS genes have been reported, and their downstream metabolites are lovastatin, terreic acid, terrein, geodin, terretonin, citreoviridin, and asperfuranone, respectively. Among them, lovastatin is a well-known hypolipidemic agent. Terreic acid, terrein, citreoviridin, and asperfuranone show good bioactivities, especially anticancer activities. On the other hand, geodin and terretonin are mycotoxins. So, biosynthesis gene cluster information is important for the production or elimination of them. We also predicted three possible gene clusters that contain four PKS genes by homologous gene alignment with other Aspergillus strains. We think that this is an effective way to mine secondary metabolic gene clusters.
Collapse
Affiliation(s)
- Ying Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
21
|
Sharma R, Lambu MR, Jamwal U, Rani C, Chib R, Wazir P, Mukherjee D, Chaubey A, Khan IA. Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetyltransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus. ACTA ACUST UNITED AC 2016; 21:342-53. [PMID: 26762501 DOI: 10.1177/1087057115625308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Secondary metabolite of Aspergillus terreus, terreic acid, is a reported potent antibacterial that was identified more than 60 years ago, but its cellular target(s) are still unknown. Here we screen its activity against the acetyltransferase domain of a bifunctional enzyme, Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). An absorbance-based assay was used to screen terreic acid against the acetyltransferase activity of E. coli GlmU. Terreic acid was found to inhibit the acetyltransferase domain of E. coli GlmU with an IC50 of 44.24 ± 1.85 µM. Mode of inhibition studies revealed that terreic acid was competitive with AcCoA and uncompetitive with GlcN-1-P. It also exhibited concentration-dependent killing of E. coli ATCC 25922 up to 4× minimum inhibitory concentration and inhibited the growth of biofilms generated by E. coli. Characterization of resistant mutants established mutation in the acetyltransferase domain of GlmU. Terreic acid was also found to be metabolically stable in the in vitro incubations with rat liver microsome in the presence of a NADPH regenerating system. The studies reported here suggest that terreic acid is a potent antimicrobial agent and support that E. coli GlmU acetyltransferase is a molecular target of terreic acid, resulting in its antibacterial activity.
Collapse
Affiliation(s)
- Rashmi Sharma
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Mallikharjuna Rao Lambu
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Natural Products Chemistry: Microbes, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, India
| | - Urmila Jamwal
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Chitra Rani
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| | - Priya Wazir
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Natural Products Chemistry: Microbes, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| |
Collapse
|
22
|
Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges. PLoS One 2015; 10:e0138528. [PMID: 26407167 PMCID: PMC4583450 DOI: 10.1371/journal.pone.0138528] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/01/2015] [Indexed: 01/22/2023] Open
Abstract
Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.
Collapse
Affiliation(s)
- Cheng Cheng
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Lynsey MacIntyre
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Usama Ramadan Abdelmohsen
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Hannes Horn
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Paraskevi N. Polymenakou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Gournes Pediados, Heraklion, Crete, Greece
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail: (RE-E); (UH)
| | - Ute Hentschel
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
- * E-mail: (RE-E); (UH)
| |
Collapse
|
23
|
Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GEM, Lamichhane G, Lameira J. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinb) 2015; 95:95-111. [PMID: 25701501 DOI: 10.1016/j.tube.2015.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is the second leading cause of human mortality from infectious diseases worldwide. The WHO reported 1.3 million deaths and 8.6 million new cases of TB in 2012. Mycobacterium tuberculosis (M. tuberculosis), the infectious bacteria that causes TB, is encapsulated by a thick and robust cell wall. The innermost segment of the cell wall is comprised of peptidoglycan, a layer that is required for survival and growth of the pathogen. Enzymes that catalyse biosynthesis of the peptidoglycan are essential and are therefore attractive targets for discovery of novel antibiotics as humans lack similar enzymes making it possible to selectively target bacteria only. In this paper, we have reviewed the structures and functions of enzymes GlmS, GlmM, GlmU, MurA, MurB, MurC, MurD, MurE and MurF from M. tuberculosis that are involved in peptidoglycan biosynthesis. In addition, we report homology modelled 3D structures of those key enzymes from M. tuberculosis of which the structures are still unknown. We demonstrated that natural substrates can be successfully docked into the active sites of the GlmS and GlmU respectively. It is therefore expected that the models and the data provided herein will facilitate translational research to develop new drugs to treat TB.
Collapse
Affiliation(s)
- Gleiciane Leal Moraes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Guelber Cardoso Gomes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Gyanu Lamichhane
- Johns Hopkins University School of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, 1503 E. Jefferson St, Baltimore, MD 21231, USA
| | - Jerônimo Lameira
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil.
| |
Collapse
|
24
|
Chang CM, Chern J, Chen MY, Huang KF, Chen CH, Yang YL, Wu SH. Avenaciolides: Potential MurA-Targeted Inhibitors Against Peptidoglycan Biosynthesis in Methicillin-Resistant Staphylococcus aureus (MRSA). J Am Chem Soc 2014; 137:267-75. [DOI: 10.1021/ja510375f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ming-Yi Chen
- General
Education Center, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Hrast M, Sosič I, Sink R, Gobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55:2-15. [PMID: 24755374 DOI: 10.1016/j.bioorg.2014.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
Abstract
The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Sink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Boruta T, Bizukojc M. Culture-based and sequence-based insights into biosynthesis of secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol 2014; 175:53-62. [PMID: 24534845 DOI: 10.1016/j.jbiotec.2014.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 01/25/2023]
Abstract
Aspergillus terreus ATCC 20542 was cultivated in various culture media in order to activate its genome-encoded biosynthetic pathways and explore the secondary metabolic repertoire. In addition to mevinolinic acid (lovastatin) and its precursor monacolin L, a number of other secondary metabolites were found in the analyzed cultures, namely terreic acid, citrinin, (+)-geodin, terrein, and dehydrocurvularin. In contrast to previously described gene clusters responsible for production of lovastatin, monacolin L, (+)-geodin and dehydrocurvularin, the gene clusters of A. terreus associated with the formation of terreic acid, citrinin and terrein still await identification. Putative gene clusters potentially related to citrinin and terreic acid biosynthesis were suggested in the publicly available genome of A. terreus NIH 2624. The functions of putative genes in the previously identified cluster of (+)-geodin biosynthesis were predicted by confronting the annotation results with the proposed biosynthetic pathway and published biochemical studies on the underlying enzymes. Since there were no available data regarding genetic aspects of terrein biosynthesis, the candidate gene cluster potentially responsible for the production of terrein was not suggested.
Collapse
Affiliation(s)
- Tomasz Boruta
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wolczanska 213, 90-924 Lodz, Poland.
| | - Marcin Bizukojc
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wolczanska 213, 90-924 Lodz, Poland
| |
Collapse
|
28
|
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014; 23:243-59. [PMID: 24375653 DOI: 10.1002/pro.2414] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022]
Abstract
Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.
Collapse
Affiliation(s)
- I Nikolaidis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, 6 rue Jules Horowitz, 38027, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France; Centre National de la Recherche Scientifique (CNRS), UMR 5075, Grenoble, France; Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
Kaur N, Khokhar M, Jain V, Bharatam PV, Sandhir R, Tewari R. Identification of druggable targets for Acinetobacter baumannii via subtractive genomics and plausible inhibitors for MurA and MurB. Appl Biochem Biotechnol 2013; 171:417-36. [PMID: 23846799 DOI: 10.1007/s12010-013-0372-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
Emergence of the multidrug-resistant pathogens has rendered the current therapies ineffective thereby, resulting in the need for new drugs and drug targets. The accumulating protein sequence data has initiated a drift from classical drug discovery protocols to structure-based drug designing. In the present study, in silico subtractive genomics approach was implemented to find a set of potential drug targets present in an opportunist bacterial pathogen, Acinetobacter baumannii (A. baumannii). Out of the 43 targets identified, further studies for protein model building and lead-inhibitor identification were carried out on two cell-essential targets, MurA and MurB enzymes (of A. baumannii designated as MurAAb and MurBAb) involved in the peptidoglycan biosynthesis pathway of bacteria. The homology model built for each of them was further refined and validated using various available programs like PROCHECK, Errat, ProSA energy plots, etc. Compounds showing activity against MurA and MurB enzymes of other organisms were collected from the literature and were docked into the active site of MurAAb and MurBAb enzymes. Three inhibitors namely, T6361, carbidopa, and aesculin, showed maximum Glide score, hydrogen bonding interactions with the key amino acid residues of both the enzymes and acceptable ADME properties. Furthermore, molecular dynamics simulation studies on MurAAb-T6361 and MurBAb-T6361 complexes suggested that the ligand has a high binding affinity with both the enzymes and the hydrogen bonding with the key residues were stable in the dynamic condition also. Therefore, these ligands have been propsed as dual inhibitors and promising lead compounds for the drug design against MurAAb and MurBAb enzymes.
Collapse
Affiliation(s)
- Navkiran Kaur
- Centre for Microbial Biotechnology, Panjab University, Sector 14, Chandigarh 160014, India
| | | | | | | | | | | |
Collapse
|
30
|
Olesen SH, Ingles DJ, Yang Y, Schönbrunn E. Differential antibacterial properties of the MurA inhibitors terreic acid and fosfomycin. J Basic Microbiol 2013; 54:322-6. [PMID: 23686727 DOI: 10.1002/jobm.201200617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/03/2012] [Indexed: 11/06/2022]
Abstract
Terreic acid is a metabolite with antibiotic properties produced by the fungus Aspergillus terreus, but its cellular target remains unknown. We recently reported that terreic acid inactivates the bacterial cell wall biosynthetic enzyme MurA in vitro by covalent reaction with residue Cys115 in a similar manner as the MurA-specific antibiotic fosfomycin. To address if terreic acid also targets MurA in vivo, we conducted antibacterial studies using selected E. coli strains in parallel with fosfomycin. While overexpression of MurA conferred resistance to fosfomycin, it did not protect cells treated with terreic acid. Furthermore, flow cytometry revealed that the antibiotic action of terreic acid appears to be primarily bacteriostatic, as opposed to the bactericidal action observed for fosfomycin. Combined, the data suggest that MurA is not the molecular target of terreic acid and that the antibiotic activity of terreic acid proceeds through a different mechanism of action. The methodology applied here provides a reliable and convenient tool to rapidly assess the potential of newly discovered in vitro inhibitors to target residue Cys115 of MurA in the cell.
Collapse
Affiliation(s)
- Sanne H Olesen
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | | |
Collapse
|
31
|
Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother 2013; 57:2801-8. [PMID: 23571543 DOI: 10.1128/aac.00223-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fosfomycin targets the first step of peptidoglycan biosynthesis in Streptococcus pneumoniae catalyzed by UDP-N-acetylglucosamine enolpyruvyltransferase (MurA1). We investigated whether heteroresistance to fosfomycin occurs in S. pneumoniae. We found that of 11 strains tested, all but 1 (Hungary(19A)) displayed heteroresistance and that deletion of murA1 abolished heteroresistance. Hungary(19A) differs from the other strains by a single amino acid substitution in MurA1 (Ala(364)Thr). To test whether this substitution is responsible for the lack of heteroresistance, it was introduced into strain D39. The heteroresistance phenotype of strain D39 was not changed. Furthermore, no relevant structural differences between the MurA1 crystal structures of heteroresistant strain D39 and nonheteroresistant strain Hungary(19A) were found. Our results reveal that heteroresistance to fosfomycin is the predominant phenotype of S. pneumoniae and that MurA1 is required for heteroresistance to fosfomycin but is not the only factor involved. The findings provide a caveat for any future use of fosfomycin in the treatment of pneumococcal infections.
Collapse
|
32
|
Lovering AL, Safadi SS, Strynadka NCJ. Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 2012; 81:451-78. [PMID: 22663080 DOI: 10.1146/annurev-biochem-061809-112742] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.
Collapse
Affiliation(s)
- Andrew L Lovering
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
33
|
Zhu JY, Yang Y, Han H, Betzi S, Olesen SH, Marsilio F, Schönbrunn E. Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). J Biol Chem 2012; 287:12657-67. [PMID: 22378791 PMCID: PMC3339971 DOI: 10.1074/jbc.m112.342725] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
The enzyme MurA has been an established antibiotic target since the discovery of fosfomycin, which specifically inhibits MurA by covalent modification of the active site residue Cys-115. Early biochemical studies established that Cys-115 also covalently reacts with substrate phosphoenolpyruvate (PEP) to yield a phospholactoyl adduct, but the structural and functional consequences of this reaction remained obscure. We captured and depicted the Cys-115-PEP adduct of Enterobacter cloacae MurA in various reaction states by X-ray crystallography. The data suggest that cellular MurA predominantly exists in a tightly locked complex with UDP-N-acetylmuramic acid (UNAM), the product of the MurB reaction, with PEP covalently attached to Cys-115. The uniqueness and rigidity of this "dormant" complex was previously not recognized and presumably accounts for the failure of drug discovery efforts toward the identification of novel and effective MurA inhibitors. We demonstrate that recently published crystal structures of MurA from various organisms determined by different laboratories were indeed misinterpreted and actually contain UNAM and covalently bound PEP. The Cys-115-PEP adduct was also captured in vitro during the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosamine. The now available series of crystal structures allows a comprehensive view of the reaction cycle of MurA. It appears that the covalent reaction of MurA with PEP fulfills dual functions by tightening the complex with UNAM for the efficient feedback regulation of murein biosynthesis and by priming the PEP molecule for instantaneous reaction with substrate UDP-N-acetylglucosamine.
Collapse
Affiliation(s)
- Jin-Yi Zhu
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Yan Yang
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Huijong Han
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Stephane Betzi
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Sanne H. Olesen
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Frank Marsilio
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Ernst Schönbrunn
- From the Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| |
Collapse
|
34
|
Bensen DC, Rodriguez S, Nix J, Cunningham ML, Tari LW. Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:382-5. [PMID: 22505403 PMCID: PMC3325803 DOI: 10.1107/s1744309112006720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
Abstract
The development of new antibiotics is necessitated by the rapid development of resistance to current therapies. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), which catalyzes the first committed step of bacterial peptidoglycan biosynthesis, is a prime candidate for therapeutic intervention. MurA is the target of the antibiotic fosfomycin, a natural product produced by Streptomyces. Despite possessing a high degree of sequence conservation with MurA enzymes from fosfomycin-susceptible organisms, recent microbiological studies suggest that MurA from Vibrio fischeri (VfiMurA) may confer fosfomycin resistance via a mechanism that is not yet understood. The crystal structure of VfiMurA in a ternary complex with the substrate UDP-N-acetylglucosamine (UNAG) and fosfomycin has been solved to a resolution of 1.93 Å. Fosfomycin is known to inhibit MurA by covalently binding to a highly conserved cysteine in the active site of the enzyme. A comparison of the title structure with the structure of fosfomycin-susceptible Haemophilus influenzae MurA (PDB entry 2rl2) revealed strikingly similar conformations of the mobile substrate-binding loop and clear electron density for a fosfomycin-cysteine adduct. Based on these results, there are no distinguishing sequence/structural features in VfiMurA that would translate to a diminished sensitivity to fosfomycin. However, VfiMurA is a robust crystallizer and shares high sequence identity with many clinically relevant bacterial pathogens. Thus, it would serve as an ideal system for use in the structure-guided optimization of new antibacterial agents.
Collapse
Affiliation(s)
- D. C. Bensen
- Structural Biology, Trius Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92008, USA
| | - S. Rodriguez
- Structural Biology, Trius Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92008, USA
| | - J. Nix
- Structural Biology, Trius Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92008, USA
| | - M. L. Cunningham
- Structural Biology, Trius Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92008, USA
| | - L. W. Tari
- Structural Biology, Trius Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92008, USA
| |
Collapse
|
35
|
Dharmaraja AT, Dash TK, Konkimalla VB, Chakrapani H. Synthesis, thiol-mediated reactive oxygen species generation profiles and anti-proliferative activities of 2,3-epoxy-1,4-naphthoquinones. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00234a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Gautam A, Rishi P, Tewari R. UDP-N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments. Appl Microbiol Biotechnol 2011; 92:211-25. [PMID: 21822642 DOI: 10.1007/s00253-011-3512-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/17/2011] [Accepted: 07/24/2011] [Indexed: 11/24/2022]
Abstract
The emergence of antibiotic resistance in bacterial pathogens has foxed the health organizations which are actively scrambling for solutions. The available data indicate an increased morbidity in infections often leading to mortality among patients where drug-resistant pathogens have negated the effect of the medicines. In the context of developing "novel bacterial inhibitors" for killing or arresting the growth of drug-resistant pathogens, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is an enzyme that provides hope for the future. This enzyme catalyzes the first committed step in the biosynthesis of peptidoglycan, an integral and essential component of the bacterial cell wall. MurA enzyme is neither present nor required by mammals and shows poor homology with human proteins. Therefore, it is an ideal target for antibacterial chemotherapy. Till date, 18 structures of MurA (in native and ligand-bound forms) from different bacterial pathogens have been solved. In the last 2 years, eight structures of bacterial MurA have been submitted to the Protein Data Bank and many inhibitors discovered. The present review discusses the structural and functional features of MurA of bacterial pathogens along with the development of MurA-targeted inhibitors.
Collapse
Affiliation(s)
- Ankur Gautam
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | |
Collapse
|
37
|
Jiang S, Gilpin ME, Attia M, Ting YL, Berti PJ. Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry 2011; 50:2205-12. [PMID: 21294548 DOI: 10.1021/bi1017842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MurAs (enolpyruvyl-UDP-GlcNAc synthases) from pathogenic bacteria such as Borrelia burgdorferi (Lyme disease) and tuberculosis are fosfomycin resistant because an Asp-for-Cys substitution prevents them from being alkylated by this epoxide antibiotic. Previous attempts to characterize naturally Asp-containing MurAs have resulted in no protein or no activity. We have expressed and characterized His-tagged Lyme disease MurA (Bb_MurA(H6)). The protein was most soluble at high salt concentrations but maximally active around physiological ionic strength. The steady-state kinetic parameters at pH 7 were k(cat) = 1.07 ± 0.03 s(-1), K(M,PEP) = 89 ± 12 μM, and K(M,UDP-GlcNAc) = 45 ± 7 μM. Mutating the active site Asp to Cys, D116C, caused a 21-fold decrease in k(cat) and rendered the enzyme fosfomycin sensitive. The pH profile of k(cat) was bell-shaped and centered around pH 5.3 for Bb_MurA(H6), with pK(a1) = 3.8 ± 0.2 and pK(a2) = 7.4 ± 0.2. There was little change in pK(a1) with the D116C mutant, 3.5 ± 0.3, but pK(a2) shifted to >11. This demonstrated that the pK(a2) of 7.4 was due to D116, almost 3 pH units above an unperturbed carboxylate, and that it must be protonated for activity. This supports D116's proposed role as a general acid/base catalyst. As fosfomycin does not react with simple thiols, nor most protein thiols, the reactivity of D116C with fosfomycin, combined with the strongly perturbed pK(a2) for D116, strongly implies an unusual active site environment and a chemical role in catalysis for Asp/Cys. There is also good evidence for C115 having a role in product release. Both roles may be operative for both Asp- and Cys-containing MurAs.
Collapse
Affiliation(s)
- Shan Jiang
- Chemical Biology Graduate Program, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | | | | | | | | |
Collapse
|
38
|
Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate. Proc Natl Acad Sci U S A 2010; 107:17968-73. [PMID: 20921376 DOI: 10.1073/pnas.1007559107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial niches contain toxic chemicals capable of forcing organisms into periods of intense natural selection to afford survival. Elucidating the mechanisms by which microbes evade environmental threats has direct relevance for understanding and combating the rise of antibiotic resistance. In this study we used a toxic small-molecule, bromoacetate, to model the selective pressures imposed by antibiotics and anthropogenic toxins. We report the results of genetic selection experiments that identify nine genes from Escherichia coli whose overexpression affords survival in the presence of a normally lethal concentration of bromoacetate. Eight of these genes encode putative transporters or transmembrane proteins, while one encodes the essential peptidoglycan biosynthetic enzyme, UDP-N-acetylglucosamine enolpyruvoyl transferase (MurA). Biochemical studies demonstrate that the primary physiological target of bromoacetate is MurA, which becomes irreversibly inactivated via alkylation of a critical active-site cysteine. We also screened a comprehensive library of E. coli single-gene deletion mutants and identified 63 strains displaying increased susceptibility to bromoacetate. One hypersensitive bacterium lacks yliJ, a gene encoding a predicted glutathione transferase. Herein, YliJ is shown to catalyze the glutathione-dependent dehalogenation of bromoacetate with a k(cat)/K(m) value of 5.4 × 10(3) M(-1) s(-1). YliJ displays exceptional substrate specificity and produces a rate enhancement exceeding 5 orders of magnitude, remarkable characteristics for reactivity with a nonnatural molecule. This study illustrates the wealth of intrinsic survival mechanisms that can be exploited by bacteria when they are challenged with toxins.
Collapse
|