1
|
Zarges C, Riemer J. Oxidative protein folding in the intermembrane space of human mitochondria. FEBS Open Bio 2024; 14:1610-1626. [PMID: 38867508 PMCID: PMC11452306 DOI: 10.1002/2211-5463.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The mitochondrial intermembrane space hosts a machinery for oxidative protein folding, the mitochondrial disulfide relay. This machinery imports a large number of soluble proteins into the compartment, where they are retained through oxidative folding. Additionally, the disulfide relay enhances the stability of many proteins by forming disulfide bonds. In this review, we describe the mitochondrial disulfide relay in human cells, its components, and their coordinated collaboration in mechanistic detail. We also discuss the human pathologies associated with defects in this machinery and its protein substrates, providing a comprehensive overview of its biological importance and implications for health.
Collapse
Affiliation(s)
| | - Jan Riemer
- Institute for BiochemistryUniversity of CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
2
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Klein M, Wild K, Sinning I. Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome. Nat Commun 2024; 15:7681. [PMID: 39227397 PMCID: PMC11372111 DOI: 10.1038/s41467-024-51964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Nascent chains undergo co-translational enzymatic processing as soon as their N-terminus becomes accessible at the ribosomal polypeptide tunnel exit (PTE). In eukaryotes, N-terminal methionine excision (NME) by Methionine Aminopeptidases (MAP1 and MAP2), and N-terminal acetylation (NTA) by N-Acetyl-Transferase A (NatA), is the most common combination of subsequent modifications carried out on the 80S ribosome. How these enzymatic processes are coordinated in the context of a rapidly translating ribosome has remained elusive. Here, we report two cryo-EM structures of multi-enzyme complexes assembled on vacant human 80S ribosomes, indicating two routes for NME-NTA. Both assemblies form on the 80S independent of nascent chain substrates. Irrespective of the route, NatA occupies a non-intrusive 'distal' binding site on the ribosome which does not interfere with MAP1 or MAP2 binding nor with most other ribosome-associated factors (RAFs). NatA can partake in a coordinated, dynamic assembly with MAP1 through the hydra-like chaperoning function of the abundant Nascent Polypeptide-Associated Complex (NAC). In contrast to MAP1, MAP2 completely covers the PTE and is thus incompatible with NAC and MAP1 recruitment. Together, our data provide the structural framework for the coordinated orchestration of NME and NTA in protein biogenesis.
Collapse
Affiliation(s)
- Marius Klein
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Rozans S, Moghaddam AS, Wu Y, Atanasoff K, Nino L, Dunne K, Pashuck ET. Quantifying and Controlling the Proteolytic Degradation of Cell Adhesion Peptides. ACS Biomater Sci Eng 2024; 10:4916-4926. [PMID: 38968389 PMCID: PMC11322908 DOI: 10.1021/acsbiomaterials.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work, we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalizations to better understand how simple modifications can be used to reduce the nonspecific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types nonspecifically degraded peptides as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 h, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with the cells. We found that simple modifications to the termini could significantly reduce or completely abolish nonspecific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed nonspecific degradation. We also found that there were minimal differences in peptide degradation across cell donors and that sequences mimicking different peptides commonly used to functionalize biomaterials all had significant nonspecific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.
Collapse
Affiliation(s)
- Samuel
J. Rozans
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - Abolfazl Salehi Moghaddam
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - Yingjie Wu
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - Kayleigh Atanasoff
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - Liliana Nino
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - Katelyn Dunne
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| | - E. Thomas Pashuck
- Department of Bioengineering, Lehigh University, 7
Asa Drive, Suite 205, Bethlehem, PA 18015, United States
| |
Collapse
|
5
|
Das BC, Chokkalingam P, Shareef MA, Shukla S, Das S, Saito M, Weiss LM. Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes. J Eukaryot Microbiol 2024; 71:e13036. [PMID: 39036929 DOI: 10.1111/jeu.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024]
Abstract
Methionine aminopeptidases (MetAPs) have emerged as a target for medicinal chemists in the quest for novel therapeutic agents for treating cancer, obesity, and other disorders. Methionine aminopeptidase is a metalloenzyme with two structurally distinct forms in humans, MetAP-1 and MetAP-2. The MetAP2 inhibitor fumagillin, which was used as an amebicide in the 1950s, has been used for the successful treatment of microsporidiosis in humans; however, it is no longer commercially available. Despite significant efforts and investments by many pharmaceutical companies, no new MetAP inhibitors have been approved for the clinic. Several lead compounds have been designed and synthesized by researchers as potential inhibitors of MetAP and evaluated for their potential activity in a wide range of diseases. MetAP inhibitors such as fumagillin, TNP-470, beloranib, and reversible inhibitors and their analogs guide new prospects for MetAP inhibitor development in the ongoing quest for new pharmacological indications. This perspective provides insights into recent advances related to MetAP, as a potential therapeutic target in drug discovery, bioactive small molecule MetAP2 inhibitors, and data on the role of MetAP-2 as a therapeutic target for microsporidiosis.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Parthiban Chokkalingam
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Srushti Shukla
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Louis M Weiss
- Departments of Pathology and Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Pretzler M, Rompel A. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chembiochem 2024; 25:e202400050. [PMID: 38386893 DOI: 10.1002/cbic.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
"Mushroom tyrosinase" from the common button mushroom is the most frequently used source of tyrosinase activity, both for basic and applied research. Here, the complete tyrosinase family from Agaricus bisporus var. bisporus (abPPO1-6) was cloned from mRNA and expressed heterologously using a single protocol. All six isoenzymes accept a wide range of phenolic and catecholic substrates, but display pronounced differences in their specificity and enzymatic reaction rate. AbPPO3 ignores γ-l-glutaminyl-4-hydroxybenzene (GHB), a natural phenol present in mM concentrations in A. bisporus, while AbPPO4 processes 100 μM GHB at 4-times the rate of the catechol l-DOPA. All six AbPPOs are biochemically distinct enzymes fit for different roles in the fungal life cycle, which challenges the traditional concept of isoenzymes as catalyzing the same physiological reaction and varying only in secondary properties. Transferring this approach to other enzymes and organisms will greatly stimulate both the study of the in vivo function(s) of enzymes and the application of these highly efficient catalysts.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| |
Collapse
|
7
|
Yi SA, Sepic S, Schulman BA, Ordureau A, An H. mTORC1-CTLH E3 ligase regulates the degradation of HMG-CoA synthase 1 through the Pro/N-degron pathway. Mol Cell 2024; 84:2166-2184.e9. [PMID: 38788716 PMCID: PMC11186538 DOI: 10.1016/j.molcel.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.
Collapse
Affiliation(s)
- Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heeseon An
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Rozans SJ, Moghaddam AS, Wu Y, Atanasoff K, Nino L, Dunne K, Pashuck ET. Quantifying and controlling the proteolytic degradation of cell adhesion peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590329. [PMID: 38712239 PMCID: PMC11071418 DOI: 10.1101/2024.04.19.590329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalization to better understand how simple modifications can be used to reduce non-specific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types non-specifically degraded peptide as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 hours, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with cells. We found that simple modifications to the termini could significantly reduce or completely abolish non-specific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed non-specific degradation. We also found that there were minimal differences across cell donors, and that sequences mimicking different peptides commonly-used to functionalized biomaterials all had significant non-specific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.
Collapse
|
11
|
Bridge HN, Leiter W, Frazier CL, Weeks AM. An N terminomics toolbox combining 2-pyridinecarboxaldehyde probes and click chemistry for profiling protease specificity. Cell Chem Biol 2024; 31:534-549.e8. [PMID: 37816350 PMCID: PMC10960722 DOI: 10.1016/j.chembiol.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini. By incorporating a commercially available alkyne-modified 2PCA in combination with Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), our strategy eliminates the need for chemical synthesis of N-terminal probes. Using these reagents, we developed PICS2 (Proteomic Identification of Cleavage Sites with 2PCA) to profile the specificity of subtilisin/kexin-type proprotein convertases (PCSKs). We also implemented CHOPPER (chemical enrichment of protease substrates with purchasable, elutable reagents) for global sequencing of apoptotic proteolytic cleavage sites. Based on their broad applicability and ease of implementation, PICS2 and CHOPPER are useful tools that will advance our understanding of protease biology.
Collapse
Affiliation(s)
- Haley N Bridge
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - William Leiter
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Clara L Frazier
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Friese-Hamim M, Ortiz Ruiz MJ, Bogatyrova O, Keil M, Rohdich F, Blume B, Leuthner B, Czauderna F, Hahn D, Jabs J, Jaehrling F, Heinrich T, Kellner R, Chan K, Tong AH, Wienke D, Moffat J, Blaukat A, Zenke FT. Novel Methionine Aminopeptidase 2 Inhibitor M8891 Synergizes with VEGF Receptor Inhibitors to Inhibit Tumor Growth of Renal Cell Carcinoma Models. Mol Cancer Ther 2024; 23:159-173. [PMID: 37940144 PMCID: PMC10831447 DOI: 10.1158/1535-7163.mct-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.
Collapse
Affiliation(s)
- Manja Friese-Hamim
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Maria J. Ortiz Ruiz
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Olga Bogatyrova
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Marina Keil
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Felix Rohdich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Beatrix Blume
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Birgitta Leuthner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Czauderna
- Research Unit Oncology, EMD Serono Research & Development Institute Inc., Billerica, Massachusetts
| | - Diane Hahn
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Julia Jabs
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Jaehrling
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Timo Heinrich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Roland Kellner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy H.Y. Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Wienke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andree Blaukat
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
14
|
Ye F, Li C, Liu FL, Liu X, Xu P, Luo RH, Song W, Zheng YT, Ying T, Yu B, Wang P. Semisynthesis of homogeneous spike RBD glycoforms from SARS-CoV-2 for profiling the correlations between glycan composition and function. Natl Sci Rev 2024; 11:nwae030. [PMID: 38333067 PMCID: PMC10852988 DOI: 10.1093/nsr/nwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 02/10/2024] Open
Abstract
Vaccines have been the primary remedy in the global fight against coronavirus disease 2019 (COVID-19). The receptor-binding domain (RBD) of the spike protein, a critical viral immunogen, is affected by the heterogeneity of its glycan structures and relatively low immunogenicity. Here, we describe a scalable synthetic platform that enables the precise synthesis of homogeneously glycosylated RBD, facilitating the elucidation of carbohydrate structure-function relationships. Five homogeneously glycosylated RBDs bearing biantennary glycans were prepared, three of which were conjugated to T-helper epitope (Tpep) from tetanus toxoid to improve their weak immune response. Relative to natural HEK293-derived RBD, synthetic RBDs with biantennary N-glycan elicited a higher level of neutralising antibodies against SARS-CoV-2 in mice. Furthermore, RBDs containing Tpep elicited significant immune responses in transgenic mice expressing human angiotensin-converting enzyme 2. Our collective data suggest that trimming the N-glycans and Tpep conjugation of RBD could potentially serve as an effective strategy for developing subunit vaccines providing efficient protection.
Collapse
Affiliation(s)
- Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xinliang Liu
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenping Song
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen 518057, China
| |
Collapse
|
15
|
Klein MA, Wild K, Kišonaitė M, Sinning I. Methionine aminopeptidase 2 and its autoproteolysis product have different binding sites on the ribosome. Nat Commun 2024; 15:716. [PMID: 38267453 PMCID: PMC10808355 DOI: 10.1038/s41467-024-44862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
Excision of the initiator methionine is among the first co-translational processes that occur at the ribosome. While this crucial step in protein maturation is executed by two types of methionine aminopeptidases in eukaryotes (MAP1 and MAP2), additional roles in disease and translational regulation have drawn more attention to MAP2. Here, we report several cryo-EM structures of human and fungal MAP2 at the 80S ribosome. Irrespective of nascent chains, MAP2 can occupy the tunnel exit. On nascent chain displaying ribosomes, the MAP2-80S interaction is highly dynamic and the MAP2-specific N-terminal extension engages in stabilizing interactions with the long rRNA expansion segment ES27L. Loss of this extension by autoproteolytic cleavage impedes interactions at the tunnel, while promoting MAP2 to enter the ribosomal A-site, where it engages with crucial functional centers of translation. These findings reveal that proteolytic remodeling of MAP2 severely affects ribosome binding, and set the stage for targeted functional studies.
Collapse
Affiliation(s)
- Marius A Klein
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Miglė Kišonaitė
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Wang T, Wang Z, Wang R, Zhang L, Zhang Y, Lu H. Highly efficient and chemoselective blocking of free amino group by ortho-phthalaldehyde (OPA) for comprehensive analysis of protein terminome. Talanta 2024; 267:125262. [PMID: 37804787 DOI: 10.1016/j.talanta.2023.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Herein, we introduced ortho-phthalaldehyde (OPA) for blocking free amino groups and established a simple and robust method for comprehensive profiling of protein terminome based on strong cation exchange chromatography (SCX) fractionation. With the highly efficient and chemoseletive amine-group blocking, we identified 2271 canonical human protein N-termini, 1650 canonical human protein C-termini, as well as 645 protein neo-N-termini from HeLa cells.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongjie Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Rui Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Ying Zhang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Lee Y, Kim H, Lee E, Hahn H, Heo Y, Jang DM, Kwak K, Kim HJ, Kim HS. Structural insights into N-terminal methionine cleavage by the human mitochondrial methionine aminopeptidase, MetAP1D. Sci Rep 2023; 13:22326. [PMID: 38102161 PMCID: PMC10724148 DOI: 10.1038/s41598-023-49332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Isozymes are enzymes that catalyze identical biological reactions, yet exhibit slight variations in structures and catalytic efficiency, which enables the precise adjustment of metabolism to fulfill the specific requirements of a particular tissue or stage of development. Methionine aminopeptidase (MetAP) isozymes function a critical role in cleaving N-terminal methionine from nascent proteins to generate functional proteins. In humans, two distinct MetAP types I and II have been identified, with type I further categorized into cytosolic (MetAP1) and mitochondrial (MetAP1D) variants. However, despite extensive structural studies on both bacterial and human cytosolic MetAPs, the structural information remains unavailable for human mitochondrial MetAP. This study was aimed to elucidate the high-resolution structures of human mitochondrial MetAP1D in its apo-, cobalt-, and methionine-bound states. Through a comprehensive analysis of the determined structures and a docking simulation model with mitochondrial substrate peptides, we present mechanistic insights into the cleavage process of the initiator methionine from mitochondrial proteins. Notably, despite the shared features at the active site between the cytosolic and mitochondrial MetAP type I isozymes, we identified distinct structural disparities within the active-site pocket primarily contributed by two specific loops that could play a role in accommodating specific substrates. These structural insights offer a basis for the further exploration of MetAP isozymes as critical players in cellular processes and potential therapeutic applications.
Collapse
Affiliation(s)
- Yeon Lee
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hayoung Kim
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
- Division of Medical Sciences, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunji Lee
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyunggu Hahn
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Yoonyoung Heo
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Dong Man Jang
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Kihyuck Kwak
- Division of Medical Sciences, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea.
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
19
|
Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, Nozaki T. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother 2023; 67:e0056023. [PMID: 37874291 PMCID: PMC10648944 DOI: 10.1128/aac.00560-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology and Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. Nat Struct Mol Biol 2023; 30:1816-1825. [PMID: 37957305 DOI: 10.1038/s41594-023-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
21
|
Fassad MR, Rumman N, Junger K, Patel MP, Thompson J, Goggin P, Ueffing M, Beyer T, Boldt K, Lucas JS, Mitchison HM. Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations. Hum Mol Genet 2023; 32:3090-3104. [PMID: 37555648 PMCID: PMC10586200 DOI: 10.1093/hmg/ddad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- Department of Human Genetics, Medical Research Institute, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Nisreen Rumman
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital and Al-Quds University, East Jerusalem 91220, Palestine
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St #441, New Haven, CT 06520, United States
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Mitali P Patel
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
22
|
Liu M, Morewood R, Yoshisada R, Pascha MN, Hopstaken AJP, Tarcoveanu E, Poole DA, de Haan CAM, Nitsche C, Jongkees SAK. Selective thiazoline peptide cyclisation compatible with mRNA display and efficient synthesis. Chem Sci 2023; 14:10561-10569. [PMID: 37799990 PMCID: PMC10548512 DOI: 10.1039/d3sc03117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Peptide display technologies are a powerful method for discovery of new bioactive sequences, but linear sequences are often very unstable in a biological setting. Macrocyclisation of such peptides is beneficial for target affinity, selectivity, stability, and cell permeability. However, macrocyclisation of a linear hit is unreliable and requires extensive structural knowledge. Genetically encoding macrocyclisation during the discovery process is a better approach, and so there is a need for diverse cyclisation options that can be deployed in the context of peptide display techniques such as mRNA display. In this work we show that meta-cyanopyridylalanine (mCNP) can be ribosomally incorporated into peptides, forming a macrocycle in a spontaneous and selective reaction with an N-terminal cysteine generated from bypassing the initiation codon in translation. This reactive amino acid can also be easily incorporated into peptides during standard Fmoc solid phase peptide synthesis, which can otherwise be a bottleneck in transferring from peptide discovery to peptide testing and application. We demonstrate the potential of this new method by discovery of macrocyclic peptides targeting influenza haemagglutinin, and molecular dynamics simulation indicates the mCNP cross-link stabilises a beta sheet structure in a representative of the most abundant cluster of active hits. Cyclisation by mCNP is also shown to be compatible with thioether macrocyclisation at a second cysteine to form bicycles of different architectures, provided that cysteine placement reinforces selectivity, with this bicyclisation happening spontaneously and in a controlled manner during peptide translation. Our new approach generates macrocycles with a more rigid cross-link and with better control of regiochemistry when additional cysteines are present, opening these up for further exploitation in chemical modification of in vitro translated peptides, and so is a valuable addition to the peptide discovery toolbox.
Collapse
Affiliation(s)
- Minglong Liu
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Richard Morewood
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Mirte N Pascha
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University Yalelaan 1 3584 CL Utrecht The Netherlands
| | - Antonius J P Hopstaken
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Eliza Tarcoveanu
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - David A Poole
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University Yalelaan 1 3584 CL Utrecht The Netherlands
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Seino A K Jongkees
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam Amsterdam The Netherlands
| |
Collapse
|
23
|
Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA. Recombinant Fusion Protein Containing Plant Nigellothionin Regulates the Growth of Food-Spoiling Fungus ( Aspergillus niger). Foods 2023; 12:3002. [PMID: 37628001 PMCID: PMC10453017 DOI: 10.3390/foods12163002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to obtain a recombinant chimeric protein named trx-NsW2 via theheterologous expression of the multifunctional antimicrobial peptide nigellothionin from black cumin (Nigella sativa L.) seeds in the Escherichia coli system. The protein was purified using a combination of Ni-NTA affinity chromatography and reversed-phase HPLC. Based on the HPLC calibration, the total yield of the protein was calculated to be 650 mg/L of bacterial culture. The fungistatic activity of trx-NsW2 against the food-spoiling fungus Aspergillus niger was demonstrated as itinhibited the maturation of conidiawithout affecting conidial germination or fungal growth. In contrast to mature nigellothionin NsW2, the fusion protein showeda low level of cytotoxicity towards both normal and tumor cell lines at concentrationsof up to 100-200 µM. Interestingly, at lower concentrations, it even stimulated cytokinesis. These findings are of critical importance for applying chimeric antimicrobial proteins obtained via microbiological synthesis in applied science.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| | - Dmitry Yu. Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
| | | | - Vladimir V. Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia;
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| |
Collapse
|
24
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
26
|
Pan B, Gardner SM, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-Synthetic CoA-α-Synuclein Constructs Trap N-Terminal Acetyltransferase NatB for Binding Mechanism Studies. J Am Chem Soc 2023; 145:14019-14030. [PMID: 37319422 PMCID: PMC10728591 DOI: 10.1021/jacs.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sarah M. Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kollin Schultz
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann M. Perez
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sunbin Deng
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Kohei Sato
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Gamerdinger M, Jia M, Schloemer R, Rabl L, Jaskolowski M, Khakzar KM, Ulusoy Z, Wallisch A, Jomaa A, Hunaeus G, Scaiola A, Diederichs K, Ban N, Deuerling E. NAC controls cotranslational N-terminal methionine excision in eukaryotes. Science 2023; 380:1238-1243. [PMID: 37347872 DOI: 10.1126/science.adg3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
N-terminal methionine excision from newly synthesized proteins, catalyzed cotranslationally by methionine aminopeptidases (METAPs), is an essential and universally conserved process that plays a key role in cell homeostasis and protein biogenesis. However, how METAPs interact with ribosomes and how their cleavage specificity is ensured is unknown. We discovered that in eukaryotes the nascent polypeptide-associated complex (NAC) controls ribosome binding of METAP1. NAC recruits METAP1 using a long, flexible tail and provides a platform for the formation of an active methionine excision complex at the ribosomal tunnel exit. This mode of interaction ensures the efficient excision of methionine from cytosolic proteins, whereas proteins targeted to the endoplasmic reticulum are spared. Our results suggest a broader mechanism for how access of protein biogenesis factors to translating ribosomes is controlled.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Min Jia
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Renate Schloemer
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Laurenz Rabl
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Katrin M Khakzar
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Zeynel Ulusoy
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Annalena Wallisch
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gundula Hunaeus
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Kay Diederichs
- Department of Biology, Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
28
|
Fuchs ACD. Specific, sensitive and quantitative protein detection by in-gel fluorescence. Nat Commun 2023; 14:2505. [PMID: 37130834 PMCID: PMC10154401 DOI: 10.1038/s41467-023-38147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
Recombinant proteins in complex solutions are typically detected with tag-specific antibodies in Western blots. Here we describe an antibody-free alternative in which tagged proteins are detected directly in polyacrylamide gels. For this, the highly specific protein ligase Connectase is used to selectively fuse fluorophores to target proteins carrying a recognition sequence, the CnTag. Compared to Western blots, this procedure is faster, more sensitive, offers a better signal-to-noise ratio, requires no optimization for different samples, allows more reproducible and accurate quantifications, and uses freely available reagents. With these advantages, this method represents a promising alternative to the state of the art and may facilitate studies on recombinant proteins.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
Pan B, Gardner S, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-synthetic CoA-α-Synuclein Constructs Trap N-terminal Acetyltransferase NatB for Binding Mechanism Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535351. [PMID: 37066334 PMCID: PMC10104007 DOI: 10.1101/2023.04.03.535351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases (NATs). A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes and their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
|
30
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528768. [PMID: 36824937 PMCID: PMC9949036 DOI: 10.1101/2023.02.15.528768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. The start codon-associated ribosome frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra unannotated from human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational "noise" in nutrient stress adaptation.
Collapse
|
31
|
A single amino acid difference between archaeal and human type 2 methionine aminopeptidases differentiates their affinity towards ovalicin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140881. [PMID: 36396098 DOI: 10.1016/j.bbapap.2022.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
In almost all living cells, methionine aminopeptidase (MetAP) co-translationally cleaves the initiator methionine in at least 70% of the newly synthesized polypeptides. MetAPs are typically classified into Type 1 and Type 2. While prokaryotes and archaea contain only either Type 1 or Type 2 MetAPs respectively, eukaryotes contain both types of enzymes. Almost all MetAPs published till date cleave only methionine from the amino terminus of the substrate peptides. Earlier experiments on crude Type 2a MetAP isolated from Pyrococcus furiosus (PfuMetAP2a) cosmid protein library was shown to cleave leucine in addition to methionine. Authors in that study have ruled out the PfuMetAP2a activity against leucine substrates and assumed it to be a background reaction contributed by other contaminating proteases. In the current paper, using the pure recombinant enzyme, we report that indeed activity against leucine is directly carried out by the PfuMetAP2a. In addition, the natural product ovalicin which is a specific covalent inhibitor of Type 2 MetAPs does not show efficient inhibition against the PfuMetAP2a. Bioinformatic analysis suggested that a glycine in eukaryotic MetAP2s (G222 in human MetAP2b) and asparagine (N53 in PfuMetAP2a) in archaeal MetAP2s positioned at the analogous position. N53 side chain forms a hydrogen bond with a conserved histidine (H62) at the entrance of the active site and alters its orientation to accommodate the ovalicin. This slight orientational difference of the H62, reduces affinity of the ovalicin by 300,000-fold when compared with the HsMetAP2b inhibition. This difference in the activity is partly reduced in the case of N53G mutation of the PfuMetAP2a.
Collapse
|
32
|
In vitro production of N-degron fused proteins and its application. Methods Enzymol 2023. [PMID: 37532410 DOI: 10.1016/bs.mie.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The N-degron pathway, first discovered several decades ago by Varshavsky's laboratory, controls the half-life of target proteins depending on their N-terminal residues. In vivo cell biology studies have established the physiological role of the N-degron pathway. However, in vitro studies such as biochemical assays and structural biology studies are relatively limited. The N-degron substrates cannot be obtained via simple protein expression. The N-degron residues are exposed via the proteolytic process from the translated nascent polypeptide chains. Thus, methods for the fusion expression with several cleavable tags and subsequent treatment with specific proteases to design the exposed N-degron signals have been introduced. Recently, we developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B (LC3B), a key marker protein of autophagy, to obtain a high yield of the purified target proteins with variable N-terminal residues for various biochemical studies including enzymatic and binding assays, and crystallization of N-degron complex. This chapter describes the protocols that include the vector map designed for producing LC3B fused target proteins, methods for expression and purification of an example protein, p62/SQSMT1, using different N-terminal residues, and methods to obtain the purified ATG4B protease, which is used for processing LC3B tag and exposing the required N-terminal residues of the target protein.
Collapse
|
33
|
Hempfling JP, Sekera ER, Sarkar A, Hummon AB, Pei D. Generation of Proteins with Free N-Terminal Cysteine by Aminopeptidases. J Am Chem Soc 2022; 144:21763-21771. [PMID: 36378906 PMCID: PMC9923720 DOI: 10.1021/jacs.2c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient, site-specific, and bio-orthogonal conjugation of chemical functionalities to proteins is of great utility in fundamental research as well as industrial processes (e.g., the production of antibody-drug conjugates and immobilization of enzymes for biocatalysis). A popular approach involves reacting a free N-terminal cysteine with a variety of electrophilic reagents. However, current methods for generating proteins with N-terminal cysteines have significant limitations. Herein we report a novel, efficient, and convenient method for producing recombinant proteins with free N-terminal cysteines by genetically fusing a Met-Pro-Cys sequence to the N-terminus of a protein of interest and subjecting the recombinant protein to the sequential action of methionine and proline aminopeptidases. The resulting protein was site-specifically labeled at the N-terminus with fluorescein and a cyclic cell-penetrating peptide through native chemical ligation and a 2-cyanobenzothiazole moiety, respectively. In addition, the optimal recognition sequence of Aeromonas sobria proline aminopeptidase was determined by screening a combinatorial peptide library and incorporated into the N-terminus of a protein of interest for most efficient N-terminal processing.
Collapse
Affiliation(s)
- Jordan P. Hempfling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Emily R. Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| | - Amar Sarkar
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Dehua Pei
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, United States
| |
Collapse
|
34
|
Haahr P, Galli RA, van den Hengel LG, Bleijerveld OB, Kazokaitė-Adomaitienė J, Song JY, Kroese LJ, Krimpenfort P, Baltissen MP, Vermeulen M, Ottenheijm CAC, Brummelkamp TR. Actin maturation requires the ACTMAP/C19orf54 protease. Science 2022; 377:1533-1537. [PMID: 36173861 DOI: 10.1126/science.abq5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme. Its ablation resulted in viable mice in which the cytoskeleton was composed of immature actin molecules across all tissues. However, in skeletal muscle, the lengths of sarcomeric actin filaments were shorter, muscle function was decreased, and centralized nuclei, a common hallmark of myopathies, progressively accumulated. Thus, ACTMAP encodes the missing factor required for the synthesis of mature actin and regulates specific actin-dependent traits in vivo.
Collapse
Affiliation(s)
- Peter Haahr
- Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands.,Novo Nordisk Foundation Center for Protein Research (NNF-CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ricardo A Galli
- Department of Physiology, Amsterdam UMC (VUmc), 1081HV Amsterdam, Netherlands
| | - Lisa G van den Hengel
- Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands.,Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | | | - Ji-Ying Song
- Animal Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Lona J Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Paul Krimpenfort
- Animal Modeling Facility, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, Netherlands
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (VUmc), 1081HV Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands.,Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| |
Collapse
|
35
|
Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates. Proc Natl Acad Sci U S A 2022; 119:e2209597119. [PMID: 35878037 PMCID: PMC9351520 DOI: 10.1073/pnas.2209597119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3'-proximal segment of the tRNAArg moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.
Collapse
|
36
|
Weiss A, Murdoch CC, Edmonds KA, Jordan MR, Monteith AJ, Perera YR, Rodríguez Nassif AM, Petoletti AM, Beavers WN, Munneke MJ, Drury SL, Krystofiak ES, Thalluri K, Wu H, Kruse ARS, DiMarchi RD, Caprioli RM, Spraggins JM, Chazin WJ, Giedroc DP, Skaar EP. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell 2022; 185:2148-2163.e27. [PMID: 35584702 PMCID: PMC9189065 DOI: 10.1016/j.cell.2022.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism. Here, we functionally characterize a family of COG0523 proteins that is conserved across vertebrates. We identify Zn metalloprotease methionine aminopeptidase 1 (METAP1) as a COG0523 client, leading to the redesignation of this group of COG0523 proteins as the Zn-regulated GTPase metalloprotein activator (ZNG1) family. Using biochemical, structural, genetic, and pharmacological approaches across evolutionarily divergent models, including zebrafish and mice, we demonstrate a critical role for ZNG1 proteins in regulating cellular Zn homeostasis. Collectively, these data reveal the existence of a family of Zn metallochaperones and assign ZNG1 an important role for intracellular Zn trafficking.
Collapse
Affiliation(s)
- Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin C Murdoch
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Aslin M Rodríguez Nassif
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Amber M Petoletti
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney L Drury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Angela R S Kruse
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Richard M Caprioli
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M Spraggins
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
38
|
Cowan AD, Ciulli A. Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annu Rev Biochem 2022; 91:295-319. [PMID: 35320687 DOI: 10.1146/annurev-biochem-032620-104421] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin-proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein-protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Angus D Cowan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
39
|
Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. eLife 2022; 11:e70017. [PMID: 35015630 PMCID: PMC8752094 DOI: 10.7554/elife.70017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.
Collapse
Affiliation(s)
- Kaitlyn Tsai
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Vanja Stojković
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Jordan Kleinman
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Ali Palla
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Stephen N Floor
- Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
40
|
Revealing functional significance of interleukin‐2 glycoproteoforms enabled by expressed serine ligation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Abstract
Post-translational modifications (PTMs) direct the assembly of protein complexes. In this context, proteolysis is a unique PTM because it is irreversible; the hydrolysis of the peptide backbone generates separate fragments bearing a new N and C terminus. Proteolysis can "re-wire" protein-protein interactions (PPIs) via the recruitment of end-binding proteins to new termini. In this review, we focus on the role of proteolysis in specifically creating complexes by recruiting E3 ubiquitin ligases to new N and C termini. These complexes potentiate proteolytic signaling by "erasing" proteolytic modifications. This activity tunes the duration and magnitude of protease signaling events. Recent work has shown that the stepwise process of proteolysis, end-binding by E3 ubiquitin ligases, and fragment turnover is associated with both the nascent N terminus (i.e., N-degron pathways) and the nascent C terminus (i.e., the C-degron pathways). Here, we discuss how these pathways might harmonize protease signaling with protein homeostasis (i.e., proteostasis).
Collapse
Affiliation(s)
- Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Koli Basu
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2021; 118:2115430118. [PMID: 34663735 DOI: 10.1073/pnas.2115430118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/26/2022] Open
Abstract
N-degron pathways are proteolytic systems that recognize proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Our previous work identified Gid4 as a recognition component (N-recognin) of the Saccharomyces cerevisiae proteolytic system termed the proline (Pro)/N-degron pathway. Gid4 is a subunit of the oligomeric glucose-induced degradation (GID) ubiquitin ligase. Gid4 targets proteins through the binding to their Nt-Pro residue. Gid4 is also required for degradation of Nt-Xaa-Pro (Xaa is any amino acid residue) proteins such as Nt-[Ala-Pro]-Aro10 and Nt-[Ser-Pro]-Pck1, with Pro at position 2. Here, we show that specific aminopeptidases function as components of the Pro/N-degron pathway by removing Nt-Ala or Nt-Ser and yielding Nt-Pro, which can be recognized by Gid4-GID. Nt-Ala is removed by the previously uncharacterized aminopeptidase Fra1. The enzymatic activity of Fra1 is shown to be essential for the GID-dependent degradation of Nt-[Ala-Pro]-Aro10. Fra1 can also trim Nt-[Ala-Pro-Pro-Pro] (stopping immediately before the last Pro) and thereby can target for degradation a protein bearing this Nt sequence. Nt-Ser is removed largely by the mitochondrial/cytosolic/nuclear aminopeptidase Icp55. These advances are relevant to eukaryotes from fungi to animals and plants, as Fra1, Icp55, and the GID ubiquitin ligase are conserved in evolution. In addition to discovering the mechanism of targeting of Xaa-Pro proteins, these insights have also expanded the diversity of substrates of the Pro/N-degron pathway.
Collapse
|
43
|
Goya Grocin A, Kallemeijn WW, Tate EW. Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 2021; 42:870-882. [PMID: 34446297 DOI: 10.1016/j.tips.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
For over three decades, methionine aminopeptidase 2 (MetAP2) has been a tentative drug target for the treatment of cancer, obesity, and autoimmune diseases. Currently, no MetAP2 inhibitors (MetAP2i) have reached the clinic yet, despite considerable investment by major pharmaceutical companies. Here, we summarize the key series of MetAP2i developed to date and discuss their clinical development, progress, and issues. We coalesce the currently disparate knowledge regarding MetAP2i mechanism of action and discuss discrepancies across varied studies. Finally, we highlight the current knowledge gaps that need to be addressed to enable successful development of MetAP2 inhibitors in clinical settings.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
44
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
45
|
MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease. Blood Adv 2021; 5:1388-1402. [PMID: 33661300 DOI: 10.1182/bloodadvances.2020003670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease (SCD) is associated with hemolysis, vascular inflammation, and organ damage. Affected patients experience chronic painful vaso-occlusive events requiring hospitalization. Hypoxia-induced polymerization of sickle hemoglobin S (HbS) contributes to sickling of red blood cells (RBCs) and disease pathophysiology. Dilution of HbS with nonsickling hemoglobin or hemoglobin with increased oxygen affinity, such as fetal hemoglobin or HbS bound to aromatic aldehydes, is clinically beneficial in decreasing polymerization. We investigated a novel alternate approach to modify HbS and decrease polymerization by inhibiting methionine aminopeptidase 2 (MetAP2), which cleaves the initiator methionine (iMet) from Val1 of α-globin and βS-globin. Kinetic studies with MetAP2 show that βS-globin is a fivefold better substrate than α-globin. Knockdown of MetAP2 in human umbilical cord blood-derived erythroid progenitor 2 cells shows more extensive modification of α-globin than β-globin, consistent with kinetic data. Treatment of human erythroid cells in vitro or Townes SCD mice in vivo with selective MetAP2 inhibitors extensively modifies both globins with N-terminal iMet and acetylated iMet. HbS modification by MetAP2 inhibition increases oxygen affinity, as measured by decreased oxygen tension at which hemoglobin is 50% saturated. Acetyl-iMet modification on βS-globin delays HbS polymerization under hypoxia. MetAP2 inhibitor-treated Townes mice reach 50% total HbS modification, significantly increasing the affinity of RBCs for oxygen, increasing whole blood single-cell RBC oxygen saturation, and decreasing fractional flow velocity losses in blood rheology under decreased oxygen pressures. Crystal structures of modified HbS variants show stabilization of the nonpolymerizing high O2-affinity R2 state, explaining modified HbS antisickling activity. Further study of MetAP2 inhibition as a potential therapeutic target for SCD is warranted.
Collapse
|
46
|
Koubek J, Schmitt J, Galmozzi CV, Kramer G. Mechanisms of Cotranslational Protein Maturation in Bacteria. Front Mol Biosci 2021; 8:689755. [PMID: 34113653 PMCID: PMC8185961 DOI: 10.3389/fmolb.2021.689755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
Collapse
Affiliation(s)
- Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jaro Schmitt
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carla Veronica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
47
|
Gudipati RK, Braun K, Gypas F, Hess D, Schreier J, Carl SH, Ketting RF, Großhans H. Protease-mediated processing of Argonaute proteins controls small RNA association. Mol Cell 2021; 81:2388-2402.e8. [PMID: 33852894 DOI: 10.1016/j.molcel.2021.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.
Collapse
Affiliation(s)
- Rajani Kanth Gudipati
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland.
| | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Jan Schreier
- Biology of Non-coding RNA, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany; International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - René F Ketting
- Biology of Non-coding RNA, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4056 Basel, Switzerland.
| |
Collapse
|
48
|
Fuchs ACD, Ammelburg M, Martin J, Schmitz RA, Hartmann MD, Lupas AN. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proc Natl Acad Sci U S A 2021; 118:e2017871118. [PMID: 33688044 PMCID: PMC7980362 DOI: 10.1073/pnas.2017871118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Moritz Ammelburg
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrecht University of Kiel, 24118 Kiel, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
49
|
Xie J, Rice MA, Chen Z, Cheng Y, Hsu EC, Chen M, Song G, Cui L, Zhou K, Castillo JB, Zhang CA, Shen B, Chin FT, Kunder CA, Brooks JD, Stoyanova T, Rao J. In Vivo Imaging of Methionine Aminopeptidase II for Prostate Cancer Risk Stratification. Cancer Res 2021; 81:2510-2521. [PMID: 33637565 DOI: 10.1158/0008-5472.can-20-2969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is one of the most common malignancies worldwide, yet limited tools exist for prognostic risk stratification of the disease. Identification of new biomarkers representing intrinsic features of malignant transformation and development of prognostic imaging technologies are critical for improving treatment decisions and patient survival. In this study, we analyzed radical prostatectomy specimens from 422 patients with localized disease to define the expression pattern of methionine aminopeptidase II (MetAP2), a cytosolic metalloprotease that has been identified as a druggable target in cancer. MetAP2 was highly expressed in 54% of low-grade and 59% of high-grade cancers. Elevated levels of MetAP2 at diagnosis were associated with shorter time to recurrence. Controlled self-assembly of a synthetic small molecule enabled design of the first MetAP2-activated PET imaging tracer for monitoring MetAP2 activity in vivo. The nanoparticles assembled upon MetAP2 activation were imaged in single prostate cancer cells with post-click fluorescence labeling. The fluorine-18-labeled tracers successfully differentiated MetAP2 activity in both MetAP2-knockdown and inhibitor-treated human prostate cancer xenografts by micro-PET/CT scanning. This highly sensitive imaging technology may provide a new tool for noninvasive early-risk stratification of prostate cancer and monitoring the therapeutic effect of MetAP2 inhibitors as anticancer drugs. SIGNIFICANCE: This study defines MetAP2 as an early-risk stratifier for molecular imaging of aggressive prostate cancer and describes a MetAP2-activated self-assembly small-molecule PET tracer for imaging MetAP2 activity in vivo.
Collapse
Affiliation(s)
- Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Zixin Chen
- Department of Chemistry, Stanford University, Stanford, California
| | - Yunfeng Cheng
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California
| | - Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Guosheng Song
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Kaixiang Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Chiyuan A Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Cyclotron and Radiochemistry Facility, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - James D Brooks
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.,Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California.
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California. .,Department of Chemistry, Stanford University, Stanford, California
| |
Collapse
|
50
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|