1
|
Carter WA, DeMoranville KJ, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce B, McWilliams SR. Dietary fatty acids and flight-training influence the expression of the eicosanoid hormone prostacyclin in songbirds. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111561. [PMID: 38056555 DOI: 10.1016/j.cbpa.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Diet shifts can alter tissue fatty acid composition in birds, which is subsequently related to metabolic patterns. Eicosanoids, short-lived fatty acid-derived hormones, have been proposed to mediate these relationships but neither baseline concentrations nor the responses to diet and exercise have been measured in songbirds. We quantified a stable derivative of the vasodilatory eicosanoid prostacyclin in the plasma of male European Starlings (Sturnus vulgaris, N = 25) fed semisynthetic diets with either high (PUFA) or low (MUFA) amounts of n6 fatty acid precursors to prostacyclin. Plasma samples were taken from each bird before, immediately after, and two days following a 15-day flight-training regimen that a subset of birds (N = 17) underwent. We found elevated prostacyclin levels in flight-trained birds fed the PUFA diet compared to those fed the MUFA diet and a positive relationship between prostacyclin and body condition, indexed by fat score. Prostacyclin concentrations also significantly decreased at the final time point. These results are consistent with the proposed influences of precursor availability (i.e., dietary fatty acids) and regulatory feedback associated with exercise (i.e., fuel supply and inflammation), and suggest that prostacyclin may be an important mediator of dietary influence on songbird physiology.
Collapse
Affiliation(s)
- Wales A Carter
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA.
| | | | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Scott R McWilliams
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
2
|
Patel K, Peebles RS. Prostacyclin Regulation of Allergic Inflammation. Biomedicines 2022; 10:2862. [PMID: 36359381 PMCID: PMC9687206 DOI: 10.3390/biomedicines10112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Prostacyclin is a metabolic product of the cyclooxygenase pathway that is constitutively expressed and can be induced during inflammatory conditions. While prostacyclin and its analogs have historically been considered effective vasodilators and used in treating pulmonary hypertension, prostacyclin has demonstrated potent anti-inflammatory effects in animal models of allergic airway inflammation. In vitro studies reveal that prostacyclin directly inhibits type 2 cytokine production from CD4+ Th2 cells and ILC2 and reduces the ability of dendritic cells to generate Th2 cytokine production from CD4+ T cells in an antigen-specific manner. Thus, there is strong evidence that prostacyclin may be an additional therapeutic target for treating allergic inflammation and asthma in human subjects.
Collapse
Affiliation(s)
- Kunj Patel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA
- United States Department of Veterans Affairs, Nashville, TN 37232-2650, USA
- T-1218 MCN, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2650, USA
| |
Collapse
|
3
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Randomized, Placebo-controlled Trial of Inhaled Treprostinil for Patients at Risk for Acute Respiratory Distress Syndrome. Ann Am Thorac Soc 2021; 18:641-647. [PMID: 33095030 DOI: 10.1513/annalsats.202004-374oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Inhaled treprostinil may improve oxygenation and have additional antiinflammatory effects in early acute hypoxemic respiratory failure, potentially preventing or reducing the severity of acute respiratory distress syndrome (ARDS).Objectives: To determine whether administration of inhaled treprostinil to patients at risk for ARDS is feasible, safe, and efficacious.Methods: We performed a double-blind, placebo-controlled, single-center randomized pilot trial at a quaternary care academic medical center. Patients with acute hypoxemia due to pneumonia or signs of low-pressure pulmonary edema with a unilateral or bilateral infiltrate on chest imaging and a 4 L/min supplemental oxygen requirement not requiring positive pressure ventilation were evaluated. Randomized patients received study drug or placebo (2:1 ratio). Treatment was initiated at 6 breaths every 4 hours and titrated up to 12 breaths. Subjects were maintained on treatment for 7 days and then tapered off over a period of 4 days. Study drug was stopped if positive pressure ventilation was required (invasive or noninvasive).Results: Fourteen patients were enrolled over a period of 31 months. Baseline characteristics were not significantly different between treatment groups with respect to age, sex, race, Acute Physiologic Assessment and Chronic Health Evaluation score, lung injury prediction score, or baseline mean oxygen saturation as measured by pulse oximetry (SpO2):fraction of inspired oxygen (FiO2) ratio. Trends in daily baseline and 30-minute postdose SpO2:FiO2 ratio for all treatment points were not significantly different between placebo and treprostinil. Four patients required positive pressure ventilation in the treprostinil group versus one in the placebo group.Conclusions: Inhaled treprostinil administration is feasible in patients at risk for ARDS but was not associated with improvement in the SpO2:FiO2 ratio relative to placebo. Drug-associated adverse events were not severe nor unexpected based on the known adverse effect profile of inhaled treprostinil. The clinical benefit of this intervention is unclear at this time in the absence of larger studies.Clinical trial registered with Clinicaltrials.gov (NCT02370095).
Collapse
|
5
|
Chen SY, Chu CC, Chyau CC, Yang JW, Duh PD. Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Sabirzhanov B, Matyas J, Coll-Miro M, Yu LL, Faden AI, Stoica BA, Wu J. Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell Death Dis 2019; 10:839. [PMID: 31685802 PMCID: PMC6828685 DOI: 10.1038/s41419-019-2079-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Jessica Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Marina Coll-Miro
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Laina Lijia Yu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, MD, USA. .,University of Maryland Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Yajima S, Miyagawa S, Fukushima S, Sakai Y, Iseoka H, Harada A, Isohashi K, Horitsugi G, Mori Y, Shiozaki M, Ohkawara H, Sakaniwa R, Hatazawa J, Yoshioka Y, Sawa Y. Prostacyclin Analogue-Loaded Nanoparticles Attenuate Myocardial Ischemia/Reperfusion Injury in Rats. JACC Basic Transl Sci 2019; 4:318-331. [PMID: 31312756 PMCID: PMC6609885 DOI: 10.1016/j.jacbts.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022]
Abstract
Intravenously injected ONO-1301–containing nanoparticles selectively accumulated in the ischemic border area of the myocardium. Prominent up-regulation occurred of proangiogenic cytokines such as vascular endothelial growth factor and angiopoietin-1 in the ischemic myocardium, which may have contributed to the preservation of the native vascular and capillary networks, thus preserving regional myocardial blood flow. Down-regulation of the proinflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α in the ischemic myocardium might have led to the attenuation of myocyte swelling and the suppression of the endothelial bleb formation, also contributing to the preservation of myocardial blood flow or the reduced infarct size.
Intravenously injected ONO-1301–containing nanoparticles (ONO-1301NPs), unlike an ONO-1301 solution, selectively accumulated in the ischemia/reperfusion (I/R)-injured myocardium of rats and contributed to the prolonged retention of ONO-1301 in the targeted myocardial tissue. In the ischemic area, proangiogenic cytokines were up-regulated and inflammatory cytokines were down-regulated upon ONO-1301NP administration. Consequently, ONO-1301NP–injected rats exhibited a smaller infarct size, better-preserved capillary networks, and a better-preserved myocardial blood flow at 24 h after I/R injury, compared with those in vehicle-injected or ONO-1301 solution–injected rats. ONO-1301NPs attenuate the myocardial I/R injury via proangiogenic and anti-inflammatory effects of the drug.
Collapse
Key Words
- ANG, angiopoietin
- EPR, enhanced permeability and retention
- I/R, ischemia/reperfusion
- IL, interleukin
- MBF, myocardial blood flow
- MRI, magnetic resonance imaging
- NP, nanoparticle
- ONO-1301
- PET, positron emission tomography
- PMNL, polymorphonuclear leukocyte
- VEGF, vascular endothelial growth factor
- ischemia/reperfusion injury
- nanoparticles
- prostacyclin
Collapse
Affiliation(s)
- Shin Yajima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kayako Isohashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Genki Horitsugi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Mori
- Department of Biofunctional Imaging Laboratory, Immunology Frontier Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoko Shiozaki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotatsu Ohkawara
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoto Sakaniwa
- Department of Public Health, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshichika Yoshioka
- Department of Biofunctional Imaging Laboratory, Immunology Frontier Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Wendler S, Schlundt C, Bucher CH, Birkigt J, Schipp CJ, Volk HD, Duda GN, Schmidt-Bleek K. Immune Modulation to Enhance Bone Healing-A New Concept to Induce Bone Using Prostacyclin to Locally Modulate Immunity. Front Immunol 2019; 10:713. [PMID: 31024548 PMCID: PMC6459956 DOI: 10.3389/fimmu.2019.00713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Within an aging population, fracture incidences will rise and with the augmented risks of impaired healing the overall risk of delayed bone regeneration will substantially increase in elderly patients. Thus, new strategies to rescue fracture healing in the elderly are highly warranted. Modulating the initial inflammatory phase toward a reduced pro-inflammation launches new treatment options for delayed or impaired healing specifically in the elderly. Here, we evaluated the capacity of the prostacyclin analog Iloprost to modulate the inflammatory phase toward a pro-regenerative milieu using in vitro as well as in vivo model systems. In vitro, Iloprost administration led to a downregulation of potential unfavorable CD8+ cytotoxic T cells as well as their pro-inflammatory cytokine secretion profile. Furthermore, Iloprost increased the mineralization capacity of osteogenic induced mesenchymal stromal cells through both direct as well as indirect cues. In an in vivo approach, Iloprost, embedded in a biphasic fibrin scaffold, decreased the pro-inflammatory and simultaneously enhanced the anti-inflammatory phase thereby improving bone healing outcome. Overall, our presented data confirms a possible strategy to modulate the early inflammatory phase in aged individuals toward a physiological healing by a downregulation of an excessive pro-inflammation that otherwise would impair healing. Further confirmation in phase I/II trials, however, is needed to validate the concept in a broader clinical evaluation.
Collapse
Affiliation(s)
- Sebastian Wendler
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Schlundt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Birkigt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian J Schipp
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Rahman MS. Prostacyclin: A major prostaglandin in the regulation of adipose tissue development. J Cell Physiol 2018; 234:3254-3262. [PMID: 30431153 DOI: 10.1002/jcp.26932] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Prostaglandins (PGs) belong to the group lipid mediators and can act as local hormones. They contain 20 carbon atoms, including a 5-carbon ring, and are biosynthesized from membrane phospholipid derived arachidonic acid through the arachidonate cyclooxygenase (COX) pathway with the help of various terminal synthase enzymes. Prostacyclin (prostaglandin I2 ) is one of the major prostanoids produced with the help of prostacyclin synthase (prostaglandin I2 synthase) enzyme and rapidly hydrolyzed into 6-keto-PGF1α in biological fluids. Obesity indicates an excess of body adiposity, which is globally considered as one of the major health disasters responsible for developing complex pathological situations in the human body. Adipose tissues can produce various PGs, and thus, the level and the molecular activity of these endogenously synthesized PGs are considered critical for the development of obesity. In this regard, the involvement of prostacyclin in adipogenesis has been studied in the last few decades. The current review, along with the background of other related PGs, presents the several molecular aspects of endogenous prostaglandin I2 in adipose tissue development. Especially, the regulation of life cycle of adipocytes, impact on terminal differentiation, activity through prostacyclin receptor (IP), autocrine-paracrine manner, thermogenic adipose tissue remodeling and some future experimental aspects of prostacyclin have been focused upon in this study. This discussion might assist to develop new drug molecules acting on the signaling pathways of prostacyclin and devise therapeutic strategies for treating obesity.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
10
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
11
|
Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, Faden AI. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2015; 23:654-68. [PMID: 26470728 DOI: 10.1038/cdd.2015.132] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and disability. MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at post-transcriptional level and may be key modulators of neuronal apoptosis, yet their role in secondary injury after TBI remains largely unexplored. Changes in miRs after controlled cortical impact (CCI) in mice were examined during the first 72 h using miR arrays and qPCR. One selected miR (711) was examined with regard to its regulation and relation to cell death; effects of miR-711 modulation were evaluated after CCI and using in vitro cell death models of primary cortical neurons. Levels of miR-711 were increased in the cortex early after TBI and in vitro models through rapid upregulation of miR-711 transcription (pri-miR-711) rather than catabolism. Increases coincided with downregulation of the pro-survival protein Akt, a predicted target of miR-711, with sequential activation of forkhead box O3 (FoxO3)a/glycogen synthase kinase 3 (GSK3)α/β, pro-apoptotic BH3-only molecules PUMA (Bcl2-binding component 3) and Bim (Bcl2-like 11 (apoptosis facilitator)), and mitochondrial release of cytochrome c and AIF. miR-711 and Akt (mRNA) co-immunoprecipitated with the RNA-induced silencing complex (RISC). A miR-711 hairpin inhibitor attenuated the apoptotic mechanisms and decreased neuronal death in an Akt-dependent manner. Conversely, a miR-711 mimic enhanced neuronal apoptosis. Central administration of the miR-711 hairpin inhibitor after TBI increased Akt expression and attenuated apoptotic pathways. Treatment reduced cortical lesion volume, neuronal cell loss in cortex and hippocampus, and long-term neurological dysfunction. miR-711 changes contribute to neuronal cell death after TBI, in part by inhibiting Akt, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- B Sabirzhanov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - B A Stoica
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Z Zhao
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - D J Loane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Wu
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - S G Dorsey
- University of Maryland School of Nursing, Baltimore, MD, USA.,Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - A I Faden
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Duarte JD, Hanson RL, Machado RF. Pharmacologic treatments for pulmonary hypertension: exploring pharmacogenomics. Future Cardiol 2014; 9:335-49. [PMID: 23668740 DOI: 10.2217/fca.13.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease with multiple etiologies and is categorized into five broad groups. Of these groups, pulmonary arterial hypertension (PAH) is the most studied and, therefore, all of the currently available drug classes (prostacyclin analogs, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors) were developed to treat PAH. Thus, limited treatment data exist for the less-studied non-PAH forms of PH. Pharmacogenomics can be a tool to better understand the pathways involved in PH, as well as to improve personalization of therapy. However, little pharmacogenomic research has been carried out on this disease. New treatments for PH are on the horizon, deriving from both repurposed currently available drugs and novel therapeutics.
Collapse
Affiliation(s)
- Julio D Duarte
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
13
|
Ochs MJ, Steinhilber D, Suess B. MicroRNAs - Novel Therapeutic Targets of Eicosanoid Signalling. Basic Clin Pharmacol Toxicol 2013; 114:92-6. [DOI: 10.1111/bcpt.12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/23/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Meike J. Ochs
- Department of Biology; Technical University Darmstadt; Darmstadt Germany
- Institute of Pharmaceutical Chemistry/ZAFES; Goethe University Frankfurt; Frankfurt/M. Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES; Goethe University Frankfurt; Frankfurt/M. Germany
| | - Beatrix Suess
- Department of Biology; Technical University Darmstadt; Darmstadt Germany
| |
Collapse
|
14
|
Nacci C, Leo V, De Benedictis L, Carratù MR, Bartolomeo N, Altomare M, Giordano P, Faienza MF, Montagnani M. Elevated endothelin-1 (ET-1) levels may contribute to hypoadiponectinemia in childhood obesity. J Clin Endocrinol Metab 2013; 98:E683-93. [PMID: 23457411 DOI: 10.1210/jc.2012-4119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Pediatric obesity is associated with endothelial dysfunction and hypoadiponectinemia, but the relationship between these two conditions remains to be fully clarified. Whether enhanced release of endothelin-1 (ET-1) may directly impair adiponectin (Ad) production in obese children is not known. OBJECTIVE The aim of the study was to explore whether and how high circulating levels of ET-1 may contribute to impair Ad production, release, and vascular activity. DESIGN AND PARTICIPANTS Sixty children were included into obese (Ob; n = 30), overweight (OW; n = 11), and lean (n = 19) groups. Total and high-molecular-weight Ad, ET-1, vascular cell adhesion molecule-1, and von Willebrand factor levels were measured in serum samples. Adipocytes were stimulated with exogenous ET-1 or with sera from lean, OW, and Ob, and Ad production and release measured in the absence or in the presence of ETA (BQ-123) and ETB (BQ-788) receptor blockers, p42/44 MAPK inhibitor PD-98059, or c-Jun NH2-terminal protein kinase inhibitor SP-600125. Vasodilation to Ad was evaluated in rat isolated arteries in the absence or in the presence of BQ-123/788. RESULTS Total and high-molecular-weight Ad was significantly decreased and ET-1 levels significantly increased in OW (P < .01) and Ob (P < .001) children. A statistically significant linear regression (P < .01) was found between Ad and ET-1. Exposure of adipocytes to exogenous ET-1 or serum from OW and Ob significantly decreased Ad mRNA and protein levels (P < 0.001). The inhibitory effect of ET-1 on Ad was reverted by BQ-123/788 or PD-98059 but not SP-600125. Ad-mediated vasodilation was further increased in arteries pretreated with BQ-123/788. CONCLUSIONS ET-1-mediated inhibition of Ad synthesis via p42/44 MAPK signaling may provide a possible explanation for hypoadiponectinemia in pediatric obesity and contribute to the development of cardiovascular complications.
Collapse
Affiliation(s)
- Carmela Nacci
- Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
PGI2 as a regulator of inflammatory diseases. Mediators Inflamm 2012; 2012:926968. [PMID: 22851816 PMCID: PMC3407649 DOI: 10.1155/2012/926968] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/24/2012] [Indexed: 12/11/2022] Open
Abstract
Prostacyclin, or PGI2, is an end product derived from the sequential metabolism of arachidonic acid via cyclooxygenase and PGI synthase (PGIS). The receptor for PGI2, IP, can be found on a variety of cell types and signaling through this receptor exhibits broad physiological effects. Historically, PGI2 has been understood to play a role in cardiovascular health, specifically having powerful vasodilatory effects via relaxation of smooth muscle and inhibiting of platelet aggregation. For these reasons, PGI2 has a long history of use for the treatment of pulmonary arterial hypertension (PAH). Only recently, its importance as an immunomodulatory agent has been investigated. PGI2 regulates both the innate and adaptive immune systems and its effects are, for the most part, thought to be anti-inflammatory or immunosuppressive in nature, which may have implications for its further clinical use.
Collapse
|
16
|
Ochs MJ, Steinhilber D, Suess B. MicroRNA Involved in Inflammation: Control of Eicosanoid Pathway. Front Pharmacol 2011; 2:39. [PMID: 21811464 PMCID: PMC3142860 DOI: 10.3389/fphar.2011.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/06/2011] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in human physiological and pathological processes. Recent investigations implicated the involvement of miRNAs in the immune system development and function and demonstrated an unexpected new regulatory level. We summarize the current knowledge about miRNA control in the development of the immune system and discuss their role in the immune and inflammatory responses with a special focus on eicosanoid signaling.
Collapse
Affiliation(s)
- Meike J Ochs
- Institute of Molecular Biosciences, Goethe-University Frankfurt Frankfurt/Main, Germany
| | | | | |
Collapse
|