1
|
Fleming JR, Schupfner M, Busch F, Baslé A, Ehrmann A, Sterner R, Mayans O. Evolutionary Morphing of Tryptophan Synthase: Functional Mechanisms for the Enzymatic Channeling of Indole. J Mol Biol 2018; 430:5066-5079. [PMID: 30367843 DOI: 10.1016/j.jmb.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Tryptophan synthase (TrpS) is a heterotetrameric αββα enzyme that exhibits complex substrate channeling and allosteric mechanisms and is a model system in enzymology. In this work, we characterize proposed early and late evolutionary states of TrpS and show that they have distinct quaternary structures caused by insertions-deletions of sequence segments (indels) in the β-subunit. Remarkably, indole hydrophobic channels that connect α and β active sites have re-emerged in both TrpS types, yet they follow different paths through the β-subunit fold. Also, both TrpS geometries activate the α-subunit through the rearrangement of loops flanking the active site. Our results link evolutionary sequence changes in the enzyme subunits with channeling and allostery in the TrpS enzymes. The findings demonstrate that indels allow protein quaternary architectures to escape "minima" in the evolutionary landscape, thereby overcoming the conservational constraints imposed by existing functional interfaces and being free to morph into new mechanistic enzymes.
Collapse
Affiliation(s)
| | - Michael Schupfner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Florian Busch
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Arnaud Baslé
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Alexander Ehrmann
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Krause M, Neubauer A, Neubauer P. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 2016; 15:110. [PMID: 27317421 PMCID: PMC4912726 DOI: 10.1186/s12934-016-0513-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.
Collapse
Affiliation(s)
- Mirja Krause
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
- />Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | | | - Peter Neubauer
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
| |
Collapse
|
3
|
Quintyn RS, Harvey SR, Wysocki VH. Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst 2015; 140:7012-9. [DOI: 10.1039/c5an01095k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface collisions generate subcomplexes, which are then separated by ion mobility and dissociated into their individual subunitsviaa second stage of surface collisions to elucidate protein complex architecture and assembly.
Collapse
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
- School of Chemistry
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| |
Collapse
|
4
|
Busch F, Rajendran C, Mayans O, Löffler P, Merkl R, Sterner R. TrpB2 Enzymes are O-Phospho-l-serine Dependent Tryptophan Synthases. Biochemistry 2014; 53:6078-83. [DOI: 10.1021/bi500977y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Busch
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Olga Mayans
- Institute
of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Patrick Löffler
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Hiyama T, Sato T, Imanaka T, Atomi H. The tryptophan synthase β-subunit paralogs TrpB1 and TrpB2 in Thermococcus kodakarensis are both involved in tryptophan biosynthesis and indole salvage. FEBS J 2014; 281:3113-25. [PMID: 24835339 DOI: 10.1111/febs.12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
The last two steps of l-tryptophan (Trp) biosynthesis are catalyzed by Trp synthase, a heterotetramer composed of TrpA and TrpB. TrpB catalyzes the condensation of indole, synthesized by TrpA, and serine to Trp. In the hyperthermophilic archaeon Thermococcus kodakarensis, trpA and trpB (trpB1) are located adjacently in the trpCDEGFB1A operon. Interestingly, several organisms possess a second trpB gene (trpB2) encoding TrpB2, located outside of the trp operon in T. kodakarensis. Until now, the physiological function of trpB2 has not been examined genetically. In the present study, we report the biochemical and physiological analyses of TrpB2 from T. kodakarensis. Kinetic analysis indicated that TrpB2 catalyzed the TrpB reaction but did not interact with TrpA as in the case of TrpB1. When growth phenotypes were examined for gene disruption strains, the double-deletion mutant (ΔtrpB1ΔtrpB2) displayed Trp auxotrophy, whereas individual single mutants (ΔtrpB1 and ΔtrpB2 strains) did not. It has been proposed previously that, in Thermotoga maritima, TrpB2 provides an alternate route to generate Trp from serine and free indole (indole salvage). To accurately examine the capacity of TrpB1 and TrpB2 in Trp synthesis via indole salvage, we constructed ΔtrpEB1 and ΔtrpEB2 strains using strain KUW1 (ΔpyrFΔtrpE) as a host, eliminating the route for endogenous indole synthesis. Indole complemented the Trp auxotrophies of ΔtrpEB1 (ΔpyrFΔtrpEΔtrpB1) and ΔtrpEB2 (ΔpyrFΔtrpEΔtrpB2) to similar levels. The results indicate that TrpB1 and TrpB2 both contribute to Trp biosynthesis in T. kodakarensis and can utilize free indole, and that indole salvage does not necessarily rely on TrpB2 to a greater extent.
Collapse
Affiliation(s)
- Takayoshi Hiyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
6
|
Ukkonen K, Mayer S, Vasala A, Neubauer P. Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 2013; 91:147-54. [DOI: 10.1016/j.pep.2013.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022]
|
7
|
Ukkonen K, Veijola J, Vasala A, Neubauer P. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microb Cell Fact 2013; 12:73. [PMID: 23895637 PMCID: PMC3733871 DOI: 10.1186/1475-2859-12-73] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
Background Fab antibody fragments in E. coli are usually directed to the oxidizing periplasmic space for correct folding. From periplasm Fab fragments may further leak into extracellular medium. Information on the cultivation parameters affecting this leakage is scarce, and the unpredictable nature of Fab leakage is problematic regarding consistent product recovery. To elucidate the effects of cultivation conditions, we investigated Fab expression and accumulation into either periplasm or medium in E. coli K-12 and E. coli BL21 when grown in different types of media and under different aeration conditions. Results Small-scale Fab expression demonstrated significant differences in yield and ratio of periplasmic to extracellular Fab between different culture media and host strains. Expression in a medium with fed-batch-like glucose feeding provided highest total and extracellular yields in both strains. Unexpectedly, cultivation in baffled shake flasks at 150 rpm shaking speed resulted in higher yield and accumulation of Fabs into culture medium as compared to cultivation at 250 rpm. In the fed-batch medium, extracellular fraction in E. coli K-12 increased from 2-17% of total Fab at 250 rpm up to 75% at 150 rpm. This was partly due to increased lysis, but also leakage from intact cells increased at the lower shaking speed. Total Fab yield in E. coli BL21 in glycerol-based autoinduction medium was 5 to 9-fold higher at the lower shaking speed, and the extracellular fraction increased from ≤ 10% to 20-90%. The effect of aeration on Fab localization was reproduced in multiwell plate by variation of culture volume. Conclusions Yield and leakage of Fab fragments are dependent on expression strain, culture medium, aeration rate, and the combination of these parameters. Maximum productivity in fed-batch-like conditions and in autoinduction medium is achieved under sufficiently oxygen-limited conditions, and lower aeration also promotes increased Fab accumulation into extracellular medium. These findings have practical implications for screening applications and small-scale Fab production, and highlight the importance of maintaining consistent aeration conditions during scale-up to avoid changes in product yield and localization. On the other hand, the dependency of Fab leakage on cultivation conditions provides a practical way to manipulate Fab localization.
Collapse
Affiliation(s)
- Kaisa Ukkonen
- Department of Process and Environmental Engineering, Bioprocess Engineering Laboratory, University of Oulu, Oulu, Finland.
| | | | | | | |
Collapse
|
8
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
9
|
Ukkonen K, Vasala A, Ojamo H, Neubauer P. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb Cell Fact 2011; 10:107. [PMID: 22152005 PMCID: PMC3258199 DOI: 10.1186/1475-2859-10-107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022] Open
Abstract
This report describes the combined use of an enzyme-based glucose release system (EnBase®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.
Collapse
|
10
|
Effects of Polyhydroxy Compounds on Enzymatic Synthesis of L-Tryptophan Catalyzed by Tryptophan Synthase. Catal Letters 2011. [DOI: 10.1007/s10562-011-0743-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|