1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in Ubiquitin Biology. Ageing Res Rev 2025:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
4
|
Swarnkar A, Leidner F, Rout AK, Ainatzi S, Schmidt CC, Becker S, Urlaub H, Griesinger C, Grubmüller H, Stein A. Determinants of chemoselectivity in ubiquitination by the J2 family of ubiquitin-conjugating enzymes. EMBO J 2024; 43:6705-6739. [PMID: 39533056 PMCID: PMC11649903 DOI: 10.1038/s44318-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitin-conjugating enzymes (E2) play a crucial role in the attachment of ubiquitin to proteins. Together with ubiquitin ligases (E3), they catalyze the transfer of ubiquitin (Ub) onto lysines with high chemoselectivity. A subfamily of E2s, including yeast Ubc6 and human Ube2J2, also mediates noncanonical modification of serines, but the structural determinants for this chemical versatility remain unknown. Using a combination of X-ray crystallography, molecular dynamics (MD) simulations, and reconstitution approaches, we have uncovered a two-layered mechanism that underlies this unique reactivity. A rearrangement of the Ubc6/Ube2J2 active site enhances the reactivity of the E2-Ub thioester, facilitating attack by weaker nucleophiles. Moreover, a conserved histidine in Ubc6/Ube2J2 activates a substrate serine by general base catalysis. Binding of RING-type E3 ligases further increases the serine selectivity inherent to Ubc6/Ube2J2, via an allosteric mechanism that requires specific positioning of the ubiquitin tail at the E2 active site. Our results elucidate how subtle structural modifications to the highly conserved E2 fold yield distinct enzymatic activity.
Collapse
Affiliation(s)
- Anuruti Swarnkar
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Leidner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ashok K Rout
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institut für Chemie und Metabolomics, Universität zu Lübeck, 23562, Lübeck, Germany
| | - Sofia Ainatzi
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudia C Schmidt
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Crowe C, Nakasone MA, Chandler S, Craigon C, Sathe G, Tatham MH, Makukhin N, Hay RT, Ciulli A. Mechanism of degrader-targeted protein ubiquitinability. SCIENCE ADVANCES 2024; 10:eado6492. [PMID: 39392888 PMCID: PMC11468923 DOI: 10.1126/sciadv.ado6492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Small-molecule degraders of disease-driving proteins offer a clinically proven modality with enhanced therapeutic efficacy and potential to tackle previously undrugged targets. Stable and long-lived degrader-mediated ternary complexes drive fast and profound target degradation; however, the mechanisms by which they affect target ubiquitination remain elusive. Here, we show cryo-EM structures of the VHL Cullin 2 RING E3 ligase with the degrader MZ1 directing target protein Brd4BD2 toward UBE2R1-ubiquitin, and Lys456 at optimal positioning for nucleophilic attack. In vitro ubiquitination and mass spectrometry illuminate a patch of favorably ubiquitinable lysines on one face of Brd4BD2, with cellular degradation and ubiquitinomics confirming the importance of Lys456 and nearby Lys368/Lys445, identifying the "ubiquitination zone." Our results demonstrate the proficiency of MZ1 in positioning the substrate for catalysis, the favorability of Brd4BD2 for ubiquitination by UBE2R1, and the flexibility of CRL2 for capturing suboptimal lysines. We propose a model for ubiquitinability of degrader-recruited targets, providing a mechanistic blueprint for further rational drug design.
Collapse
Affiliation(s)
- Charlotte Crowe
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Mark A. Nakasone
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Sarah Chandler
- Division of Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Gajanan Sathe
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Michael H. Tatham
- Division of Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Ronald T. Hay
- Division of Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Ohashi K, Otomo T. Structural Analyses of a GABARAP~ATG3 Conjugate Uncover a Novel Non-covalent Ubl-E2 Backside Interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607425. [PMID: 39185234 PMCID: PMC11343110 DOI: 10.1101/2024.08.14.607425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Members of the ATG8 family of ubiquitin-like proteins (Ubls) are conjugated to phosphatidylethanolamine (PE) in the autophagosomal membrane, where they recruit degradation substrates and facilitate membrane biogenesis. Despite this well-characterized function, the mechanisms underlying the lipidation process, including the action of the E2 enzyme ATG3, remain incompletely understood. Here, we report the crystal structure of human ATG3 conjugated to the mammalian ATG8 protein GABARAP via an isopeptide bond, mimicking the Ubl~E2 thioester intermediate. In this structure, the GABARAP~ATG3 conjugate adopts an open configuration with minimal contacts between the two proteins. Notably, the crystal lattice reveals non-covalent contacts between GABARAP and the backside of ATG3's E2 catalytic center, resulting in the formation of a helical filament of the GABARAP~ATG3 conjugate. While similar filament formations have been observed with canonical Ub~E2 conjugates, the E2 backside-binding interface of GABARAP is distinct from those of Ub/Ubl proteins and overlaps with the binding site for LC3 interacting region (LIR) peptides. NMR analysis confirms the presence of this non-covalent interaction in solution, and mutagenesis experiments demonstrate the involvement of the E2 backside in PE conjugation. These findings highlight the critical role of the E2 backside in the lipidation process and suggest evolutionary adaptations in the unique E2 enzyme ATG3.
Collapse
Affiliation(s)
- Kazuto Ohashi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA 92121, USA
| |
Collapse
|
7
|
Connelly EM, Rintala-Dempsey AC, Gundogdu M, Freeman EA, Koszela J, Aguirre JD, Zhu G, Kämäräinen O, Tadayon R, Walden H, Shaw GS. Capturing the catalytic intermediates of parkin ubiquitination. Proc Natl Acad Sci U S A 2024; 121:e2403114121. [PMID: 39078678 PMCID: PMC11317638 DOI: 10.1073/pnas.2403114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Parkin is an E3 ubiquitin ligase implicated in early-onset forms of Parkinson's disease. It catalyzes a transthiolation reaction by accepting ubiquitin (Ub) from an E2 conjugating enzyme, forming a short-lived thioester intermediate, and transfers Ub to mitochondrial membrane substrates to signal mitophagy. A major impediment to the development of Parkinsonism therapeutics is the lack of structural and mechanistic detail for the essential, short-lived transthiolation intermediate. It is not known how Ub is recognized by the catalytic Rcat domain in parkin that enables Ub transfer from an E2~Ub conjugate to the catalytic site and the structure of the transthiolation complex is undetermined. Here, we capture the catalytic intermediate for the Rcat domain of parkin in complex with ubiquitin (Rcat-Ub) and determine its structure using NMR-based chemical shift perturbation experiments. We show that a previously unidentified α-helical region near the Rcat domain is unmasked as a recognition motif for Ub and guides the C-terminus of Ub toward the parkin catalytic site. Further, we apply a combination of guided AlphaFold modeling, chemical cross-linking, and single turnover assays to establish and validate a model of full-length parkin in complex with UbcH7, its donor Ub, and phosphoubiquitin, trapped in the process of transthiolation. Identification of this catalytic intermediate and orientation of Ub with respect to the Rcat domain provides important structural insights into Ub transfer by this E3 ligase and explains how the previously enigmatic Parkinson's pathogenic mutation T415N alters parkin activity.
Collapse
Affiliation(s)
- Elizabeth M. Connelly
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| | | | - Mehmet Gundogdu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - E. Aisha Freeman
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| | - Joanna Koszela
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Jacob D. Aguirre
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| | - Grace Zhu
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| | - Outi Kämäräinen
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Roya Tadayon
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| | - Helen Walden
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, ONN6A 5C1, Canada
| |
Collapse
|
8
|
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey B, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 2024; 52:801-815. [PMID: 38000390 PMCID: PMC10810221 DOI: 10.1093/nar/gkad1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bryan W Dorsey
- Ribon Therapeutics, 35 Cambridgepark Dr., Suite 300, Cambridge MA 02140, USA
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial ligases reveal fundamental principles of polyubiquitin specificity. Mol Cell 2023; 83:4538-4554.e4. [PMID: 38091999 PMCID: PMC10872931 DOI: 10.1016/j.molcel.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Commun Biol 2023; 6:1260. [PMID: 38087033 PMCID: PMC10716173 DOI: 10.1038/s42003-023-05650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.
Collapse
Affiliation(s)
- Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuzhu Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Bian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueru Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanfang Rao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuo Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu Dong
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Kazemi S, Lopata A, Kniss A, Pluska L, Güntert P, Sommer T, Prisner TF, Collauto A, Dötsch V. Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data. JOURNAL OF BIOMOLECULAR NMR 2023; 77:261-269. [PMID: 37966668 PMCID: PMC10687113 DOI: 10.1007/s10858-023-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023]
Abstract
Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.
Collapse
Affiliation(s)
- Sina Kazemi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Signals GmbH & Co. KG, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Anna Lopata
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lukas Pluska
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
- Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| | - Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
13
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
14
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial mimicry of eukaryotic HECT ubiquitin ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543783. [PMID: 37333152 PMCID: PMC10274628 DOI: 10.1101/2023.06.05.543783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S. Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Farnung J, Muhar M, Liang JR, Tolmachova KA, Benoit RM, Corn JE, Bode JW. Semisynthetic LC3 Probes for Autophagy Pathways Reveal a Noncanonical LC3 Interacting Region Motif Crucial for the Enzymatic Activity of Human ATG3. ACS CENTRAL SCIENCE 2023; 9:1025-1034. [PMID: 37252361 PMCID: PMC10214526 DOI: 10.1021/acscentsci.3c00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Macroautophagy is one of two major degradation systems in eukaryotic cells. Regulation and control of autophagy are often achieved through the presence of short peptide sequences called LC3 interacting regions (LIR) in autophagy-involved proteins. Using a combination of new protein-derived activity-based probes prepared from recombinant LC3 proteins, along with protein modeling and X-ray crystallography of the ATG3-LIR peptide complex, we identified a noncanonical LIR motif in the human E2 enzyme responsible for LC3 lipidation, ATG3. The LIR motif is present in the flexible region of ATG3 and adopts an uncommon β-sheet structure binding to the backside of LC3. We show that the β-sheet conformation is crucial for its interaction with LC3 and used this insight to design synthetic macrocyclic peptide-binders to ATG3. CRISPR-enabled in cellulo studies provide evidence that LIRATG3 is required for LC3 lipidation and ATG3∼LC3 thioester formation. Removal of LIRATG3 negatively impacts the rate of thioester transfer from ATG7 to ATG3.
Collapse
Affiliation(s)
- Jakob Farnung
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| | - Matthias Muhar
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jin Rui Liang
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Kateryna A. Tolmachova
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| | - Roger M. Benoit
- Laboratory
of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jacob E. Corn
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Kiss L, Rhinesmith T, Luptak J, Dickson CF, Weidenhausen J, Smyly S, Yang JC, Maslen SL, Sinning I, Neuhaus D, Clift D, James LC. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat Commun 2023; 14:2160. [PMID: 37061529 PMCID: PMC10105713 DOI: 10.1038/s41467-023-37504-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023] Open
Abstract
TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Jonas Weidenhausen
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Shannon Smyly
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
17
|
Johnson JAK, Sumner I. On the Possibility That Bond Strain Is the Mechanism of RING E3 Activation in the E2-Catalyzed Ubiquitination Reaction. J Chem Inf Model 2022; 62:6475-6481. [PMID: 35671046 DOI: 10.1021/acs.jcim.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination is a type of post-translational modification wherein the small protein ubiquitin (Ub) is covalently bound to a lysine on a target protein. Ubiquitination can signal for several regulatory pathways including protein degradation. Ubiquitination occurs by a series of reactions catalyzed by three types of enzymes: ubiquitin activating enzymes, E1; ubiquitin conjugating enzymes, E2; and ubiquitin ligases, E3. E2 enzymes directly catalyze the transfer of Ub to the target protein─the RING E3 improves the efficiency. Prior to its transfer, Ub is covalently linked to the E2 via a thioester bond and the Ub∼E2 conjugate forms a quaternary complex with the RING E3. It is hypothesized that the RING E3 improves the catalytic efficiency of ubiquitination by placing the E2∼Ub conjugate in a "closed" position, which tensions and weakens the thioester bond. We interrogate this hypothesis by analyzing the strain on the thioester during molecular dynamics simulations of both open and closed E2∼Ub/E3 complexes. Our data indicate that the thioester is strained when the E2∼Ub conjugate is in the closed position. We also show that the amount of strain is consistent with the experimental rate enhancement caused by the RING E3. Finally, our simulations show that the closed configuration increases the populations of key hydrogen bonds in the E2∼Ub active site. This is consistent with another hypothesis stating that the RING E3 enhances reaction rates by preorganizing the substrates.
Collapse
Affiliation(s)
- Jay-Anne K Johnson
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
18
|
Production and characterisation of modularly deuterated UBE2D1–Ub conjugate by small angle neutron and X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:569-577. [DOI: 10.1007/s00249-022-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
AbstractThis structural study exploits the possibility to use modular protein deuteration to facilitate the study of ubiquitin signalling, transfer, and modification. A protein conjugation reaction is used to combine protonated E2 enzyme with deuterated ubiquitin for small angle X-ray and neutron scattering with neutron contrast variation. The combined biomolecules stay as a monodisperse system during data collection in both protonated and deuterated buffers indicating long stability of the E2–Ub conjugate. With multiphase ab initio shape restoration and rigid body modelling, we reconstructed the shape of a E2–Ub-conjugated complex of UBE2D1 linked to ubiquitin via an isopeptide bond. Solution X-ray and neutron scattering data for this E2–Ub conjugate in the absence of E3 jointly indicate an ensemble of open and backbent states, with a preference for the latter in solution. The approach of combining protonated and labelled proteins can be used for solution studies to assess localization and movement of ubiquitin and could be widely applied to modular Ub systems in general.
Collapse
|
19
|
Zhu K, Suskiewicz MJ, Hloušek-Kasun A, Meudal H, Mikoč A, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates. SCIENCE ADVANCES 2022; 8:eadd4253. [PMID: 36197986 PMCID: PMC7615817 DOI: 10.1126/sciadv.add4253] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitylation had been considered limited to protein lysine residues, but other substrates have recently emerged. Here, we show that DELTEX E3 ligases specifically target the 3' hydroxyl of the adenosine diphosphate (ADP)-ribosyl moiety that can be linked to a protein, thus generating a hybrid ADP-ribosyl-ubiquitin modification. Unlike other known hydroxyl-specific E3s, which proceed via a covalent E3~ubiqutin intermediate, DELTEX enzymes are RING E3s that stimulate a direct ubiquitin transfer from E2~ubiquitin onto a substrate. However, DELTEXes follow a previously unidentified paradigm for RING E3s, whereby the ligase not only forms a scaffold but also provides catalytic residues to activate the acceptor. Comparative analysis of known hydroxyl-ubiquitylating active sites points to the recurring use of a catalytic histidine residue, which, in DELTEX E3s, is potentiated by a glutamate in a catalytic triad-like manner. In addition, we determined the hydrolase specificity profile of this modification, identifying human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enzymes that could reverse it in cells.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marcin J. Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | | | - Hervé Meudal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Birkou M, Delegkou GN, Marousis KD, Fragkaki N, Toro T, Episkopou V, Spyroulias GA. Unveiling the Essential Role of Arkadia's Non-RING Elements in the Ubiquitination Process. Int J Mol Sci 2022; 23:10585. [PMID: 36142504 PMCID: PMC9501438 DOI: 10.3390/ijms231810585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Arkadia is a positive regulator of the TGFβ-SMAD2/3 pathway, acting through its C-terminal RING-H2 domain and targeting for degradation of its negative regulators. Here we explore the role of regions outside the RING domain (non-RING elements) of Arkadia on the E2-E3 interaction. The contribution of the non-RING elements was addressed using Arkadia RING 68 aa and Arkadia 119 aa polypeptides. The highly conserved NRGA (asparagine-arginine-glycine-alanine) and TIER (threonine-isoleucine-glutamine-arginine) motifs within the 119 aa Arkadia polypeptide, have been shown to be required for pSMAD2/3 substrate recognition and ubiquitination in vivo. However, the role of the NRGA and TIER motifs in the enzymatic activity of Arkadia has not been addressed. Here, nuclear magnetic resonance interaction studies with the E2 enzyme, UBCH5B, C85S UBCH5B-Ub oxyester hydrolysis, and auto-ubiquitination assays were used to address the role of the non-RING elements in E2-E3 interaction and in the enzymatic activity of the RING. The results support that the non-RING elements including the NRGA and TIER motifs are required for E2-E3 recognition and interaction and for efficient auto-ubiquitination. Furthermore, while Arkadia isoform-2 and its close homologue Arkadia 2C are known to interact with free ubiquitin, the results here showed that Arkadia isoform-1 does not interact with free ubiquitin.
Collapse
Affiliation(s)
- Maria Birkou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | | | | | - Nefeli Fragkaki
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Tamara Toro
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasso Episkopou
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | | |
Collapse
|
21
|
Lee M, Lee S, Choi J, Ryu M, Lee M, Kim J, Hwang E, Lee C, Chi S, Ryu K. MUL1‐RING recruits the substrate, p53‐TAD as a complex with UBE2D2–UB conjugate. FEBS J 2022; 289:3568-3586. [PMID: 35048531 PMCID: PMC9304225 DOI: 10.1111/febs.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022]
Abstract
The RING domain of MUL1 (RINGMUL1) alone mediates ubiquitylation of the p53‐transactivation domain (TADp53). To elucidate the mechanism underlying the simultaneous recruitment of UBE2D2 and the substrate TADp53 by RINGMUL1, we determined the complex structure of RINGMUL1:UBE2D2 and studied the interaction between RINGMUL1 and TADp53 in the presence of UBE2D2–UB thioester (UBE2D2~UB) mimetics. The RINGMUL1‐binding induced the closed conformation of UBE2D2S22R/C85S–UBK48R oxyester (UBE2D2RS–UBROE), and strongly accelerated its hydrolysis, which was suppressed by the additional N77A‐mutation of UBE2D2. Interestingly, UBE2D2S22R/N77A/C85S–UBK48R oxyester (UBE2D2RAS–UBROE) already formed a closed conformation in the absence of RINGMUL1. Although TADp53 exhibited weak binding for RINGMUL1 or UBE2D2 alone, its binding affinity was enhanced and even further for RINGMUL1:UBE2D2 and RINGMUL1:UBE2D2RAS–UBROE, respectively. The recognition of TADp53 by RINGMUL1 as a complex with UBE2D2~UB is related to the multivalency of the binding events and underlies the ability of RINGMUL1 to ubiquitylate the intrinsically disordered protein, TADp53.
Collapse
Affiliation(s)
- Min‐Sung Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Sang‐Ok Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Joonhyeok Choi
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
| | - Minju Ryu
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Mi‐Kyung Lee
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Ji‐Hun Kim
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Eunha Hwang
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
| | - Chong‐Kil Lee
- College of Pharmacy Chungbuk National University Cheongju‐si South Korea
| | - Seung‐Wook Chi
- Disease Target Structure Research Center Division of Biomedical Research KRIBB Daejeon South Korea
- Department of Proteome Structural Biology KRIBB School of Bioscience University of Science and Technology Daejeon South Korea
| | - Kyoung‐Seok Ryu
- Ochang Center Korea Basic Science Institute Cheongju‐Si South Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon South Korea
| |
Collapse
|
22
|
Paluda A, Middleton AJ, Rossig C, Mace PD, Day CL. Ubiquitin and a charged loop regulate the ubiquitin E3 ligase activity of Ark2C. Nat Commun 2022; 13:1181. [PMID: 35246518 PMCID: PMC8897509 DOI: 10.1038/s41467-022-28782-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
A large family of E3 ligases that contain both substrate recruitment and RING domains confer specificity within the ubiquitylation cascade. Regulation of RING E3s depends on modulating their ability to stabilise the RING bound E2~ubiquitin conjugate in the activated (or closed) conformation. Here we report the structure of the Ark2C RING bound to both a regulatory ubiquitin molecule and an activated E2~ubiquitin conjugate. The structure shows that the RING domain and non-covalently bound ubiquitin molecule together make contacts that stabilise the activated conformation of the conjugate, revealing why ubiquitin is a key regulator of Ark2C activity. We also identify a charged loop N-terminal to the RING domain that enhances activity by interacting with both the regulatory ubiquitin and ubiquitin conjugated to the E2. In addition, the structure suggests how Lys48-linked ubiquitin chains might be assembled by Ark2C and UbcH5b. Together this study identifies features common to RING E3s, as well elements that are unique to Ark2C and related E3s, which enhance assembly of ubiquitin chains. Attachment of ubiquitin to proteins is tightly regulated and controls many signalling pathways. Here, the authors show that addition of ubiquitin by the RING E3 ligases Arkadia and Ark2C is enhanced by ubiquitin and a charged loop that precedes the RING domain.
Collapse
Affiliation(s)
- Andrej Paluda
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.,TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Adam J Middleton
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Claudia Rossig
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Catherine L Day
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
23
|
Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. EMBO J 2022; 41:e108823. [PMID: 34942047 PMCID: PMC8804933 DOI: 10.15252/embj.2021108823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.
Collapse
Affiliation(s)
- Kaeli A Welsh
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Joshua Boyer
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
- R L Juliano Structural Bioinformatics Core FacilityUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Li Gu
- Department of ChemistryUniversity of the PacificStocktonCAUSA
| | - Alban Ordureau
- Department of Cell BiologyBlavatnik Institute of Harvard Medical SchoolBostonMAUSA
- Present address:
Cell Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - J Wade Harper
- Department of Cell BiologyBlavatnik Institute of Harvard Medical SchoolBostonMAUSA
| | - Joshua P Steimel
- Department of Mechanical EngineeringUniversity of the PacificStocktonCAUSA
| | - Qi Zhang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | | | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| |
Collapse
|
24
|
Roman-Trufero M, Dillon N. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Front Cell Dev Biol 2022; 10:1058751. [PMID: 36578786 PMCID: PMC9790923 DOI: 10.3389/fcell.2022.1058751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination of cellular proteins plays critical roles in key signalling pathways and in the regulation of protein turnover in eukaryotic cells. E2 ubiquitin conjugating enzymes function as essential intermediates in ubiquitination reactions by acting as ubiquitin donors for the E3 ubiquitin ligase enzymes that confer substrate specificity. The members of the UBE2D family of E2 enzymes are involved in regulating signalling cascades through ubiquitination of target proteins that include receptor tyrosine kinases (RTKs) and components of the Hedgehog, TGFβ and NFκB pathways. UBE2D enzymes also function in transcriptional control by acting as donors for ubiquitination of histone tails by the Polycomb protein Ring1B and the DNA methylation regulator UHRF1 as well as having roles in DNA repair and regulation of the level of the tumour suppressor p53. Here we review the functional roles and mechanisms of regulation of the UBE2D proteins including recent evidence that regulation of the level of UBE2D3 is critical for controlling ubiquitination of specific targets during development. Cellular levels of UBE2D3 have been shown to be regulated by phosphorylation, which affects folding of the protein, reducing its stability. Specific variations in the otherwise highly conserved UBE2D3 protein sequence in amniotes and in a subgroup of teleost fishes, the Acanthomorpha, suggest that the enzyme has had important roles during vertebrate evolution.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Niall Dillon
- MRC London Institute of Medical Sciences, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
25
|
Structural Diversity of Ubiquitin E3 Ligase. Molecules 2021; 26:molecules26216682. [PMID: 34771091 PMCID: PMC8586995 DOI: 10.3390/molecules26216682] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.
Collapse
|
26
|
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2421-2431. [PMID: 34744375 PMCID: PMC8526628 DOI: 10.1007/s12298-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
27
|
Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases. Biochem Soc Trans 2021; 48:2615-2624. [PMID: 33170204 PMCID: PMC7752041 DOI: 10.1042/bst20200383] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
TRIM proteins form a protein family that is characterized by a conserved tripartite motif domain comprising a RING domain, one or two B-box domains and a coiled-coil region. Members of this large protein family are important regulators of numerous cellular functions including innate immune responses, transcriptional regulation and apoptosis. Key to their cellular role is their E3 ligase activity which is conferred by the RING domain. Self-association is an important characteristic of TRIM protein activity and is mediated by homodimerization via the coiled-coil region, and in some cases higher order association via additional domains of the tripartite motif. In many of the TRIM family proteins studied thus far, RING dimerization is an important prerequisite for E3 ligase enzymatic activity though the propensity of RING domains to dimerize differs significantly between different TRIMs and can be influenced by other regions of the protein.
Collapse
|
28
|
Wolf LM, Lambert AM, Haenlin J, Boutros M. EVI/WLS function is regulated by ubiquitination and linked to ER-associated degradation by ERLIN2. J Cell Sci 2021; 134:271857. [PMID: 34406391 PMCID: PMC8435288 DOI: 10.1242/jcs.257790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is important for development in all metazoans and is associated with various human diseases. The ubiquitin–proteasome system (UPS) and regulatory endoplasmic reticulum-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI (also known as WLS) is ubiquitylated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitylation machinery. Interestingly, we also found that EVI/WLS is ubiquitylated and degraded in cells irrespective of their level of WNT production. This K11, K48 and K63-linked ubiquitylation is mediated by the E2 ubiquitin-conjugating enzymes UBE2J2, UBE2K and UBE2N, but is independent of the E3 ubiquitin ligases HRD1 (also known as SYVN1) and GP78 (also known as AMFR). Taken together, our study identifies factors that link the UPS to the WNT secretory pathway and provides mechanistic details of the fate of an endogenous substrate of regulatory ERAD in mammalian cells. This article has an associated First Person interview with the first author of the paper. Summary: The WNT secretory factor EVI/WLS is ubiquitylated and linked to ER-associated degradation by multiple proteins, providing insight into the link between WNT signalling and the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Lucie M Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Annika M Lambert
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Julie Haenlin
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
30
|
Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun 2021; 12:2370. [PMID: 33888705 PMCID: PMC8062481 DOI: 10.1038/s41467-021-22598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.
Collapse
|
31
|
Gundogdu M, Tadayon R, Salzano G, Shaw GS, Walden H. A mechanistic review of Parkin activation. Biochim Biophys Acta Gen Subj 2021; 1865:129894. [PMID: 33753174 DOI: 10.1016/j.bbagen.2021.129894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
Parkin and phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) constitute a feed-forward signalling pathway that mediates autophagic removal of damaged mitochondria (mitophagy). With over 130 mutations identified to date in over 1000 patients with early onset parkinsonism, Parkin is considered a hot spot of signalling pathways involved in PD aetiology. Parkin is an E3 ligase and how its activity is regulated has been extensively studied: inter-domain interactions exert a tight inhibition on Parkin activity; binding to phospho-ubiquitin relieves this auto-inhibition; and phosphorylation of Parkin shifts the equilibrium towards maximal Parkin activation. This review focusses on recent, structural findings on the regulation of Parkin activity. What follows is a mechanistic introduction to the family of E3 ligases that includes Parkin, followed by a brief description of structural elements unique to Parkin that lock the enzyme in an autoinhibited state, contrasted with emerging models that have shed light on possible mechanisms of Parkin activation.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Roya Tadayon
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Giulia Salzano
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
32
|
Jmii S, Cappadocia L. Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA. FRONTIERS IN PLANT SCIENCE 2021; 12:652170. [PMID: 33897743 PMCID: PMC8064691 DOI: 10.3389/fpls.2021.652170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Protein modification by the small ubiquitin-like modifier (SUMO) plays an important role in multiple plant processes, including growth, development, and the response to abiotic stresses. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases accelerate SUMO conjugation while also influencing target identity and interactions. This review explores the biological functions of plant SUMO E3 ligases [SAP AND MIZ1 DOMAIN-CONTAINING LIGASE (SIZs), METHYL METHANESULFONATE-SENSITIVITY PROTEIN 21 (MMS21s), and PROTEIN INHIBITOR OF ACTIVATED STAT-LIKE (PIALs)] in relation to their molecular activities and domains. We also explore the sub-cellular localization of SUMO E3 ligases and review evidence suggesting a connection between certain SUMO E3 ligases and DNA that contributes to gene expression regulation.
Collapse
|
33
|
Khago D, Fucci IJ, Byrd RA. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules 2020; 25:E5933. [PMID: 33333809 PMCID: PMC7765195 DOI: 10.3390/molecules25245933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
The ubiquitination pathway is central to many cell signaling and regulatory events. One of the intriguing aspects of the pathway is the combinatorial sophistication of substrate recognition and ubiquitin chain building determinations. The abundant structural and biological data portray several characteristic protein folds among E2 and E3 proteins, and the understanding of the combinatorial complexity that enables interaction with much of the human proteome is a major goal to developing targeted and selective manipulation of the pathway. With the commonality of some folds, there are likely other aspects that can provide differentiation and recognition. These aspects involve allosteric effects and conformational dynamics that can direct recognition and chain building processes. In this review, we will describe the current state of the knowledge for conformational dynamics across a wide timescale, address the limitations of present approaches, and illustrate the potential to make new advances in connecting dynamics with ubiquitination regulation.
Collapse
Affiliation(s)
| | | | - Robert Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Building 538, Frederick, MD 21702-1201, USA; (D.K.); (I.J.F.)
| |
Collapse
|
34
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
35
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
36
|
Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nat Chem Biol 2020; 16:1227-1236. [PMID: 32747811 PMCID: PMC7610530 DOI: 10.1038/s41589-020-0598-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
MYCBP2 is a ubiquitin (Ub) E3 ligase (E3) that is essential for neurodevelopment and regulates axon maintenance. MYCBP2 transfers Ub to non-lysine substrates via a newly discovered RING-Cys-Relay (RCR) mechanism where Ub is relayed from an upstream cysteine to a downstream substrate esterification site. The molecular bases for E2-E3 Ub transfer and Ub relay are unknown. Whether these activities are linked to the neural phenotypes is also unclear. We describe the crystal structure of a covalently trapped E2-Ub:MYCBP2 transfer intermediate revealing key structural rearrangements upon E2-E3 Ub transfer and Ub relay. Our data suggest that transfer to the dynamic upstream cysteine, whilst mitigating lysine activity, requires a closed-like E2-Ub conjugate with tempered reactivity, and Ub relay is facilitated by a helix-coil transition. Furthermore, neurodevelopmental defects and delayed injury-induced degeneration in RCR-defective knock-in mice suggest its requirement, and that of substrate esterification activity, for normal neural development and programmed axon degeneration.
Collapse
|
37
|
Branigan E, Carlos Penedo J, Hay RT. Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation. Nat Commun 2020; 11:2846. [PMID: 32503993 PMCID: PMC7275055 DOI: 10.1038/s41467-020-16666-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Based on extensive structural analysis it was proposed that RING E3 ligases prime the E2~ubiquitin conjugate (E2~Ub) for catalysis by locking it into a closed conformation, where ubiquitin is folded back onto the E2 exposing the restrained thioester bond to attack by substrate nucleophile. However the proposal that the RING dependent closed conformation of E2~Ub represents the active form that mediates ubiquitin transfer has yet to be experimentally tested. To test this hypothesis we use single molecule Förster Resonance Energy Transfer (smFRET) to measure the conformation of a FRET labelled E2~Ub conjugate, which distinguishes between closed and alternative conformations. We describe a real-time FRET assay with a thioester linked E2~Ub conjugate to monitor single ubiquitination events and demonstrate that ubiquitin is transferred to substrate from the closed conformation. These findings are likely to be relevant to all RING E3 catalysed reactions ligating ubiquitin and other ubiquitin-like proteins (Ubls) to substrates.
Collapse
Affiliation(s)
- Emma Branigan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
38
|
The RING Domain of RING Finger 12 Efficiently Builds Degradative Ubiquitin Chains. J Mol Biol 2020; 432:3790-3801. [PMID: 32416094 DOI: 10.1016/j.jmb.2020.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022]
Abstract
RNF12 is a widely expressed ubiquitin E3 ligase that is required for X-chromosome inactivation, regulation of LIM-domain containing transcription factors, and TGF-β signaling. A RING domain at the C terminus of RNF12 is important for its E3 ligase activity, and mutations in the RING domain are associated with X-linked intellectual disability. Here we have characterized ubiquitin transfer by RNF12, and show that the RING domain can bind to, and is active with, ubiquitin conjugating enzymes (E2s) that produce degradative ubiquitin chains. We report the crystal structures of RNF12 in complex with two of these E2 enzymes, as well as with an E2~Ub conjugate in a closed conformation. These structures form a basis for understanding the deleterious effect of a number of disease causing mutations. Comparison of the RNF12 structure with other monomeric RINGs suggests that a loop prior to the core RING domain has a conserved and essential role in stabilization of the active conformation of the bound E2~Ub conjugate. Together these findings provide a framework for better understanding substrate ubiquitylation by RNF12 and the impact of disease causing mutations.
Collapse
|
39
|
Puvar K, Iyer S, Fu J, Kenny S, Negrón Terón KI, Luo ZQ, Brzovic PS, Klevit RE, Das C. Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination. Nat Commun 2020; 11:2365. [PMID: 32398758 PMCID: PMC7217864 DOI: 10.1038/s41467-020-16211-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
The bacterial effector MavC modulates the host immune response by blocking Ube2N activity employing an E1-independent ubiquitin ligation, catalyzing formation of a γ-glutamyl-ε-Lys (Gln40Ub-Lys92Ube2N) isopeptide crosslink using a transglutaminase mechanism. Here we provide biochemical evidence in support of MavC targeting the activated, thioester-linked Ube2N~ubiquitin conjugate, catalyzing an intramolecular transglutamination reaction, covalently crosslinking the Ube2N and Ub subunits effectively inactivating the E2~Ub conjugate. Ubiquitin exhibits weak binding to MavC alone, but shows an increase in affinity when tethered to Ube2N in a disulfide-linked substrate that mimics the charged E2~Ub conjugate. Crystal structures of MavC in complex with the substrate mimic and crosslinked product provide insights into the reaction mechanism and underlying protein dynamics that favor transamidation over deamidation, while revealing a crucial role for the structurally unique insertion domain in substrate recognition. This work provides a structural basis of ubiquitination by transglutamination and identifies this enzyme's true physiological substrate.
Collapse
Affiliation(s)
- Kedar Puvar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiaqi Fu
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
40
|
Molecular mechanisms in SUMO conjugation. Biochem Soc Trans 2020; 48:123-135. [PMID: 31872228 DOI: 10.1042/bst20190357] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
The small ubiquitin-like modifier (SUMO) is a post-translational modifier that can regulate the function of hundreds of proteins inside the cell. SUMO belongs to the ubiquitin-like family of proteins that can be attached to target proteins by a dedicated enzymatic cascade pathway formed by E1, E2 and E3 enzymes. SUMOylation is involved in many cellular pathways, having in most instances essential roles for their correct function. In this review, we want to highlight the latest research on the molecular mechanisms that lead to the formation of the isopeptidic bond between the lysine substrate and the C-terminus of SUMO. In particular, we will focus on the recent discoveries on the catalytic function of the SUMO E3 ligases revealed by structural and biochemical approaches. Also, we will discuss important questions regarding specificity in SUMO conjugation, which it still remains as a major issue due to the small number of SUMO E3 ligases discovered so far, in contrast with the large number of SUMO conjugated proteins in the cell.
Collapse
|
41
|
Marousis KD, Birkou M, Asimakopoulou A, Spyroulias GA. 1H, 13C, 15N backbone and side-chain resonance assignment of the native form of UbcH7 (UBE2L3) through solution NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:73-78. [PMID: 31792831 DOI: 10.1007/s12104-019-09923-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Ubiquitination is a post-translational modification that regulates a plethora of processes in cells. Ubiquitination requires three type of enzyme: E1 ubiquitin (Ub) activating enzymes, E2 Ub conjugating enzymes and E3 ubiquitin ligases. The E2 enzymes perform a variety of functions, as Ub chain initiation, elongation and regulation of the topology and the process of chain formation. The E2 enzymes family is mainly characterized by a highly conserved ubiquitin conjugating domain (UBC), which comprises the binding region for the activated Ub, E1 and E3 enzymes. The E2 enzyme UbcH7 (UBE2L3) is a known interacting partner for different types of E3 Ub ligases such as HECT, RING and RBR. A structural analysis of the apo form of the native UbcH7 will provide the structural information to understand how this E2 enzyme is implicated in a wide range of diseases and how it interacts with its partners. In the present study we present the high yield expression of the native UbcH7 E2 enzyme and its preliminary analysis via solution NMR spectroscopy. The E2 enzyme is folded in solution and nearly a complete backbone assignment was achieved. Additionally, TALOS+ analysis was performed and the results indicated that UbcH7 adopts a αββββααα topology which is similar to that of the majority of E2 enzymes.
Collapse
Affiliation(s)
| | - Maria Birkou
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | | | | |
Collapse
|
42
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
43
|
Cook BW, Lacoursiere RE, Shaw GS. Recruitment of Ubiquitin within an E2 Chain Elongation Complex. Biophys J 2020; 118:1679-1689. [PMID: 32101714 DOI: 10.1016/j.bpj.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
The ubiquitin (Ub) proteolysis pathway uses an E1, E2, and E3 enzyme cascade to label substrate proteins with ubiquitin and target them for degradation. The mechanisms of ubiquitin chain formation remain unclear and include a sequential addition model, in which polyubiquitin chains are built unit by unit on the substrate, or a preassembly model, in which polyubiquitin chains are preformed on the E2 or E3 enzyme and then transferred in one step to the substrate. The E2 conjugating enzyme UBE2K has a 150-residue catalytic core domain and a C-terminal ubiquitin-associated (UBA) domain. Polyubiquitin chains anchored to the catalytic cysteine and free in solution are formed by UBE2K supporting a preassembly model. To study how UBE2K might assemble polyubiquitin chains, we synthesized UBE2K-Ub and UBE2K-Ub2 covalent complexes and analyzed E2 interactions with the covalently attached Ub and Ub2 moieties using NMR spectroscopy. The UBE2K-Ub complex exists in multiple conformations, including the catalytically competent closed state independent of the UBA domain. In contrast, the UBE2K-Ub2 complex takes on a more extended conformation directed by interactions between the classic I44 hydrophobic face of the distal Ub and the conserved MGF hydrophobic patch of the UBA domain. Our results indicate there are distinct differences between the UBE2K-Ub and UBE2K-Ub2 complexes and show how the UBA domain can alter the position of a polyubiquitin chain attached to the UBE2K active site. These observations provide structural insights into the unique Ub chain-building capacity for UBE2K.
Collapse
Affiliation(s)
- Benjamin W Cook
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rachel E Lacoursiere
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
44
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
45
|
Tsai YCI, Johansson H, Dixon D, Martin S, Chung CW, Clarkson J, House D, Rittinger K. Single-Domain Antibodies as Crystallization Chaperones to Enable Structure-Based Inhibitor Development for RBR E3 Ubiquitin Ligases. Cell Chem Biol 2020; 27:83-93.e9. [PMID: 31813847 PMCID: PMC6963773 DOI: 10.1016/j.chembiol.2019.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023]
Abstract
Protein ubiquitination plays a key role in the regulation of cellular processes, and misregulation of the ubiquitin system is linked to many diseases. So far, development of tool compounds that target enzymes of the ubiquitin system has been slow and only a few specific inhibitors are available. Here, we report the selection of single-domain antibodies (single-dAbs) based on a human scaffold that recognize the catalytic domain of HOIP, a subunit of the multi-component E3 LUBAC and member of the RBR family of E3 ligases. Some of these dAbs affect ligase activity and provide mechanistic insight into the ubiquitin transfer mechanism of different E2-conjugating enzymes. Furthermore, we show that the co-crystal structure of a HOIP RBR/dAb complex serves as a robust platform for soaking of ligands that target the active site cysteine of HOIP, thereby providing easy access to structure-based ligand design for this important class of E3 ligases.
Collapse
Affiliation(s)
- Yi-Chun Isabella Tsai
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Henrik Johansson
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David Dixon
- R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Stephen Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Chun-Wa Chung
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Jane Clarkson
- R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
46
|
Mathur S, Fletcher AJ, Branigan E, Hay RT, Virdee S. Photocrosslinking Activity-Based Probes for Ubiquitin RING E3 Ligases. Cell Chem Biol 2019; 27:74-82.e6. [PMID: 31859248 PMCID: PMC6963778 DOI: 10.1016/j.chembiol.2019.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling is an invaluable technique for studying enzyme biology and facilitating the development of therapeutics. Ubiquitin E3 ligases (E3s) are one of the largest enzyme families and regulate a host of (patho)physiological processes. The largest subtype are the RING E3s of which there are >600 members. RING E3s have adaptor-like activity that can be subject to diverse regulatory mechanisms and have become attractive drug targets. Activity-based probes (ABPs) for measuring RING E3 activity do not exist. Here we re-engineer ubiquitin-charged E2 conjugating enzymes to produce photocrosslinking ABPs. We demonstrate activity-dependent profiling of two divergent cancer-associated RING E3s, RNF4 and c-Cbl, in response to their native activation signals. We also demonstrate profiling of endogenous RING E3 ligase activation in response to epidermal growth factor (EGF) stimulation. These photocrosslinking ABPs should advance E3 ligase research and the development of selective modulators against this important class of enzymes. Photoactivated activity-based probes developed for large class of ubiquitin E3 ligases ABPs are compatible with divergent RING E3 activation mechanisms Parallelized E3 profiling and detection of growth factor-induced E3 activation
Collapse
Affiliation(s)
- Sunil Mathur
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Adam J Fletcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Emma Branigan
- Division of Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Ronald T Hay
- Division of Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.
| |
Collapse
|
47
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
49
|
Jones WM, Davis AG, Wilson RH, Elliott KL, Sumner I. A conserved asparagine in a ubiquitin-conjugating enzyme positions the substrate for nucleophilic attack. J Comput Chem 2019; 40:1969-1977. [PMID: 31070815 DOI: 10.1002/jcc.25852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 04/14/2019] [Indexed: 01/30/2023]
Abstract
The mechanism used by the ubiquitin-conjugating enzyme, Ubc13, to catalyze ubiquitination is probed with three computational techniques: Born-Oppenheimer molecular dynamics, single point quantum mechanics/molecular mechanics energies, and classical molecular dynamics. These simulations support a long-held hypothesis and show that Ubc13-catalyzed ubiquitination uses a stepwise, nucleophilic attack mechanism. Furthermore, they show that the first step-the formation of a tetrahedral, zwitterionic intermediate-is rate limiting. However, these simulations contradict another popular hypothesis that supposes that the negative charge on the intermediate is stabilized by a highly conserved asparagine (Asn79 in Ubc13). Instead, calculated reaction profiles of the N79A mutant illustrate how charge stabilization actually increases the barrier to product formation. Finally, an alternate role for Asn79 is suggested by simulations of wild-type, N79A, N79D, and H77A Ubc13: it stabilizes the motion of the electrophile prior to the reaction, positioning it for nucleophilic attack. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walker M Jones
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Aaron G Davis
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - R Hunter Wilson
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Katherine L Elliott
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| |
Collapse
|
50
|
Stevens RV, Esposito D, Rittinger K. Characterisation of class VI TRIM RING domains: linking RING activity to C-terminal domain identity. Life Sci Alliance 2019; 2:2/3/e201900295. [PMID: 31028095 PMCID: PMC6487577 DOI: 10.26508/lsa.201900295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
TRIM E3 ubiquitin ligases regulate multiple cellular processes, and their dysfunction is linked to disease. They are characterised by a conserved N-terminal tripartite motif comprising a RING, B-box domains, and a coiled-coil region, with C-terminal domains often mediating substrate recruitment. TRIM proteins are grouped into 11 classes based on C-terminal domain identity. Class VI TRIMs, TRIM24, TRIM33, and TRIM28, have been described as transcriptional regulators, a function linked to their C-terminal plant homeodomain and bromodomain, and independent of their ubiquitination activity. It is unclear whether E3 ligase activity is regulated in family members where the C-terminal domains function independently. Here, we provide a detailed biochemical characterisation of the RING domains of class VI TRIMs and describe the solution structure of the TRIM28 RING. Our study reveals a lack of activity of the isolated RING domains, which may be linked to the absence of self-association. We propose that class VI TRIMs exist in an inactive state and require additional regulatory events to stimulate E3 ligase activity, ensuring that associated chromatin-remodelling factors are not injudiciously degraded.
Collapse
Affiliation(s)
- Rebecca V Stevens
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|