1
|
Deb P, Chini A, Guha P, Rishi A, Bhan A, Brady B, Perrotti LI, Mandal SS. Dynamic regulation of BDNF gene expression by estradiol and lncRNA HOTAIR. Gene 2024; 897:148055. [PMID: 38043834 DOI: 10.1016/j.gene.2023.148055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Brain derived neurotrophic factor (BDNF) is a major neurotransmitter that controls growth and maintenance of neurons and its misregulation is linked to neurodegeneration and human diseases. Estradiol (E2) is well-known to regulate the process of differentiation and plasticity of hippocampal neurons. Here we examined the mechanisms of BDNF gene regulation under basal conditions and under stimuli such as E2. Our results demonstrated that BDNF expression is induced by E2 in vitro in HT22 cells (hippocampal neuronal cells) and in vivo (in ovariectomized mouse brain under E2-treatment). Using chromatin immunoprecipitation assay, we demonstrated that estrogen receptors (ERα, ERβ) were enriched at the BDNF promoter in presence of E2. Additionally, ER-coregulators (e.g., CBP/p300, MLL3), histone acetylation, H3K4-trimethylation, and RNA polymerase II levels were also elevated at the BDNF promoter in an E2-dependent manner. Additionally, under the basal conditions (in the absence of E2), the long noncoding RNA HOTAIR and its interacting partners PRC2 and LSD1 complexes binds to the promoter of BDNF and represses its expression. HOTAIR knockdown -relieves the repression resulting in elevation of BDNF expression. Further, levels of HOTAIR-interacting partners, EZH2 and LSD1 were reduced at the BDNF promoter upon HOTAIR-knockdown revealing that HOTAIR plays a regulatory role in BDNF gene expression by modulating promoter histone modifications. Additionally, we showed that E2 induced-BDNF expression is mediated by the displacement of silencing factors, EZH2 and LSD1 at BDNF promoter and subsequent recruitment of active transcription machinery. These results reveal the mechanisms of BDNF gene regulation under the basal condition and in presence of a positive regulator such as E2 in neuronal cells.
Collapse
Affiliation(s)
- Paromita Deb
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Blake Brady
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
2
|
Hussain I, Deb P, Chini A, Obaid M, Bhan A, Ansari KI, Mishra BP, Bobzean SA, Udden SMN, Alluri PG, Das HK, Brothers RM, Perrotti LI, Mandal SS. HOXA5 Expression Is Elevated in Breast Cancer and Is Transcriptionally Regulated by Estradiol. Front Genet 2021; 11:592436. [PMID: 33384715 PMCID: PMC7770181 DOI: 10.3389/fgene.2020.592436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERβ downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.
Collapse
Affiliation(s)
- Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Paromita Deb
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Monira Obaid
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Bibhu P Mishra
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - S M Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prasanna G Alluri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hriday K Das
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, Fort Worth, TX, United States
| | - Robert Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
3
|
Xiong Y, Wang Y, Ma L, Zhang Y, Qu X, Huang L, Wen X, Liu H, Zhang M, Zhang Y. Mixed-lineage leukaemia 1 contributes to endometrial stromal cells progesterone responsiveness during decidualization. J Cell Mol Med 2020; 25:297-308. [PMID: 33201593 PMCID: PMC7810960 DOI: 10.1111/jcmm.16030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have reported that non‐receptive endometrium or abnormal decidualization was closely related to recurrent implantation failure (RIF). MLL1 is a histone H3 lysine 4 trimethylation (H3K4me3) transferase that regulates the transcriptional activation of target genes. The role of MLL1 has been underexplored during decidualization. In our research, we found the expression of MLL1 was closely related to endometrial receptivity, and it was responsible to hormone stimulation. Inhibiting the function of MLL1 by MM102 reduced the transformation of HESCs. Furthermore, down‐regulation of MLL1 by siRNA transfection significantly decreased PGR and its target genes expression. MLL1 act as a co‐activator of ERα, and both of them were recruited to PGR regulatory regions, thus promote PGR transcription. Our study showed that MLL1 plays a key role in promoting progesterone signalling transmission.
Collapse
Affiliation(s)
- Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yan Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ying Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Xinlan Qu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China.,Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Huang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Xue Wen
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Huimin Liu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China.,Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020; 12:cancers12113299. [PMID: 33171691 PMCID: PMC7695342 DOI: 10.3390/cancers12113299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The inhibition of angiogenesis, relying on the use of drugs targeting the VEGF signaling pathway, has become one of the main strategies for cancer treatment. However, the intrinsic and acquired resistance to this type of therapy limit its efficacy. Thus, the identification of novel therapeutic targets is urgently needed. The resistance to anti-angiogenic treatment often occurs through the activation of alternative VEGF independent signaling pathways and recruitment of bone marrow-derived pro-angiogenic cells in the tumor microenvironment. HOX genes are key regulators of embryonic development, also involved in angiogenesis and in cancer progression. HOXB9 upregulation occurs in many types of cancer and it has been identified as a critical transcription factor involved in tumour resistance to anti-angiogenic drugs. Indeed, HOXB9 modulates the expression of alternative pro-angiogenic secreted factors in the tumour microenvironment leading tumor escape from the anti-angiogenic treatments. Hence, HOXB9 could serves as a novel therapeutic target to overcome the resistance to anti-angiogenic therapies. Abstract Angiogenesis is one of the hallmarks of cancer, and the inhibition of pro-angiogenic factors and or their receptors has become a primary strategy for cancer therapy. However, despite promising results in preclinical studies, the majority of patients either do not respond to these treatments or, after an initial period of response, they develop resistance to anti-angiogenic agents. Thus, the identification of a novel therapeutic target is urgently needed. Multiple mechanisms of resistance to anti-angiogenic therapy have been identified, including the upregulation of alternative angiogenic pathways and the recruitment of pro-angiogenic myeloid cells in the tumor microenvironment. Homeobox containing (HOX) genes are master regulators of embryonic development playing a pivotal role during both embryonic vasculogenesis and pathological angiogenesis in adults. The importance of HOX genes during cancer progression has been reported in many studies. In this review we will give a brief description of the HOX genes and their involvement in angiogenesis and cancer, with particular emphasis on HOXB9 as a possible novel target for anti-angiogenic therapy. HOXB9 upregulation has been reported in many types of cancers and it has been identified as a critical transcription factor involved in resistance to anti-angiogenic drugs.
Collapse
|
5
|
Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. ENDOCRINES 2020. [DOI: 10.3390/endocrines1020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MEN1 mutation predisposes patients to multiple endocrine neoplasia type 1 (MEN1), a genetic syndrome associated with the predominant co-occurrence of endocrine tumors. Intriguingly, recent evidence has suggested that MEN1 could also be involved in the development of breast and prostate cancers, two major hormone-related cancers. The first clues as to its possible role arose from the identification of the physical and functional interactions between the menin protein, encoded by MEN1, and estrogen receptor α and androgen receptor. In parallel, our team observed that aged heterozygous Men1 mutant mice developed cancerous lesions in mammary glands of female and in the prostate of male mutant mice at low frequencies, in addition to endocrine tumors. Finally, observations made both in MEN1 patients and in sporadic breast and prostate cancers further confirmed the role played by menin in these two cancers. In this review, we present the currently available data concerning the complex and multifaceted involvement of MEN1 in these two types of hormone-dependent cancers.
Collapse
|
6
|
Larsson C, Cordeddu L, Siggens L, Pandzic T, Kundu S, He L, Ali MA, Pristovšek N, Hartman K, Ekwall K, Sjöblom T. Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression. Clin Epigenetics 2020; 12:74. [PMID: 32471474 PMCID: PMC7257146 DOI: 10.1186/s13148-020-00863-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The histone 3 lysine 4 (H3K4) monomethylase KMT2C is mutated across several cancer types; however, the effects of mutations on epigenome organization, gene expression, and cell growth are not clear. A frequently recurring mutation in colorectal cancer (CRC) with microsatellite instability is a single nucleotide deletion within the exon 38 poly-A(9) repeat (c.8390delA) which results in frameshift preceding the functional carboxy-terminal SET domain. To study effects of KMT2C expression in CRC cells, we restored one allele to wild type KMT2C in the two CRC cell lines RKO and HCT116, which both are homozygous c.8390delA mutant. RESULTS Gene editing resulted in increased KMT2C expression, increased H3K4me1 levels, altered gene expression profiles, and subtle negative effects on cell growth, where higher dependence and stronger effects of KMT2C expression were observed in RKO compared to HCT116 cells. Surprisingly, we found that the two RKO and HCT116 CRC cell lines have distinct baseline H3K4me1 epigenomic profiles. In RKO cells, a flatter genome-wide H3K4me1 profile was associated with more increased H3K4me1 deposition at enhancers, reduced cell growth, and more differential gene expression relative to HCT116 cells when KMT2C was restored. Profiling of H3K4me1 did not indicate a highly specific regulation of gene expression as KMT2C-induced H3K4me1 deposition was found globally and not at a specific enhancer sub-set in the engineered cells. Although we observed variation in differentially regulated gene sets between cell lines and individual clones, differentially expressed genes in both cell lines included genes linked to known cancer signaling pathways, estrogen response, hypoxia response, and aspects of immune system regulation. CONCLUSIONS Here, KMT2C restoration reduced CRC cell growth and reinforced genome-wide H3K4me1 deposition at enhancers; however, the effects varied depending upon the H3K4me1 status of KMT2C deficient cells. Results indicate that KMT2C inactivation may promote colorectal cancer development through transcriptional dysregulation in several pathways with known cancer relevance.
Collapse
Affiliation(s)
- Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Lina Cordeddu
- Department of Biosciences and Nutrition, NEO, Karolinska Institute, SE-141 83, Huddinge, Sweden
| | - Lee Siggens
- Department of Biosciences and Nutrition, NEO, Karolinska Institute, SE-141 83, Huddinge, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Muhammad Akhtar Ali
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden.,Present address: School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Nuša Pristovšek
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden.,Present address: The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Karin Hartman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, NEO, Karolinska Institute, SE-141 83, Huddinge, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
7
|
LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep 2018; 8:15670. [PMID: 30353135 PMCID: PMC6199307 DOI: 10.1038/s41598-018-33722-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as major regulators of a variety of cell signaling processes. Many lncRNAs are expressed in immune cells and appear to play critical roles in the regulation of immune response. Here, we have investigated the potential role of a well-known lncRNA, HOTAIR, in inflammatory and immune response. Our studies demonstrate that HOTAIR expression is induced in immune cells (macrophages) upon treatment with lipopolysaccharide (LPS). Knockdown of HOTAIR reduces NF-κB-mediated inflammatory gene and cytokine expression in macrophages. Inhibition of NF-κB resulted in down-regulation of LPS-induced expression of HOTAIR as well as IL-6 and iNOS expression. We further demonstrated that HOTAIR regulates activation of NF-κB and its target genes (IL-6 and iNOS) expression via facilitating the degradation of IκBα. HOTAIR knockdown reduces the expression of NF-κB target gene expression via inhibiting the recruitment of NF-κB and associated cofactors at the target gene promoters. Taken together, our findings suggest that HOTAIR is a critical player in NF-κB activation in macrophages suggesting its potential functions in inflammatory and immune response.
Collapse
|
8
|
Parl FF, Crooke PS, Plummer WD, Dupont WD. Genomic-Epidemiologic Evidence That Estrogens Promote Breast Cancer Development. Cancer Epidemiol Biomarkers Prev 2018; 27:899-907. [PMID: 29789325 DOI: 10.1158/1055-9965.epi-17-1174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Estrogens are a prime risk factor for breast cancer, yet their causal relation to tumor formation remains uncertain. A recent study of 560 breast cancers identified 82 genes with 916 point mutations as drivers in the genesis of this malignancy. Because estrogens play a major role in breast cancer development and are also known to regulate the expression of numerous genes, we hypothesize that the 82 driver genes are likely to be influenced by estrogens, such as 17ß-estradiol (E2), and the estrogen receptor ESR1 (ERα). Because different types of tumors are characterized by unique sets of cancer driver genes, we also argue that the fraction of driver genes regulated by E2-ESR1 is lower in malignancies not associated with estrogens, e.g., acute myeloid leukemia (AML).Methods: We performed a literature search of each driver gene to determine its E2-ESR1 regulation.Results: Fifty-three of the 82 driver genes (64.6%) identified in breast cancers showed evidence of E2-ESR1 regulation. In contrast, only 19 of 54 mutated driver genes (35.2%) identified in AML were linked to E2-ESR1. Among the 916 driver mutations found in breast cancers, 813 (88.8%) were linked to E2-ESR1 compared with 2,046 of 3,833 in AML (53.4%).Conclusions: Risk assessment revealed that mutations in estrogen-regulated genes are much more likely to be associated with elevated breast cancer risk, while mutations in unregulated genes are more likely to be associated with AML.Impact: These results increase the plausibility that estrogens promote breast cancer development. Cancer Epidemiol Biomarkers Prev; 27(8); 899-907. ©2018 AACR.
Collapse
Affiliation(s)
- Fritz F Parl
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - W Dale Plummer
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| | - William D Dupont
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function. Oncogene 2018; 37:4692-4710. [PMID: 29755131 PMCID: PMC6107480 DOI: 10.1038/s41388-018-0273-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/30/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Estrogen receptor alpha (ERα) is a ligand-activated nuclear receptor that directs proliferation and differentiation in selected cancer cell types including mammary-derived carcinomas. These master-regulatory functions of ERα require trans-acting elements such as the pioneer factor FOXA1 to establish a genomic landscape conducive to ERα control. Here, we identify the H3K4 methyltransferase KMT2C as necessary for hormone-driven ERα activity and breast cancer proliferation. KMT2C knockdown suppresses estrogen-dependent gene expression and causes H3K4me1 and H3K27ac loss selectively at ERα enhancers. Correspondingly, KMT2C loss impairs estrogen-driven breast cancer proliferation but has no effect on ER- breast cells. Whereas KMT2C loss disrupts estrogen-driven proliferation, it conversely promotes tumor outgrowth under hormone-depleted conditions. In accordance, KMT2C is one of the most frequently mutated genes in ER-positive breast cancer with KMT2C deletion correlating with significantly shorter progression-free survival on anti-estrogen therapy. From a therapeutic standpoint, KMT2C-depleted cells that develop hormone-independence retain their dependence on ERα, displaying ongoing sensitivity to ERα antagonists. We conclude that KMT2C is a key regulator of ERα activity whose loss uncouples breast cancer proliferation from hormone abundance.
Collapse
|
10
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
11
|
Jiang DS, Yi X, Li R, Su YS, Wang J, Chen ML, Liu LG, Hu M, Cheng C, Zheng P, Zhu XH, Wei X. The Histone Methyltransferase Mixed Lineage Leukemia (MLL) 3 May Play a Potential Role on Clinical Dilated Cardiomyopathy. Mol Med 2017; 23:196-203. [PMID: 28805231 DOI: 10.2119/molmed.2017.00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a critical role in the pathological processes of dilated cardiomyopathy (DCM). While the role and expression pattern of histone methyltransferases (HMTs), especially mixed lineage leukemia (MLL) families on DCM are unclear. To this end, twelve normal and fifteen DCM heart samples were included in the present study. A murine cardiac remodelling model was induced by transverse aortic constriction (TAC). Real-time PCR was performed to detect the expression levels of MLL families in the mouse and human left ventricles. The mRNA level of MLL3 was significantly increased in the mouse hearts treated by TAC surgery. Compared with normal hearts, higher mRNA and protein level of MLL3 was detected in the DCM hearts, and its expression level was closely associated with left ventricular end systolic diameter (LVEDD) and left ventricular ejection fraction (LVEF). However, the expression level of other MLL families (MLL, MLL2, MLL4, MLL5, SETD1A, and SETD1B) had no obvious change between control and DCM hearts or remodeled mouse hearts. Furthermore, the di-methylated histone H3 lysine 4 (H3K4me2) but not H3K4me3 was significantly increased in the DCM hearts. The protein levels of Smad3, GATA4, EGR1, which might regulate by MLL3, were remarkably elevated in the DCM hearts. Our hitherto unrecognized findings indicate that MLL3 has a potential role on pathological processes of DCM via regulating H3K4me2 and the expression of Smad3, GATA4, and EGR1.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Shu Su
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min-Lai Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Gang Liu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Hu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Nayak A, Reck A, Morsczeck C, Müller S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin 2017; 10:15. [PMID: 28344658 PMCID: PMC5364561 DOI: 10.1186/s13072-017-0122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Background Despite recent studies on the role of ubiquitin-related SUMO modifier in cell fate decisions, our understanding on precise molecular mechanisms of these processes is limited. Previously, we established that the SUMO isopeptidase SENP3 regulates chromatin assembly of the MLL1/2 histone methyltransferase complex at distinct HOX genes, including the osteogenic master regulator DLX3. A comprehensive mechanism that regulates SENP3 transcriptional function was not understood. Results Here, we identified flightless-I homolog (FLII), a member of the gelsolin family of actin-remodeling proteins, as a novel regulator of SENP3. We demonstrate that FLII is associated with SENP3 and the MLL1/2 complex. We further show that FLII determines SENP3 recruitment and MLL1/2 complex assembly on the DLX3 gene. Consequently, FLII is indispensible for H3K4 methylation and proper loading of active RNA polymerase II at this gene locus. Most importantly, FLII-mediated SENP3 regulation governs osteogenic differentiation of human mesenchymal stem cells. Conclusion Altogether, these data reveal a crucial functional interconnection of FLII with the sumoylation machinery that converges on epigenetic regulation and cell fate determination. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0122-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Genetic Loci and Novel Discrimination Measures Associated with Blood Pressure Variation in African Americans Living in Tallahassee. PLoS One 2016; 11:e0167700. [PMID: 28002425 PMCID: PMC5176163 DOI: 10.1371/journal.pone.0167700] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
Sequencing of the human genome and decades of genetic association and linkage studies have dramatically improved our understanding of the etiology of many diseases. However, the multiple causes of complex diseases are still not well understood, in part because genetic and sociocultural risk factors are not typically investigated concurrently. Hypertension is a leading risk factor for cardiovascular disease and afflicts more African Americans than any other racially defined group in the US. Few genetic loci for hypertension have been replicated across populations, which may reflect population-specific differences in genetic variants and/or inattention to relevant sociocultural factors. Discrimination is a salient sociocultural risk factor for poor health and has been associated with hypertension. Here we use a biocultural approach to study blood pressure (BP) variation in African Americans living in Tallahassee, Florida by genotyping over 30,000 single nucleotide polymorphisms (SNPs) and capturing experiences of discrimination using novel measures of unfair treatment of self and others (n = 157). We perform a joint admixture and genetic association analysis for BP that prioritizes regions of the genome with African ancestry. We only report significant SNPs that were confirmed through our simulation analyses, which were performed to determine the false positive rate. We identify eight significant SNPs in five genes that were previously associated with cardiovascular diseases. When we include measures of unfair treatment and test for interactions between SNPs and unfair treatment, we identify a new class of genes involved in multiple phenotypes including psychosocial distress and mood disorders. Our results suggest that inclusion of culturally relevant stress measures, like unfair treatment in African Americans, may reveal new genes and biological pathways relevant to the etiology of hypertension, and may also improve our understanding of the complexity of gene-environment interactions that underlie complex diseases.
Collapse
|
14
|
Bhan A, Mandal SS. Estradiol-Induced Transcriptional Regulation of Long Non-Coding RNA, HOTAIR. Methods Mol Biol 2016; 1366:395-412. [PMID: 26585152 DOI: 10.1007/978-1-4939-3127-9_31] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HOTAIR (HOX antisense intergenic RNA) is a 2.2 kb long non-coding RNA (lncRNA), transcribed from the antisense strand of homeobox C (HOXC) gene locus in chromosome 12. HOTAIR acts as a scaffolding lncRNA. It interacts and guides various chromatin-modifying complexes such as PRC2 (polycomb-repressive complex 2) and LSD1 (lysine-specific demethylase 1) to the target gene promoters leading to their gene silencing. Various studies have demonstrated that HOTAIR overexpression is associated with breast cancer. Recent studies from our laboratory demonstrate that HOTAIR is required for viability of breast cancer cells and is transcriptionally regulated by estradiol (E2) in vitro and in vivo. This chapter describes protocols for analysis of the HOTAIR promoter, cloning, transfection and dual luciferase assays, knockdown of protein synthesis by antisense oligonucleotides, and chromatin immunoprecipitation (ChIP) assay. These protocols are useful for studying the estrogen-mediated transcriptional regulation of lncRNA HOTAIR, as well as other protein coding genes and non-coding RNAs.
Collapse
Affiliation(s)
- Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
15
|
Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, Perrotti LI, Mandal SS. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene 2016; 590:234-43. [PMID: 27182052 DOI: 10.1016/j.gene.2016.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
HOXB9 is a homeobox-containing gene that plays a key role in mammary gland development and is associated with breast and other types of cancer. Here, we demonstrate that HOXB9 expression is transcriptionally regulated by estradiol (E2), in vitro and in vivo. We also demonstrate that the endocrine disrupting chemical bisphenol-A (BPA) induces HOXB9 expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of ovariectomized (OVX) rats. Luciferase assay showed that estrogen-response-elements (EREs) in the HOXB9 promoter are required for BPA-induced expression. Estrogen-receptors (ERs) and ER-co-regulators such as MLL-histone methylase (MLL3), histone acetylases, CBP/P300, bind to the HOXB9 promoter EREs in the presence of BPA, modify chromatin (histone methylation and acetylation) and lead to gene activation. In summary, our results demonstrate that BPA exposure, like estradiol, increases HOXB9 expression in breast cells both in vitro and in vivo through a mechanism that involves increased recruitment of transcription and chromatin modification factors.
Collapse
Affiliation(s)
- Paromita Deb
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Imran Hussain
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Khairul I Ansari
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
16
|
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 2016; 77:204-10. [PMID: 26172856 DOI: 10.1016/j.yhbeh.2015.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.
Collapse
|
17
|
Abstract
Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, and development. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases.
Collapse
|
18
|
Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:697-708. [PMID: 25725483 DOI: 10.1016/j.bbagrm.2015.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022]
Abstract
HOXC6 is a homeobox-containing gene associated with mammary gland development and is overexpressed in variety of cancers including breast and prostate cancers. Here, we have examined the expression of HOXC6 in breast cancer tissue, investigated its transcriptional regulation via estradiol (E2) and bisphenol-A (BPA, an estrogenic endocrine disruptor) in vitro and in vivo. We observed that HOXC6 is differentially over-expressed in breast cancer tissue. E2 induces HOXC6 expression in cultured breast cancer cells and in mammary glands of Sprague Dawley rats. HOXC6 expression is also induced upon exposure to BPA both in vitro and in vivo. Estrogen-receptor-alpha (ERα) and ER-coregulators such as MLL-histone methylases are bound to the HOXC6 promoter upon exposure to E2 or BPA and that resulted in increased histone H3K4-trimethylation, histone acetylation, and recruitment of RNA polymerase II at the HOXC6 promoter. HOXC6 overexpression induces expression of tumor growth factors and facilitates growth 3D-colony formation, indicating its potential roles in tumor growth. Our studies demonstrate that HOXC6, which is a critical player in mammary gland development, is upregulated in multiple cases of breast cancer, and is transcriptionally regulated by E2 and BPA, in vitro and in vivo.
Collapse
|
19
|
Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Histone Methyltransferase EZH2 Is Transcriptionally Induced by Estradiol as Well as Estrogenic Endocrine Disruptors Bisphenol-A and Diethylstilbestrol. J Mol Biol 2014; 426:3426-41. [DOI: 10.1016/j.jmb.2014.07.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
|
20
|
An E2F1-HOXB9 transcriptional circuit is associated with breast cancer progression. PLoS One 2014; 9:e105285. [PMID: 25136922 PMCID: PMC4138122 DOI: 10.1371/journal.pone.0105285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/22/2014] [Indexed: 01/29/2023] Open
Abstract
Homeobox B9 (HOXB9), a member of the homeobox gene family, is overexpressed in breast cancer and promotes tumor progression and metastasis by stimulating epithelial-to-mesenchymal transition and angiogenesis within the tumor microenvironment. HOXB9 activates the TGFβ-ATM axis, leading to checkpoint activation and DNA repair, which engenders radioresistance in breast cancer cells. Despite detailed reports of the role of HOXB9 in breast cancer, the factors that regulate HOXB9 transcription have not been extensively examined. Here we uncover an underlying mechanism that may suggest novel targeting strategies for breast cancer treatment. To identify a transcription factor binding site (TFBS) in the HOXB9 promoter region, a dual luciferase reporter assay was conducted. Protein candidates that may directly attach to a TFBS of HOXB9 were examined by Q-PCR, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and mutation analysis. A HOXB9 promoter region from -404 to -392 was identified as TFBS, and E2F1 was a potential binding candidate in this region. The induction of HOXB9 expression by E2F1 was observed by Q-PCR in several breast cancer cell lines overexpressing E2F1. The stimulatory effect of E2F1 on HOXB9 transcription and its ability to bind the TFBS were confirmed by luciferase, EMSA and ChIP assay. Immunohistochemical analysis of 139 breast cancer tissue samples revealed a significant correlation between E2F1 and HOXB9 expression (p<0.001). Furthermore, a CDK4/6 inhibitor suppressed E2F1 expression and also reduced expression of HOXB9 and its downstream target genes. Our in vitro analysis identified the TFBS of the HOXB9 promoter region and suggested that E2F1 is a direct regulator of HOXB9 expression; these data support the strong correlation we found between E2F1 and HOXB9 in clinical breast cancer samples. These results suggest that targeting the E2F1/HOXB9 axis may be a novel strategy for the control or prevention of cancer progression and metastasis.
Collapse
|
21
|
Bhan A, Hussain I, Ansari KI, Bobzean SAM, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 2014; 141:160-70. [PMID: 24533973 PMCID: PMC4025971 DOI: 10.1016/j.jsbmb.2014.02.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 02/09/2023]
Abstract
Antisense transcript, long non-coding RNA HOTAIR is a key player in gene silencing and breast cancer and is transcriptionally regulated by estradiol. Here, we have investigated if HOTAIR expression is misregulated by bisphenol-A (BPA) and diethylstilbestrol (DES). Our findings demonstrate BPA and DES induce HOTAIR expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of rat. Luciferase assay showed that HOTAIR promoter estrogen-response-elements (EREs) are induced by BPA and DES. Estrogen-receptors (ERs) and ER-coregulators such as MLL-histone methylases (MLL1 and MLL3) bind to the HOTAIR promoter EREs in the presence of BPA and DES, modify chromatin (histone methylation and acetylation) and lead to gene activation. Knockdown of ERs down-regulated the BPA and DES-induced expression of HOTAIR. In summary, our results demonstrate that BPA and DES exposure alters the epigenetic programming of the HOTAIR promoters leading to its endocrine disruption in vitro and in vivo.
Collapse
Affiliation(s)
- Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Samara A M Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
22
|
Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 2014; 9:1932-56. [PMID: 24677606 DOI: 10.1002/cmdc.201300534] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs (ncRNAs) are classes of transcripts that are encoded by the genome and transcribed but never get translated into proteins. Though not translated into proteins, ncRNAs play pivotal roles in a variety of cellular functions. Here, we review the functions of long noncoding RNAs (lncRNAs) and their implications in various human diseases. Increasing numbers of studies demonstrate that lncRNAs play critical roles in regulation of protein-coding genes, maintenance of genomic integrity, dosage compensation, genomic imprinting, mRNA processing, cell differentiation, and development. Misregulation of lncRNAs is associated with a variety of human diseases, including cancer, immune and neurological disorders. Different classes of lncRNAs, their functions, mechanisms of action, and associations with different human diseases are summarized in detail, highlighting their as yet untapped potential in therapy.
Collapse
Affiliation(s)
- Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 (USA)
| | | |
Collapse
|
23
|
Huang K, Yuan R, Wang K, Hu J, Huang Z, Yan C, Shen W, Shao J. Overexpression of HOXB9 promotes metastasis and indicates poor prognosis in colon cancer. Chin J Cancer Res 2014; 26:72-80. [PMID: 24653628 DOI: 10.3978/j.issn.1000-9604.2014.01.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/26/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Homeobox B9 (HOXB9) is proposed to be involved in tumor angiogenesis and metastasis. We investigated the role of HOXB9 in the progression of colon cancer. METHODS HOXB9 expression was investigated by immunohistochemically and Western blotting in 128 colon cancer patients and the results were analyzed statistically associated with clinicopathological data and survival of the patients. The effect of HOXB9 on cell invasion and metastases abilities were analyzed in vitro and in vivo. RESULTS HOXB9 is overexpressed in colon cancer tissues and significantly correlated with metastasis and poor survival of patients (P<0.05, respectively). Additionally, high levels of expression of HOXB9 were observed in metastatic lymph nodes. The down-regulation of HOXB9 expression can inhibit the migration and invasive ability of colon cancer cells, while exogenous expression of HOXB9 in colon cancer cells enhanced cell migration and invasiveness. Moreover, stable knockdown of HOXB9 reduced the liver and lung metastasis of colon cancer in vivo. CONCLUSIONS HOXB9 may play an important role in the invasion and metastasis of colon cancer cells and may be a useful biomarker for metastasis and prognostic of colon cancer.
Collapse
Affiliation(s)
- Kai Huang
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Rongfa Yuan
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Kai Wang
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Junwen Hu
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Zixi Huang
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Chen Yan
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Wei Shen
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| | - Jianghua Shao
- 1 Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China ; 2 Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China ; 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang 330006, China
| |
Collapse
|
24
|
Gagnidze K, Weil ZM, Faustino LC, Schaafsma SM, Pfaff DW. Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. J Neuroendocrinol 2013; 25:939-55. [PMID: 23927378 PMCID: PMC3896307 DOI: 10.1111/jne.12085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/08/2013] [Accepted: 08/04/2013] [Indexed: 12/29/2022]
Abstract
Expression of the primary female sex behaviour, lordosis, in laboratory animals depends on oestrogen-induced expression of progesterone receptor (PgR) within a defined cell group in the ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMH). The minimal latency from oestradiol administration to lordosis is 18 h. During that time, ligand-bound oestrogen receptors (ER), members of a nuclear receptor superfamily, recruit transcriptional coregulators, which induce covalent modifications of histone proteins, thus leading to transcriptional activation or repression of target genes. The present study aimed to investigate the early molecular epigenetic events underlying oestrogen-regulated transcriptional activation of the Pgr gene in the VMH of female mice. Oestradiol (E₂) administration induced rapid and transient global histone modifications in the VMH of ovariectomised female mice. Histone H3 N-terminus phosphorylation (H3S10phK14Ac), acetylation (H3Ac) and methylation (H3K4me3) exhibited distinct temporal patterns facilitative to the induction of transcription. A transcriptional repressive (H3K9me3) modification showed a different temporal pattern. Collectively, this should create a permissive environment for the transcriptional activity necessary for lordosis, within 3-6 h after E₂ treatment. In the VMH, changes in the H3Ac and H3K4me3 levels of histone H3 were also detected at the promoter region of the Pgr gene within the same time window, although they were delayed in the preoptic area. Moreover, examination of histone modifications associated with the promoter of another ER-target gene, oxytocin receptor (Oxtr), revealed gene- and brain-region specific effects of E₂ treatment. In the VMH of female mice, E₂ treatment resulted in the recruitment of ERα to the oestrogen-response-elements-containing putative enhancer site of Pgr gene, approximately 200 kb upstream of the transcription start site, although it failed to increase ERα association with the more proximal promoter region. Finally, E₂ administration led to significant changes in the mRNA expression of several ER coregulators in a brain-region dependent manner. Taken together, these data indicate that, in the hypothalamus and preoptic area of female mice, early responses to E₂ treatment involve highly specific changes in chromatin structure, dependent on cell group, gene, histone modification studied, promoter/enhancer site and time following E₂.
Collapse
Affiliation(s)
- K Gagnidze
- Laboratory of Neurobiology and Behaviour, The Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
25
|
The Drosophila COMPASS-like Cmi-Trr coactivator complex regulates dpp/BMP signaling in pattern formation. Dev Biol 2013; 380:185-98. [DOI: 10.1016/j.ydbio.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/01/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
|
26
|
Ansari KI, Kasiri S, Hussain I, Bobzean SAM, Perrotti LI, Mandal SS. MLL histone methylases regulate expression of HDLR-SR-B1 in presence of estrogen and control plasma cholesterol in vivo. Mol Endocrinol 2012. [PMID: 23192982 DOI: 10.1210/me.2012-1147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-density lipoprotein receptors scavenger receptor class B type I [HDLR-SR-B1 (SR-B1)] is a key player in reverse cholesterol transport and maintaining blood cholesterol. We demonstrated that human SR-B1 is transcriptionally activated by 17β-estradiol (E2) in HEPG2 and JAR cells. SR-B1 promoter contains multiple estrogen response elements (ERE half-sites) along with some Sp1 binding sites. Knockdown of estrogen receptor (ER)α and ERβ down-regulated E2-induced SR-B1 expression. ERs were bound to SR-B1 promoter EREs in an E2-dependent manner. Along with ERs, mixed-lineage leukemia (MLL) histone methylases, especially MLL1 and MLL2, play key roles in E2-mediated SR-B1 activation. MLL1 and MLL2 bind to SR-B1 promoter in an E2-dependent manner and control the assembly of transcription pre-initiation complex and RNA polymerase II (RNAPII) recruitment. ERs and MLLs play critical roles in determining the cholesterol uptake by steroidogenic tissues/cells, and their knockdown suppressed the E2-induced cholesterol uptake efficiencies of the cells. Intriguingly, MLL2 knockdown in mice resulted in a 33% increase in plasma cholesterol level and also reduced SR-B1 expression in mice liver, demonstrating its crucial functions in controlling plasma cholesterol in vivo.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | | | |
Collapse
|
27
|
Shrestha B, Ansari KI, Bhan A, Kasiri S, Hussain I, Mandal SS. Homeodomain-containing protein HOXB9 regulates expression of growth and angiogenic factors, facilitates tumor growth in vitro and is overexpressed in breast cancer tissue. FEBS J 2012; 279:3715-3726. [PMID: 22863320 DOI: 10.1111/j.1742-4658.2012.08733.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/01/2012] [Accepted: 07/25/2012] [Indexed: 11/29/2022]
Abstract
HOXB9 is a homeobox-containing gene and is critical for the development of mammary gland and sternum. HOXB9 is also regulated by estrogen and is critical for angiogenesis. We investigated the biochemical roles of HOXB9 and its homeodomain in cell-cycle progression and tumorigenesis. Our studies demonstrated that HOXB9 is overexpressed in breast cancer tissue. HOXB9 overexpression stimulated 3D formation in soft agar assay. HOXB9 binds to the promoters of various tumor growth and angiogenic factors and regulates their expression. The homeodomain of HOXB9 plays crucial roles in transcriptional regulation of tumor growth factors and also in 3D colony formation, indicating crucial roles of the HOXB9 homeodomain in tumorigenesis. Overall, we demonstrated that HOXB9 is a critical regulator of tumor growth factors and is associated with tumorigenesis.
Collapse
Affiliation(s)
- Bishakha Shrestha
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| | - Sahba Kasiri
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| | - Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, USA
| |
Collapse
|
28
|
Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene 2012; 32:3359-70. [PMID: 22926525 PMCID: PMC3511651 DOI: 10.1038/onc.2012.352] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/07/2012] [Accepted: 06/30/2012] [Indexed: 01/24/2023]
Abstract
Mixed lineage leukemias (MLL) are human histone H3 lysine-4 specific methyl transferases that play critical roles in gene expression, epigenetics, and cancer. Herein, we demonstrated that antisense-mediated knockdown of MLL1 induced cell cycle arrest and apoptosis in cultured cells. Intriguingly, application of MLL1-antisense specifically knocked down MLL1 in vivo and suppressed the growth of xenografted cervical tumor implanted in nude mouse. MLL1-knockdown downregulated various growth and angiogenic factors such as HIF1α, VEGF and CD31 in tumor tissue affecting tumor growth. MLL1 is overexpressed along the line of vascular network and localized adjacent to endothelial cell layer expressing CD31, indicating potential roles of MLL1 in vasculogenesis. MLL1 is also overexpressed in the hypoxic regions along with HIF1α. Overall, our studies demonstrated that MLL1 is a key player in hypoxia signaling, vasculogenesis, and tumor growth, and its depletion suppresses tumor growth in vivo, indicating its potential in novel cancer therapy.
Collapse
|
29
|
Anderson AM, Carter KW, Anderson D, Wise MJ. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action. PLoS One 2012; 7:e34158. [PMID: 22496781 PMCID: PMC3319570 DOI: 10.1371/journal.pone.0034158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.
Collapse
Affiliation(s)
- Alison M Anderson
- Computer Science and Software Engineering, University of Western Australia, Perth, Australia.
| | | | | | | |
Collapse
|