1
|
Mohl GA, Dixon G, Marzette E, McKetney J, Samelson AJ, Serras CP, Jin J, Li A, Boggess SC, Swaney DL, Kampmann M. The disease-causing tau V337M mutation induces tau hypophosphorylation and perturbs axon morphology pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597496. [PMID: 38895329 PMCID: PMC11185762 DOI: 10.1101/2024.06.04.597496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT, and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.
Collapse
Affiliation(s)
- Gregory A Mohl
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Justin McKetney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Carlota Pereda Serras
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Li
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Steven C Boggess
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
3
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
4
|
Ingham DJ, Hillyer KM, McGuire MJ, Gamblin TC. In vitro Tau Aggregation Inducer Molecules Influence the Effects of MAPT Mutations on Aggregation Dynamics. Biochemistry 2022; 61:1243-1259. [PMID: 35731895 PMCID: PMC9260964 DOI: 10.1021/acs.biochem.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) affect 6 million Americans, and they are projected to have an estimated health care cost of $355 billion for 2021. A histopathological hallmark of AD and many ADRDs is the aberrant intracellular accumulation of the microtubule-associated protein tau. These neurodegenerative disorders that contain tau aggregates are collectively known as tauopathies, and recent structural studies have shown that different tauopathies are characterized by different "strains" of tau filaments. In addition, mutations in the gene that encodes for tau protein expression have been associated with a group of tauopathies known as frontotemporal dementias with parkinsonism linked to chromosome 17 (FTDP-17 or familial frontotemporal dementia). In vitro studies often use small molecules to induce tau aggregation as tau is extremely soluble and does not spontaneously aggregate under typical laboratory conditions, and the use of authentic filaments to conduct in vitro studies is not feasible. This study highlights how different inducer molecules can have fundamental disparities to how disease-related mutations affect the aggregation dynamics of tau. Using three different classes of tau aggregation inducer molecules, we characterized disease-relevant mutations in tau's PGGG motifs at positions P301S, P332S, and P364S. When comparing these mutations to wild-type tau, we found that depending on the type of inducer molecule used, we saw fundamental differences in total aggregation, aggregation kinetics, immunoreactivity, and filament numbers, length, and width. These data are consistent with the possibility that different tau aggregation inducer molecules make different structural polymorphs, although this possibility would need to be confirmed by high-resolution techniques such as cryo-electron microscopy. The data also show that disease-associated missense mutations in tau impact tau aggregation differently depending on the mechanism of aggregation induction.
Collapse
Affiliation(s)
- David J. Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Kelsey M. Hillyer
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Madison J. McGuire
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | | |
Collapse
|
5
|
Honisch C, Torni F, Hussain R, Ruzza P, Siligardi G. Effect of Trehalose and Ceftriaxone on the Stability of Aggregating-Prone Tau Peptide Containing PHF6* Sequence: An SRCD Study. Int J Mol Sci 2022; 23:2932. [PMID: 35328353 PMCID: PMC8951053 DOI: 10.3390/ijms23062932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The tau protein, a soluble protein associated with microtubules, which is involved in the assembly and stabilization of cytoskeletal elements, was found to form neurofibrillary tangles in different neurodegenerative diseases. Insoluble tau aggregates were observed to be organized in paired helical filaments (PHFs) and straight filaments (SFs). Recently, two small sequences (306-311 and 275-280) in the microtubule-binding region (MTBR), named PHF6 and PHF6*, respectively, were found to be essential for tau aggregation. Since a possible therapeutic approach consists of impairing amyloid formation either by stabilizing the native proteins or reducing the level of amyloid precursors, here we use synchrotron radiation circular dichroism (SRCD) at Diamond B23 beamline to evaluate the inhibitory effects of two small molecules, trehalose and ceftriaxone, against the aggregation of a small peptide containing the PHF6* sequence. Our results indicate that both these molecules, ceftriaxone and trehalose, increased the stability of the peptide toward aggregation, in particular that induced by heparin. With trehalose being present in many fruits, vegetables, algae and processed foods, these results support the need to investigate whether a diet richer in trehalose might exert a protective effect toward pathologies linked to protein misfolding.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Via Marzolo 1, 35131 Padova, Italy; (C.H.); (F.T.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Federica Torni
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Via Marzolo 1, 35131 Padova, Italy; (C.H.); (F.T.)
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Via Marzolo 1, 35131 Padova, Italy; (C.H.); (F.T.)
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| |
Collapse
|
6
|
Ingham DJ, Blankenfeld BR, Chacko S, Perera C, Oakley BR, Gamblin TC. Fungally Derived Isoquinoline Demonstrates Inducer-Specific Tau Aggregation Inhibition. Biochemistry 2021; 60:1658-1669. [PMID: 34009955 PMCID: PMC8173610 DOI: 10.1021/acs.biochem.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The microtubule-associated
protein tau promotes the stabilization
of the axonal cytoskeleton in neurons. In several neurodegenerative
diseases, such as Alzheimer’s disease, tau has been found to
dissociate from microtubules, leading to the formation of pathological
aggregates that display an amyloid fibril-like structure. Recent structural
studies have shown that the tau filaments isolated from different
neurodegenerative disorders have structurally distinct fibril cores
that are specific to the disease. These “strains” of
tau fibrils appear to propagate between neurons in a prion-like fashion
that maintains their initial template structure. In addition, the
strains isolated from diseased tissue appear to have structures that
are different from those made by the most commonly used in
vitro modeling inducer molecule, heparin. The structural
differences among strains in different diseases and in vitro-induced tau fibrils may contribute to recent failures in clinical
trials of compounds designed to target tau pathology. This study identifies
an isoquinoline compound (ANTC-15) isolated from the fungus Aspergillus nidulans that can both inhibit filaments induced
by arachidonic acid (ARA) and disassemble preformed ARA fibrils. When
compared to a tau aggregation inhibitor currently in clinical trials
(LMTX, LMTM, or TRx0237), ANTC-15 and LMTX were found to have opposing
inducer-specific activities against ARA and heparin in vitro-induced tau filaments. These findings may help explain the disappointing
results in translating potent preclinical inhibitor candidates to
successful clinical treatments.
Collapse
Affiliation(s)
- David J Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bryce R Blankenfeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shibin Chacko
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chamani Perera
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Truman Christopher Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B, Mandelkow EM, Mandelkow E, Cuervo AM. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 2018; 17. [PMID: 29024336 PMCID: PMC5770880 DOI: 10.1111/acel.12692] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context.
Collapse
Affiliation(s)
- Benjamin Caballero
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| | - Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE); 53175 Bonn Germany
- CAESAR Research Center; 53175 Bonn Germany
| | - Antonio Diaz
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| | - Yves Robert Juste
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| | - Barbara Stiller
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE); 53175 Bonn Germany
- CAESAR Research Center; 53175 Bonn Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE); 53175 Bonn Germany
- CAESAR Research Center; 53175 Bonn Germany
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; Bronx NY 10461 USA
- Institute for Aging Studies; Albert Einstein College of Medicine; Bronx NY 10461 USA
| |
Collapse
|
8
|
Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis 2017; 105:74-83. [DOI: 10.1016/j.nbd.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/12/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
|
9
|
Optimization of in vitro conditions to study the arachidonic acid induction of 4R isoforms of the microtubule-associated protein tau. Methods Cell Biol 2017; 141:65-88. [PMID: 28882312 DOI: 10.1016/bs.mcb.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The microtubule-associated protein tau exists in six different isoforms that accumulate as filamentous aggregates in a wide spectrum of neurodegenerative diseases classified as tauopathies. One potential source of heterogeneity between these diseases could arise from differential tau isoform aggregation. in vitro assays employing arachidonic acid as an inducer of aggregation have been pivotal in gaining an understanding of the longest four repeat tau isoform (2N4R). These approaches have been less successful for modeling the shorter 1N4R and 0N4R tau isoforms in vitro. Through a careful analysis of in vitro conditions for aggregation, we found that the differences in the acidity of tau isoform N-terminal projection domains determine whether tau filaments cluster into larger assemblies in solution. Beyond the potential biological implications of filament clustering, we provide optimized conditions for the arachidonic acid induction of shorter 4R tau isoforms aggregation in vitro that greatly reduce filament clustering and improved modeling results.
Collapse
|
10
|
Combs B, Tiernan CT, Hamel C, Kanaan NM. Production of recombinant tau oligomers in vitro. Methods Cell Biol 2017; 141:45-64. [PMID: 28882311 DOI: 10.1016/bs.mcb.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathological aggregation of the tau protein is a common characteristic of many neurodegenerative diseases. There is strong interest in characterizing the potentially toxic nature of tau oligomers. These nonfibrillar, soluble multimers appear to be more toxic than neurofibrillary tangles made up of filamentous tau. However, reliable production, purification, and verification of tau oligomers can provide certain challenges. Here, we provide a series of methods that address these issues. First, recombinant tau is produced using Escherichia coli, purified through affinity, size-exclusion, and anion-exchange chromatography steps and quantified using an SDS Lowry protein quantitation assay. Aggregation of tau is induced using arachidonic acid, and oligomers are purified by centrifugation over a sucrose step gradient. Finally, we describe a sandwich enzyme-linked immunosorbent assay that utilizes the tau oligomer-specific TOC1 antibody to confirm the presence of oligomeric tau. Together, these steps provide a very simple and reliable method for producing tau oligomers that can be used in downstream applications.
Collapse
Affiliation(s)
- Benjamin Combs
- College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Chelsea T Tiernan
- College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Chelsey Hamel
- College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nicholas M Kanaan
- College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Neuroscience Program, Michigan State University, Grand Rapids, MI, United States; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, United States.
| |
Collapse
|
11
|
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12:50. [PMID: 28662669 PMCID: PMC5492997 DOI: 10.1186/s13024-017-0192-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by aggregation of the tau protein into filamentous inclusions that can be found in neurons and glial cells. Activated microglia, astrocytes and elevated levels of proinflammatory molecules are also pathological hallmarks that are found in brain regions affected by tau pathology. There has been abundant research in recent years to understand the role of gliosis and neuroinflammation in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the most common form of dementia. AD is a tauopathy characterized by both extracellular amyloid-β plaques in addition to intracellular neurofibrillary tangles and neuropil threads containing aggregated tau protein. Accumulating evidence suggests that neuroinflammation offers a possible mechanistic link between these pathologies. Additionally, there appears to be a role for neuroinflammation in aggravating tau pathology and neurodegeneration in tauopathies featuring tau deposits as the predominant pathological signature. In this review, we survey the literature regarding inflammatory mechanisms that may impact neurodegeneration in AD and related tauopathies. We consider a physical role for microglia in the spread of tau pathology as well as the non-cell autonomous effects of secreted proinflammatory cytokines, specifically interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and complement proteins. These molecules appear to have direct effects on tau pathophysiology and overall neuronal health. They also indirectly impact neuronal homeostasis by altering glial function. We conclude by proposing a complex role for gliosis and neuroinflammation in accelerating the progression of AD and other tauopathies.
Collapse
Affiliation(s)
- Cheryl E. G. Leyns
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|
12
|
Zabik NL, Imhof MM, Martic-Milne S. Structural evaluations of tau protein conformation: methodologies and approaches. Biochem Cell Biol 2017; 95:338-349. [PMID: 28278386 DOI: 10.1139/bcb-2016-0227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein-misfolding diseases are based on a common principle of aggregation initiated by intra- and inter-molecular contacts. The structural and conformational changes induced by biochemical transformations such as post-translational modifications (PTMs), often lead to protein unfolding and misfolding. Thus, these order-to-disorder or disorder-to-order transitions may regulate cellular function. Tau, a neuronal protein, regulates microtubule (MT) structure and overall cellular integrity. However, misfolded tau modified by PTMs results in MT destabilization, toxic tau aggregate formation, and ultimately cell death, leading to neurodegeneration. Currently, the lack of structural information surrounding tau severely limits understanding of neurodegeneration. This minireview focuses on the current methodologies and approaches aimed at probing tau conformation and the role of conformation in various aspects of tau biochemistry. The recent applications of nuclear magnetic resonance, mass spectrometry, Förster resonance electron transfer, and molecular dynamics simulations toward structural analysis of conformational landscapes of tau will be described. The strategies developed for structural evaluation of tau may significantly improve our understanding of misfolding diseases.
Collapse
Affiliation(s)
- Nicole L Zabik
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Matthew M Imhof
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Sanela Martic-Milne
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
13
|
Prokopovich DV, Whittaker JW, Muthee MM, Ahmed A, Larini L. Impact of Phosphorylation and Pseudophosphorylation on the Early Stages of Aggregation of the Microtubule-Associated Protein Tau. J Phys Chem B 2017; 121:2095-2103. [PMID: 28218850 DOI: 10.1021/acs.jpcb.7b00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The microtubule-associated protein tau regulates the stability of microtubules within neurons in the central nervous system. In turn, microtubules are responsible for the remodeling of the cytoskeleton that ultimately leads to the formation or pruning of new connections among neurons. As a consequence, dysfunction of tau is associated with many forms of dementia as well as Alzheimer's disease. In the brain, tau activity is regulated by its phosphorylation state. Phosphorylation is a post-translational modification of proteins that adds a phosphate group to the side chain of an amino acid. Phosphorylation at key locations in the tau sequence leads to a higher or lower affinity for microtubules. In Alzheimer's disease, tau is present in an abnormal phosphorylation state. However, studying the effect of phosphorylation experimentally has been extremely challenging as there is no viable way of exactly selecting the location and the number of phosphorylated sites. For this reason, researchers have turned to pseudophosphorylation. In this technique, actual phosphorylation is mimicked by mutating the selected amino acid into glutamate or aspartate. Whether this methodology is equivalent to actual phosphorylation is still open to debate. In this study, we will show that phosphorylation and pseudophosphorylation are not exactly equivalent. Although for larger aggregates the two techniques lead to similar structures, the kinetics of the process may be altered. In addition, very little is known about the impact that this may have on the early stages of aggregation, such as nucleation and conformational rearrangement. In this study, we show that the two methods may produce a similar ensemble of conformations, even though the kinetic and chemical details that lead to it are quite different.
Collapse
Affiliation(s)
- Dmitriy V Prokopovich
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - John W Whittaker
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Micaiah M Muthee
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Azka Ahmed
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Luca Larini
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| |
Collapse
|
14
|
Cox K, Combs B, Abdelmesih B, Morfini G, Brady ST, Kanaan NM. Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiol Aging 2016; 47:113-126. [PMID: 27574109 PMCID: PMC5075521 DOI: 10.1016/j.neurobiolaging.2016.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions varies by tauopathy. Using aggregates of the longest tau isoform (containing 4 microtubule-binding repeats and 4-repeat tau), we recently described a direct mechanism of toxicity that involves exposure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau isoforms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced increases in PAD exposure and oligomerization are common features among all tau isoforms. The extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms compared with those made of 3-repeat isoforms. Most important, aggregates of all isoforms exhibited enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that PAD exposure and oligomerization represent common pathological characteristics in multiple tauopathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that likely contributes to degeneration in different tauopathies.
Collapse
Affiliation(s)
- Kristine Cox
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Marine Biological Laboratory, Woods Hole, MA, USA; California National Primate Research Center, University of California, Davis, CA, USA
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Gerardo Morfini
- Marine Biological Laboratory, Woods Hole, MA, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
15
|
Niewidok B, Igaev M, Sündermann F, Janning D, Bakota L, Brandt R. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Mol Biol Cell 2016; 27:3537-3549. [PMID: 27582388 PMCID: PMC5221586 DOI: 10.1091/mbc.e16-06-0402] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
A refined FDAP approach is used to analyze tau’s behavior in axon-like processes. A conserved C-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau’s microtubule interaction. The results contribute to an understanding of pathological processes that lead to tau’s redistribution during disease. A current challenge of cell biology is to investigate molecular interactions in subcellular compartments of living cells to overcome the artificial character of in vitro studies. To dissect the interaction of the neuronal microtubule (MT)-associated protein tau with MTs in axon-like processes, we used a refined fluorescence decay after photoactivation approach and single-molecule tracking. We found that isoform variation had only a minor influence on the tau–MT interaction, whereas the presence of a C-terminal pseudorepeat region (PRR) greatly increased MT binding by a greater-than-sixfold reduction of the dissociation rate. Bioinformatic analysis revealed that the PRR contained a highly conserved motif of 18 amino acids. Disease-associated tau mutations in the PRR (K369I, G389R) did not influence apparent MT binding but increased its dynamicity. Simulation of disease-like tau hyperphosphorylation dramatically diminished the tau–MT interaction by a greater-than-fivefold decrease of the association rate with no major change in the dissociation rate. Apparent binding of tau to MTs was similar in axons and dendrites but more sensitive to increased phosphorylation in axons. Our data indicate that under the conditions of high MT density that prevail in the axon, tau’s MT binding and localization are crucially affected by the presence of the PRR and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Dennis Janning
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
16
|
Schoch KM, DeVos SL, Miller RL, Chun SJ, Norrbom M, Wozniak DF, Dawson HN, Bennett CF, Rigo F, Miller TM. Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model. Neuron 2016; 90:941-7. [PMID: 27210553 DOI: 10.1016/j.neuron.2016.04.042] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/19/2015] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
Abstract
Pathological evidence for selective four-repeat (4R) tau deposition in certain dementias and exon 10-positioned MAPT mutations together suggest a 4R-specific role in causing disease. However, direct assessments of 4R toxicity have not yet been accomplished in vivo. Increasing 4R-tau expression without change to total tau in human tau-expressing mice induced more severe seizures and nesting behavior abnormality, increased tau phosphorylation, and produced a shift toward oligomeric tau. Exon 10 skipping could also be accomplished in vivo, providing support for a 4R-tau targeted approach to target 4R-tau toxicity and, in cases of primary MAPT mutation, eliminate the disease-causing mutation.
Collapse
Affiliation(s)
- Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110
| | - Sarah L DeVos
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110
| | - Rebecca L Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110
| | | | | | - David F Wozniak
- Taylor Family Institute for Innovative Psychiatric Research, Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Hana N Dawson
- Department of Neurology, Duke University Medical Center, Durham, NC 27710
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110.
| |
Collapse
|
17
|
Liu WF, Liu C. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats. ACTA ACUST UNITED AC 2015; 30:100-7. [PMID: 26149001 DOI: 10.1016/s1001-9294(15)30020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D- aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. METHODS Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. RESULTS Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. CONCLUSION Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.
Collapse
|
18
|
Liu G, Liu C, Zhang XN. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats. Mol Med Rep 2015; 12:3297-3308. [PMID: 25998151 PMCID: PMC4526078 DOI: 10.3892/mmr.2015.3803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.
Collapse
Affiliation(s)
- Gang Liu
- Department of Anesthesiology, General Hospital of Beijing Military Area of PLA, Beijing 100700, P.R. China
| | - Chao Liu
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Xue-Ning Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
19
|
Paranjape SR, Riley AP, Somoza AD, Oakley CE, Wang CCC, Prisinzano TE, Oakley BR, Gamblin TC. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS Chem Neurosci 2015; 6:751-60. [PMID: 25822288 DOI: 10.1021/acschemneuro.5b00013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Andrew P. Riley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Amber D. Somoza
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas E. Prisinzano
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - T. Chris Gamblin
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Moszczynski AJ, Gohar M, Volkening K, Leystra-Lantz C, Strong W, Strong MJ. Thr175-phosphorylated tau induces pathologic fibril formation via GSK3β-mediated phosphorylation of Thr231 in vitro. Neurobiol Aging 2014; 36:1590-9. [PMID: 25573097 DOI: 10.1016/j.neurobiolaging.2014.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 12/13/2022]
Abstract
We have previously shown that amyotrophic lateral sclerosis with cognitive impairment can be characterized by pathologic inclusions of microtubule-associated protein tau (tau) phosphorylated at Thr(175) (pThr(175)) in association with GSK3β activation. We have now examined whether pThr(175) induces GSK3β activation and whether this leads to pathologic fibril formation through Thr(231) phosphorylation. Seventy-two hours after transfection of Neuro2A cells with pseudophosphorylated green fluorescent protein-tagged 2N4R tau (Thr(175)Asp), phosphorylated kinase glycogen synthase kinase 3 beta (active GSK3β) levels were significantly increased as was pathologic fibril formation and cell death. Treatment with each of 4 GSK3β inhibitors or small hairpin RNA knockdown of GSK3β abolished fibril formation and prevented cell death. Inhibition of Thr(231) phosphorylation (Thr(231)Ala) prevented pathologic tau fibril formation, regardless of Thr(175) state, whereas Thr(231)Asp (pseudophosphorylated at Thr(231)) developed pathologic tau fibrils. Ser(235) mutations did not affect fibril formation, indicating an unprimed mechanism of Thr(231) phosphorylation. These findings suggest a mechanism of tau pathology by which pThr(175) induces GSK3β phosphorylation of Thr(231) leading to fibril formation, indicating a potential therapeutic avenue for amyotrophic lateral sclerosis with cognitive impairment.
Collapse
Affiliation(s)
- Alexander J Moszczynski
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - May Gohar
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kathryn Volkening
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Cheryl Leystra-Lantz
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Wendy Strong
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michael J Strong
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
21
|
Kumar S, Tepper K, Kaniyappan S, Biernat J, Wegmann S, Mandelkow EM, Müller DJ, Mandelkow E. Stages and conformations of the Tau repeat domain during aggregation and its effect on neuronal toxicity. J Biol Chem 2014; 289:20318-32. [PMID: 24825901 PMCID: PMC4106345 DOI: 10.1074/jbc.m114.554725] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its “repeat domain” (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of β-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function.
Collapse
Affiliation(s)
- Satish Kumar
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and
| | - Katharina Tepper
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and
| | - Jacek Biernat
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Susanne Wegmann
- the Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, 4058 Basel, Switzerland
| | - Eva-Maria Mandelkow
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Daniel J Müller
- the Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, 4058 Basel, Switzerland
| | - Eckhard Mandelkow
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany,
| |
Collapse
|
22
|
Brister M, Pandey AK, Bielska AA, Zondlo NJ. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. J Am Chem Soc 2014; 136:3803-16. [PMID: 24559475 PMCID: PMC4004249 DOI: 10.1021/ja407156m] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.
Collapse
Affiliation(s)
| | | | - Agata A. Bielska
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Carlomagno Y, Zhang Y, Davis M, Lin WL, Cook C, Dunmore J, Tay W, Menkosky K, Cao X, Petrucelli L, DeTure M. Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins. PLoS One 2014; 9:e90452. [PMID: 24595055 PMCID: PMC3942448 DOI: 10.1371/journal.pone.0090452] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These findings demonstrate CKII induces polymerization of soluble TDP-43 into filaments and Hsp90 promotes TDP-43 filament depolymerization. These findings provide rational for potential therapeutic intervention at these points in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Yari Carlomagno
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Yongjie Zhang
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Mary Davis
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Wen-Lang Lin
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Casey Cook
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Judy Dunmore
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - William Tay
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Kyle Menkosky
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Xiangkun Cao
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Leonard Petrucelli
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
| | - Michael DeTure
- Department of Neuroscience, Maya Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Droppelmann CA, Campos-Melo D, Ishtiaq M, Volkening K, Strong MJ. RNA metabolism in ALS: When normal processes become pathological. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:321-36. [DOI: 10.3109/21678421.2014.881377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
26
|
Paranjape SR, Chiang YM, Sanchez JF, Entwistle R, Wang CCC, Oakley BR, Gamblin TC. Inhibition of Tau aggregation by three Aspergillus nidulans secondary metabolites: 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde. PLANTA MEDICA 2014; 80:77-85. [PMID: 24414310 PMCID: PMC6442474 DOI: 10.1055/s-0033-1360180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation of the microtubule-associated protein tau is a significant event in many neurodegenerative diseases including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activity. We have screened Aspergillus nidulans secondary metabolites containing aromatic ring structures for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol and the previously identified aggregation inhibitor emodin as a positive control. While several compounds showed some activity, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde were potent aggregation inhibitors as determined by both a filter trap assay and electron microscopy. In this study, these three compounds were stronger inhibitors than emodin, which has been shown in a prior study to inhibit the heparin induction of tau aggregation with an IC50 of 1-5 µM. Additionally, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde reduced, but did not block, tau stabilization of microtubules. 2,ω-Dihydroxyemodin and asperthecin have similar structures to previously identified tau aggregation inhibitors, while asperbenzaldehyde represents a new class of compounds with tau aggregation inhibitor activity. Asperbenzaldehyde can be readily modified into compounds with strong lipoxygenase inhibitor activity, suggesting that compounds derived from asperbenzaldehyde could have dual activity. Together, our data demonstrates the potential of 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde as lead compounds for further development as therapeutics to inhibit tau aggregation in Alzheimer's disease and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Pharmaceutical Science, Chia Nan University School of Pharmacy and Science, Tainan 71710, Taiwan
| | - James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - T. Chris Gamblin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
27
|
Iqbal K, Gong CX, Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol 2013; 4:112. [PMID: 23966973 PMCID: PMC3744035 DOI: 10.3389/fneur.2013.00112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/23/2013] [Indexed: 11/13/2022] Open
Abstract
In normal adult brain the microtubule associated protein (MAP) tau contains 2-3 phosphates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold hyperphosphorylated. The abnormally hyperphosphorylated tau binds to normal tau instead of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers can be sedimented at 200,000 × g whereas the normal tau under these conditions remains in the supernatant. The abnormally hyperphosphorylated tau is capable of sequestering not only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyperphosphorylation of the PP2A-AD P-tau with more than one combination of tau protein kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau readily self-assembles into paired helical filaments. Missense tau mutations found in frontotemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation of tau.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities , Staten Island, NY , USA
| | | | | |
Collapse
|
28
|
Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 2013; 34:2146-57. [PMID: 23601672 PMCID: PMC3684773 DOI: 10.1016/j.neurobiolaging.2013.03.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/15/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases.
Collapse
|
29
|
Larini L, Gessel MM, LaPointe NE, Do TD, Bowers MT, Feinstein SC, Shea JE. Initiation of assembly of tau(273-284) and its ΔK280 mutant: an experimental and computational study. Phys Chem Chem Phys 2013; 15:8916-28. [PMID: 23515417 DOI: 10.1039/c3cp00063j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microtubule associated protein tau is essential for the development and maintenance of the nervous system. Tau dysfunction is associated with a class of diseases called tauopathies, in which tau is found in an aggregated form. This paper focuses on a small aggregating fragment of tau, (273)GKVQIINKKLDL(284), encompassing the (PHF6*) region that plays a central role in tau aggregation. Using a combination of simulations and experiments, we probe the self-assembly of this peptide, with an emphasis on characterizing the early steps of aggregation. Ion-mobility mass spectrometry experiments provide a size distribution of early oligomers, TEM studies provide a time course of aggregation, and enhanced sampling molecular dynamics simulations provide atomistically detailed structural information about this intrinsically disordered peptide. Our studies indicate that a point mutation, as well the addition of heparin, lead to a shift in the conformations populated by the earliest oligomers, affecting the kinetics of subsequent fibril formation as well as the morphology of the resulting aggregates. In particular, a mutant associated with a K280 deletion (a mutation that causes a heritable form of neurodegeneration/dementia in the context of full length tau) is seen to aggregate more readily than its wild-type counterpart. Simulations and experiment reveal that the ΔK280 mutant peptide adopts extended conformations to a greater extent than the wild-type peptide, facilitating aggregation through the pre-structuring of the peptide into a fibril-competent structure.
Collapse
Affiliation(s)
- Luca Larini
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 2013; 38:6-23. [PMID: 22894822 PMCID: PMC3529221 DOI: 10.1503/jpn.110190] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Satyabrata Kar
- Correspondence to: S. Kar, Centre for Prions and Protein Folding Diseases, Departments of Medicine (Neurology) and Psychiatry, University of Alberta, Edmonton AB T6G 2M8;
| |
Collapse
|
31
|
Combs B, Gamblin TC. FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions. Biochemistry 2012; 51:8597-607. [PMID: 23043292 DOI: 10.1021/bi3010818] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FTDP-17 mutations in the tau gene lead to early onset frontotemporal dementias characterized by the pathological aggregation of the microtubule-associated protein tau. Tau aggregation is closely correlated with the progression and severity of localized atrophy of certain regions in the brain. These mutations are primarily located in or near the microtubule-binding repeat regions of tau and can have vastly different effects on the protein. Some mutations have been linked to effects such as increased levels of aggregation, hyperphosphorylation, defects in mRNA splicing, and weakened interaction with microtubules. Given the differential effects of the mutations, it may not be surprising that the pathology associated with FTDP-17 can vary widely as well. Despite this variety, several of the mutations are commonly used interchangeably as aggregation inducers for in vitro and in vivo models of tauopathies. We generated recombinant forms of 12 FTDP-17 mutations chosen for their predicted effects on the charge, hydrophobicity, and secondary structure of the protein. We then examined the effects that the mutations had on the properties of in vitro aggregation of the protein and its ability to stabilize microtubule assembly. The group of mutations induced very different effects on the total amount of aggregation, the kinetics of aggregation, and filament morphology. Several of the mutations inhibited the microtubule stabilization ability of tau, while others had very little effect compared to wild-type tau. These results indicate that the mechanisms of disease progression may differ among FTDP-17 mutations and that the effects of the varying mutations may not be equal in all model systems.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | |
Collapse
|
32
|
Zhong Q, Congdon EE, Nagaraja HN, Kuret J. Tau isoform composition influences rate and extent of filament formation. J Biol Chem 2012; 287:20711-9. [PMID: 22539343 DOI: 10.1074/jbc.m112.364067] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The risk of developing tauopathic neurodegenerative disease depends in part on the levels and composition of six naturally occurring Tau isoforms in human brain. These proteins, which form filamentous aggregates in disease, vary only by the presence or absence of three inserts encoded by alternatively spliced exons 2, 3, and 10 of the Tau gene (MAPT). To determine the contribution of alternatively spliced segments to Tau aggregation propensity, the aggregation kinetics of six unmodified, recombinant human Tau isoforms were examined in vitro using electron microscopy assay methods. Aggregation propensity was then compared at the level of elementary rate constants for nucleation and extension phases. We found that all three alternatively spliced segments modulated Tau aggregation but through differing kinetic mechanisms that could synergize or compete depending on sequence context. Overall, segments encoded by exons 2 and 10 promoted aggregation, whereas the segment encoded by exon 3 depressed it with its efficacy dependent on the presence or absence of a fourth microtubule binding repeat. In general, aggregation propensity correlated with genetic risk reported for multiple tauopathies, implicating aggregation as one candidate mechanism rationalizing the correlation between Tau expression patterns and disease.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|