1
|
Ropelewski P, Imanishi Y. Disrupted Plasma Membrane Protein Homeostasis in a Xenopus Laevis Model of Retinitis Pigmentosa. J Neurosci 2019; 39:5581-5593. [PMID: 31061086 PMCID: PMC6616295 DOI: 10.1523/jneurosci.3025-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/23/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.
Collapse
Affiliation(s)
- Philip Ropelewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| |
Collapse
|
2
|
Chadha A, Volland S, Baliaouri NV, Tran EM, Williams DS. The route of the visual receptor rhodopsin along the cilium. J Cell Sci 2019; 132:jcs.229526. [PMID: 30975916 DOI: 10.1242/jcs.229526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
The photoreceptor outer segment is the most elaborate primary cilium, containing large amounts of rhodopsin (RHO) in disk membranes that grow from a connecting cilium. The movement of RHO along the connecting cilium precedes formation of the disk membranes. However, the route that RHO takes has not been clearly determined; some reports suggest that it follows an intracellular, vesicular route along the axoneme, possibly as an adaptation for the high load of delivery or the morphogenesis of the disk endomembranes. We addressed this question by studying RHO in cilia of IMCD3 cells and mouse rod photoreceptors. In IMCD3 cilia, fluorescence recovery after photobleaching (FRAP) experiments with fluorescently tagged RHO supported the idea of RHO motility in the ciliary plasma membrane and was inconsistent with the hypothesis of RHO motility within the lumen of the cilium. In rod photoreceptors, FRAP of RHO-EGFP was altered by externally applied lectin, supporting the idea of plasmalemmal RHO dynamics. Quantitative immunoelectron microscopy corroborated our live-cell conclusions, as RHO was found to be distributed along the plasma membrane of the connecting cilium, with negligible labeling within the axoneme. Taken together, the present findings demonstrate RHO trafficking entirely via the ciliary plasma membrane.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Abhishek Chadha
- Departments of Ophthalmology and Neurobiology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Stefanie Volland
- Departments of Ophthalmology and Neurobiology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Natella V Baliaouri
- Departments of Ophthalmology and Neurobiology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Elaine M Tran
- Departments of Ophthalmology and Neurobiology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - David S Williams
- Departments of Ophthalmology and Neurobiology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA .,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, Dawson RJP. Ligand channel in pharmacologically stabilized rhodopsin. Proc Natl Acad Sci U S A 2018; 115:3640-3645. [PMID: 29555765 PMCID: PMC5889642 DOI: 10.1073/pnas.1718084115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.4 Å resolution using one of the stabilizing hits (S-RS1). Chemical modification of S-RS1 and further structural analysis revealed the core binding motif of this class of rhodopsin stabilizers bound at the orthosteric binding site. Furthermore, previously unobserved conformational changes are visible at the intradiscal side of the seven-transmembrane helix bundle. A hallmark of this conformation is an open channel connecting the ligand binding site with the membrane and the intradiscal lumen of rod outer segments. Sufficient in size, the passage permits the exchange of hydrophobic ligands such as retinal. The results broaden our understanding of rhodopsin's conformational flexibility and enable therapeutic drug intervention against rhodopsin-related retinitis pigmentosa.
Collapse
Affiliation(s)
- Daniel Mattle
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Johannes Aebi
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Marc Bedoucha
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nathalie Grozinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andre Alker
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Georg Schmid
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Hennig
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland;
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland;
| |
Collapse
|
4
|
Lamarche LB, Kumar RP, Trieu MM, Devine EL, Cohen-Abeles LE, Theobald DL, Oprian DD. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta. Biochemistry 2017; 56:5812-5822. [PMID: 28976747 DOI: 10.1021/acs.biochem.7b00519] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RhoPDE is a type I rhodopsin/phosphodiesterase gene fusion product from the choanoflagellate Salpingoeca rosetta. The gene was discovered around the time that a similar type I rhodopsin/guanylyl cyclase fusion protein, RhoGC, was shown to control phototaxis of an aquatic fungus through a cGMP signaling pathway. RhoPDE has potential as an optogenetic tool catalyzing the hydrolysis of cyclic nucleotides. Here we provide an expression and purification system for RhoPDE, as well as a crystal structure of the C-terminal phosphodiesterase catalytic domain. We show that RhoPDE contains an even number of transmembrane segments, with N- and C-termini both located on the cytoplasmic surface of the cell membrane. The purified protein exhibits an absorption maximum at 490 nm in the dark state, which shifts to 380 nm upon exposure to light. The protein acts as a cGMP-selective phosphodiesterase. However, the activity does not appear to be modulated by light. The protein is also active with cAMP as a substrate, but with a roughly 5-7-fold lower kcat. A truncation consisting solely of the phosphodiesterase domain is also active with a kcat for cGMP roughly 6-9-fold lower than that of the full-length protein. The isolated PDE domain was crystallized, and the X-ray structure showed the protein to be a dimer similar to human PDE9. We anticipate that the purification system introduced here will enable further structural and biochemical experiments to improve our understanding of the function and mechanism of this unique fusion protein.
Collapse
Affiliation(s)
- Lindsey B Lamarche
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Melissa M Trieu
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Erin L Devine
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Luke E Cohen-Abeles
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
5
|
Gao Y, Westfield G, Erickson JW, Cerione RA, Skiniotis G, Ramachandran S. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. J Biol Chem 2017; 292:14280-14289. [PMID: 28655769 PMCID: PMC5572916 DOI: 10.1074/jbc.m117.797100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Indexed: 01/06/2023] Open
Abstract
The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT-GTP and β1γ1 subunit complex. Structural information for the Rho*-GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and β1γ1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β2-adrenergic receptor-GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex.
Collapse
Affiliation(s)
- Yang Gao
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| | - Gerwin Westfield
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jon W Erickson
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| | - Richard A Cerione
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853; Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853.
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sekar Ramachandran
- From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853
| |
Collapse
|
6
|
Trieu MM, Devine EL, Lamarche LB, Ammerman AE, Greco JA, Birge RR, Theobald DL, Oprian DD. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii. J Biol Chem 2017; 292:10379-10389. [PMID: 28473465 DOI: 10.1074/jbc.m117.789636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Indexed: 02/03/2023] Open
Abstract
RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus Blastocladiella emersonii It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λmax = 390 nm; D380N, λmax = 506 nm) and one with red-shifted (D380E, λmax = 533 nm) absorption maxima relative to the wild-type protein (λmax = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme.
Collapse
Affiliation(s)
- Melissa M Trieu
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| | - Erin L Devine
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| | - Lindsey B Lamarche
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| | - Aaron E Ammerman
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| | - Jordan A Greco
- the Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Robert R Birge
- the Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Douglas L Theobald
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| | - Daniel D Oprian
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and
| |
Collapse
|
7
|
Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state. Proc Natl Acad Sci U S A 2016; 113:11961-11966. [PMID: 27702898 DOI: 10.1073/pnas.1606347113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Here, we describe two insights into the role of receptor conformational dynamics during agonist release (all-trans retinal, ATR) from the visual G protein-coupled receptor (GPCR) rhodopsin. First, we show that, after light activation, ATR can continually release and rebind to any receptor remaining in an active-like conformation. As with other GPCRs, we observe that this equilibrium can be shifted by either promoting the active-like population or increasing the agonist concentration. Second, we find that during decay of the signaling state an active-like, yet empty, receptor conformation can transiently persist after retinal release, before the receptor ultimately collapses into an inactive conformation. The latter conclusion is based on time-resolved, site-directed fluorescence labeling experiments that show a small, but reproducible, lag between the retinal leaving the protein and return of transmembrane helix 6 (TM6) to the inactive conformation, as determined from tryptophan-induced quenching studies. Accelerating Schiff base hydrolysis and subsequent ATR dissociation, either by addition of hydroxylamine or introduction of mutations, further increased the time lag between ATR release and TM6 movement. These observations show that rhodopsin can bind its agonist in equilibrium like a traditional GPCR, provide evidence that an active GPCR conformation can persist even after agonist release, and raise the possibility of targeting this key photoreceptor protein by traditional pharmaceutical-based treatments.
Collapse
|
8
|
Devine EL, Theobald DL, Oprian DD. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates. Biochemistry 2016; 55:4864-70. [PMID: 27486845 DOI: 10.1021/acs.biochem.6b00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.
Collapse
Affiliation(s)
- Erin L Devine
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
9
|
Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB. Stabilization of G protein-coupled receptors by point mutations. Front Pharmacol 2015; 6:82. [PMID: 25941489 PMCID: PMC4403299 DOI: 10.3389/fphar.2015.00082] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are flexible integral membrane proteins involved in transmembrane signaling. Their involvement in many physiological processes makes them interesting targets for drug development. Determination of the structure of these receptors will help to design more specific drugs, however, their structural characterization has so far been hampered by the low expression and their inherent instability in detergents which made protein engineering indispensable for structural and biophysical characterization. Several approaches to stabilize the receptors in a particular conformation have led to breakthroughs in GPCR structure determination. These include truncations of the flexible regions, stabilization by antibodies and nanobodies, fusion partners, high affinity and covalently bound ligands as well as conformational stabilization by mutagenesis. In this review we focus on stabilization of GPCRs by insertion of point mutations, which lead to increased conformational and thermal stability as well as improved expression levels. We summarize existing mutagenesis strategies with different coverage of GPCR sequence space and depth of information, design and transferability of mutations and the molecular basis for stabilization. We also discuss whether mutations alter the structure and pharmacological properties of GPCRs.
Collapse
Affiliation(s)
- Franziska M Heydenreich
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Milos Matkovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| |
Collapse
|
10
|
Maeda S, Sun D, Singhal A, Foggetta M, Schmid G, Standfuss J, Hennig M, Dawson RJP, Veprintsev DB, Schertler GFX. Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein. PLoS One 2014; 9:e98714. [PMID: 24979345 PMCID: PMC4076187 DOI: 10.1371/journal.pone.0098714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The activation of the G-protein transducin (Gt) by rhodopsin (Rho) has been intensively studied for several decades. It is the best understood example of GPCR activation mechanism and serves as a template for other GPCRs. The structure of the Rho/G protein complex, which is transiently formed during the signaling reaction, is of particular interest. It can help understanding the molecular details of how retinal isomerization leads to the G protein activation, as well as shed some light on how GPCR recognizes its cognate G protein. The native Rho/Gt complex isolated from bovine retina suffers from low stability and loss of the retinal ligand. Recently, we reported that constitutively active mutant of rhodopsin E113Q forms a Rho/Gt complex that is stable in detergent solution. Here, we introduce methods for a large scale preparation of the complex formed by the thermo-stabilized and constitutively active rhodopsin mutant N2C/M257Y/D282C(RhoM257Y) and the native Gt purified from bovine retinas. We demonstrate that the light-activated rhodopsin in this complex contains a covalently bound unprotonated retinal and therefore corresponds to the active metarhodopin II state; that the isolated complex is active and dissociates upon addition of GTPγS; and that the stoichiometry corresponds to a 1∶1 molar ratio of rhodopsin to the heterotrimeric G-protein. And finally, we show that the rhodopsin also forms stable complex with Gi. This complex has significantly higher thermostability than RhoM257Y/Gt complex and is resistant to a variety of detergents. Overall, our data suggest that the RhoM257Y/Gi complex is an ideal target for future structural and mechanistic studies of signaling in the visual system.
Collapse
Affiliation(s)
- Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ankita Singhal
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marcello Foggetta
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Georg Schmid
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Hennig
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger J. P. Dawson
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
- * E-mail: (DBV); (GFXS)
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland
- * E-mail: (DBV); (GFXS)
| |
Collapse
|
11
|
D'Antona AM, Xie G, Sligar SG, Oprian DD. Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers. Biochemistry 2013; 53:127-34. [PMID: 24328127 DOI: 10.1021/bi4012995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The formation and characterization of an activated complex of the visual pigment rhodopsin and its downstream signaling partner transducin have been the subject of intense focus by several research groups. While the subunit composition of the activated complex is still the subject of some controversy, our laboratory [Xie, G., D'Antona, A. M., Edwards, P. C., Fransen, M., Standfuss, J., Schertler, G. F. X., and Oprian, D. D. (2011) Biochemistry 50, 10399-10407] and that of Ernst et al. [Ernst, O. P., Gramse, V., Kolbe, M., Hofmann, K. P., and Heck, M. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 10859-10864] find that the two proteins are present in a 1/1 molar ratio. Unfortunately, these data could not distinguish a ratio of 1/1 from ratios of 2/2, 3/3, etc. For this reason, we reinvestigated the issue of stoichiometry of the activated complex, exploiting the ability of Nanodisc lipid bilayers to isolate single molecules of rhodopsin. We show here that the purified complex in Nanodiscs contains an activated rhodopsin with a covalently bound all-trans-retinal chromophore, that transducin has an empty nucleotide-binding pocket, that the isolated complex is active and dissociates upon addition of guanine nucleotide, and that the stoichiometry corresponds to exactly one molecule of rhodopsin and one molecule of transducin.
Collapse
Affiliation(s)
- Aaron M D'Antona
- Department of Biochemistry and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts 02454, United States
| | | | | | | |
Collapse
|
12
|
Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. Proc Natl Acad Sci U S A 2013; 110:13351-5. [PMID: 23904486 DOI: 10.1073/pnas.1306826110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type I and type II rhodopsins share several structural features including a G protein-coupled receptor fold and a highly conserved active-site Lys residue in the seventh transmembrane segment of the protein. However, the two families lack significant sequence similarity that would indicate common ancestry. Consequently, the rhodopsin fold and conserved Lys are widely thought to have arisen from functional constraints during convergent evolution. To test for the existence of such a constraint, we asked whether it were possible to relocate the highly conserved Lys296 in the visual pigment bovine rhodopsin. We show here that the Lys can be moved to three other locations in the protein while maintaining the ability to form a pigment with 11-cis-retinal and activate the G protein transducin in a light-dependent manner. These results contradict the convergent hypothesis and support the homology of type I and type II rhodopsins by divergent evolution from a common ancestral protein.
Collapse
|
13
|
Maeda S, Schertler GFX. Production of GPCR and GPCR complexes for structure determination. Curr Opin Struct Biol 2013; 23:381-92. [PMID: 23707225 DOI: 10.1016/j.sbi.2013.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/12/2023]
Abstract
Since the first high-resolution structure of the beta 2 adrenergic receptor (b2AR) in 2007, we have seen a growing number of G-protein-coupled receptor (GPCR) structures coming to the repertory, providing a significant progress in our understanding of the structural basis of their function. This has been achieved by the interdisciplinary collaborative work between scientists with various expertise and the development of new methodologies as well as combining and optimizing existing techniques.
Collapse
Affiliation(s)
- Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
14
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
15
|
Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. G protein-coupled receptors--recent advances. Acta Biochim Pol 2012; 59:515-529. [PMID: 23251911 PMCID: PMC4322417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.
Collapse
Affiliation(s)
- Dorota Latek
- Biomodeling Laboratory, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Modzelewska
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Bartosz Trzaskowski
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio USA
| | - Sławomir Filipek
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|