1
|
Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics 2018; 50:590-604. [PMID: 29702036 PMCID: PMC6139632 DOI: 10.1152/physiolgenomics.00037.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor signaling mechanisms are implicated in many aspects of cardiovascular control, and dysfunction of such signaling mechanisms is commonly associated with disease states. Investigators have identified a large number of regulator of G protein signaling (RGS) proteins that variously contribute to the modulation of intracellular second-messenger signaling kinetics. These many RGS proteins each interact with a specific set of second-messenger cascades and receptor types and exhibit tissue-specific expression patterns. Increasing evidence supports the contribution of RGS proteins, or their loss, in the pathogenesis of cardiovascular dysfunctions. This review summarizes the current understanding of the functional contributions of RGS proteins, particularly within the B/R4 family, in cardiovascular disorders of pregnancy including gestational hypertension, uterine artery dysfunction, and preeclampsia.
Collapse
Affiliation(s)
| | - Guorui Deng
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
- Obesity Education & Research Initiative, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
2
|
van Keulen SC, Rothlisberger U. Exploring the inhibition mechanism of adenylyl cyclase type 5 by n-terminal myristoylated Gαi1. PLoS Comput Biol 2017; 13:e1005673. [PMID: 28892485 PMCID: PMC5608429 DOI: 10.1371/journal.pcbi.1005673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/21/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Adenylyl cyclase (AC) is an important messenger involved in G-protein-coupled-receptor signal transduction pathways, which is a well-known target for drug development. AC is regulated by activated stimulatory (Gαs) and inhibitory (Gαi) G proteins in the cytosol. Although experimental studies have shown that these Gα subunits can stimulate or inhibit AC's function in a non-competitive way, it is not well understood what the difference is in their mode of action as both Gα subunits appear structurally very similar in a non-lipidated state. However, a significant difference between Gαs and Gαi is that while Gαs does not require any lipidation in order to stimulate AC, N-terminal myristoylation is crucial for Gαi's inhibitory function as AC is not inhibited by non-myristoylated Gαi. At present, only the conformation of the complex including Gαs and AC has been resolved via X-ray crystallography. Therefore, understanding the interaction between Gαi and AC is important as it will provide more insight into the unknown mechanism of AC regulation. This study demonstrates via classical molecular dynamics simulations that the myristoylated Gαi1 structure is able to interact with apo adenylyl cyclase type 5 in a way that causes inhibition of the catalytic function of the enzyme, suggesting that Gα lipidation could play a crucial role in AC regulation and in regulating G protein function by affecting Gαi's active conformation.
Collapse
Affiliation(s)
- Siri Camee van Keulen
- Institut des Sciences et Ingénierie Chimiques, École Polytechnicque Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques, École Polytechnicque Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Yin Q, Zhang Y, Dong D, Lei M, Zhang S, Liao CC, Pan YH. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1004-1019. [DOI: 10.1016/j.bbapap.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/27/2017] [Accepted: 04/29/2017] [Indexed: 12/21/2022]
|
4
|
van Keulen SC, Rothlisberger U. Effect of N-Terminal Myristoylation on the Active Conformation of Gα i1-GTP. Biochemistry 2016; 56:271-280. [PMID: 27936598 DOI: 10.1021/acs.biochem.6b00388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
G proteins are part of the G-protein-coupled receptor (GPCR) signal transduction cascade in which they transfer a signal from the membrane-embedded GPCR to other proteins in the cell. In the case of the inhibitory G-protein heterotrimer, permanent N-terminal myristoylation can transiently localize the Gαi subunit at the membrane as well as crucially influence Gαi's function in the GTP-bound conformation. The attachment of lipids to proteins is known to be essential for membrane trafficking; however, our results suggest that lipidation is also important for protein-protein interactions during signal transduction. Here we investigate the effect of myristoylation on the structure and dynamics of soluble Gαi1 and its possible implication for signal transduction. A 2 μs classical molecular dynamics simulation of a myristoylated Gαi1-GTP complex suggests that the myristoyl-induced conformational changes of the switch II and alpha helical domains create new possibilities for protein-protein interactions and emphasize the importance of permanent lipid attachment for the conformation and functional tunability of signaling proteins.
Collapse
Affiliation(s)
- Siri C van Keulen
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Kant R, Zeng B, Thomas CJ, Bothner B, Sprang SR. Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Gα. eLife 2016; 5. [PMID: 28008853 PMCID: PMC5182059 DOI: 10.7554/elife.19238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Cytosolic Ric-8A has guanine nucleotide exchange factor (GEF) activity and is a chaperone for several classes of heterotrimeric G protein α subunits in vertebrates. Using Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS) we show that Ric-8A disrupts the secondary structure of the Gα Ras-like domain that girds the guanine nucleotide-binding site, and destabilizes the interface between the Gαi1 Ras and helical domains, allowing domain separation and nucleotide release. These changes are largely reversed upon binding GTP and dissociation of Ric-8A. HDX-MS identifies a potential Gα interaction site in Ric-8A. Alanine scanning reveals residues crucial for GEF activity within that sequence. HDX confirms that, like G protein-coupled receptors (GPCRs), Ric-8A binds the C-terminus of Gα. In contrast to GPCRs, Ric-8A interacts with Switches I and II of Gα and possibly at the Gα domain interface. These extensive interactions provide both allosteric and direct catalysis of GDP unbinding and release and GTP binding. DOI:http://dx.doi.org/10.7554/eLife.19238.001
Collapse
Affiliation(s)
- Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| | - Celestine J Thomas
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, United States
| | - Stephen R Sprang
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States
| |
Collapse
|
6
|
Sprang SR. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 2016; 105:449-62. [PMID: 26996924 PMCID: PMC5319639 DOI: 10.1002/bip.22836] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016.
Collapse
Affiliation(s)
- Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, Telephone: (406) 243-6028, Fax: (406) 243-6024,
| |
Collapse
|
7
|
Kaya AI, Lokits AD, Gilbert JA, Iverson TM, Meiler J, Hamm HE. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor. J Biol Chem 2016; 291:19674-86. [PMID: 27462082 DOI: 10.1074/jbc.m116.745513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.
Collapse
Affiliation(s)
| | | | | | - T M Iverson
- From the Departments of Pharmacology, Biochemistry, and
| | - Jens Meiler
- From the Departments of Pharmacology, Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | |
Collapse
|
8
|
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep 2016; 6:28249. [PMID: 27306108 PMCID: PMC4910163 DOI: 10.1038/srep28249] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Collapse
|
9
|
Sulmann S, Wallisch M, Scholten A, Christoffers J, Koch KW. Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling. Biochemistry 2016; 55:2567-77. [DOI: 10.1021/acs.biochem.6b00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Sulmann
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Melanie Wallisch
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Alexander Scholten
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
10
|
Thaker TM, Sarwar M, Preininger AM, Hamm HE, Iverson TM. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1. J Biol Chem 2014; 289:11331-11341. [PMID: 24596087 DOI: 10.1074/jbc.m113.539064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maruf Sarwar
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| | - T M Iverson
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| |
Collapse
|
11
|
Alexander NS, Preininger AM, Kaya AI, Stein RA, Hamm HE, Meiler J. Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release. Nat Struct Mol Biol 2014; 21:56-63. [PMID: 24292645 PMCID: PMC3947367 DOI: 10.1038/nsmb.2705] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/02/2013] [Indexed: 01/19/2023]
Abstract
We present a model of interaction of Gi protein with the activated receptor (R*) rhodopsin, which pinpoints energetic contributions to activation and reconciles the β2 adrenergic receptor-Gs crystal structure with new and previously published experimental data. In silico analysis demonstrated energetic changes when the Gα C-terminal helix (α5) interacts with the R* cytoplasmic pocket, thus leading to displacement of the helical domain and GDP release. The model features a less dramatic domain opening compared with the crystal structure. The α5 helix undergoes a 63° rotation, accompanied by a 5.7-Å translation, that reorganizes interfaces between α5 and α1 helices and between α5 and β6-α5. Changes in the β6-α5 loop displace αG. All of these movements lead to opening of the GDP-binding pocket. The model creates a roadmap for experimental studies of receptor-mediated G-protein activation.
Collapse
Affiliation(s)
- Nathan S Alexander
- 1] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA. [2]
| | - Anita M Preininger
- 1] Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA. [2]
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jens Meiler
- 1] Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA. [2] Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Preininger AM, Meiler J, Hamm HE. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J Mol Biol 2013; 425:2288-98. [PMID: 23602809 DOI: 10.1016/j.jmb.2013.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
13
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
14
|
Hamm HE, Kaya AI, Gilbert JA, Preininger AM. Linking receptor activation to changes in Sw I and II of Gα proteins. J Struct Biol 2013; 184:63-74. [PMID: 23466875 DOI: 10.1016/j.jsb.2013.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/28/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
G-protein coupled receptors catalyze nucleotide exchange on G proteins, which results in subunit dissociation and effector activation. In the recent β2AR-Gs structure, portions of Switch I and II of Gα are not fully elucidated. We paired fluorescence studies of receptor-Gαi interactions with the β2AR-Gs and other Gi structures to investigate changes in Switch I and II during receptor activation and GTP binding. The β2/β3 loop containing Leu194 of Gαi is located between Switches I and II, in close proximity to IC2 of the receptor and the C-terminus of Gα, thus providing an allosteric connection between these Switches and receptor activation. We compared the environment of residues in myristoylated Gαi proteins in the heterotrimer to that upon receptor activation and subsequent GTP binding. Upon receptor activation, residues in both Switch regions are less solvent-exposed, as compared to the heterotrimer. Upon GTPγS binding, the environment of several residues in Switch I resemble the receptor-bound state, while Switch II residues display effects on their environment which are consistent with their role in GTP binding and Gβγ dissociation. The ability to merge available crystal structures with solution studies is a powerful tool to gain insight into conformational changes associated with receptor-mediated Gi protein activation.
Collapse
Affiliation(s)
- Heidi E Hamm
- Vanderbilt University Medical Center, Department of Pharmacology, Nashville, TN 37232-6600, United States
| | | | | | | |
Collapse
|