1
|
Nurmi C, Gu J, Mathai A, Brennan J, Li Y. Making target sites in large structured RNAs accessible to RNA-cleaving DNAzymes through hybridization with synthetic DNA oligonucleotides. Nucleic Acids Res 2024; 52:11177-11187. [PMID: 39248110 PMCID: PMC11472044 DOI: 10.1093/nar/gkae778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The 10-23 DNAzyme is one of the most active DNA-based enzymes, and in theory, can be designed to target any purine-pyrimidine junction within an RNA sequence for cleavage. However, purine-pyrimidine junctions within a large, structured RNA (lsRNA) molecule of biological origin are not always accessible to 10-23, negating its general utility as an RNA-cutting molecular scissor. Herein, we report a generalizable strategy that allows 10-23 to access any purine-pyrimidine junction within an lsRNA. Using three large SARS-CoV-2 mRNA sequences of 566, 584 and 831 nucleotides in length as model systems, we show that the use of antisense DNA oligonucleotides (ASOs) that target the upstream and downstream regions flanking the cleavage site can restore the activity (kobs) of previously poorly active 10-23 DNAzyme systems by up to 2000-fold. We corroborated these findings mechanistically using in-line probing to demonstrate that ASOs reduced 10-23 DNAzyme target site structure within the lsRNA substrates. This approach represents a simple, efficient, cost-effective, and generalizable way to improve the accessibility of 10-23 to a chosen target site within an lsRNA molecule, especially where direct access to the genomic RNA target is necessary.
Collapse
MESH Headings
- DNA, Catalytic/chemistry
- DNA, Catalytic/metabolism
- SARS-CoV-2/genetics
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Nucleic Acid Hybridization
- Oligonucleotides, Antisense/chemistry
- Nucleic Acid Conformation
- RNA Cleavage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- COVID-19/virology
- RNA/chemistry
- RNA/metabolism
- DNA, Single-Stranded
Collapse
Affiliation(s)
- Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| | - Amal Mathai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - John D Brennan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Zhang Z, Wei W, Chen S, Yang J, Song D, Chen Y, Zhao Z, Chen J, Wang F, Wang J, Li Z, Liang Y, Yu H. Chemoenzymatic Installation of Site-Specific Chemical Groups on DNA Enhances the Catalytic Activity. J Am Chem Soc 2024; 146:7052-7062. [PMID: 38427585 DOI: 10.1021/jacs.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jintao Yang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zerun Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiawen Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Fulong Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiahuan Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Cieślak M, Karwowski BT. The Effect of 8,5'-Cyclo 2'-deoxyadenosine on the Activity of 10-23 DNAzyme: Experimental and Theoretical Study. Int J Mol Sci 2024; 25:2519. [PMID: 38473767 DOI: 10.3390/ijms25052519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The in vivo effectiveness of DNAzymes 10-23 (Dz10-23) is limited due to the low concentration of divalent cations. Modifications of the catalytic loop are being sought to increase the activity of Dz10-23 in physiological conditions. We investigated the effect of 5'S or 5'R 5',8-cyclo-2'deoxyadenosine (cdA) on the activity of Dz10-23. The activity of Dz10-23 was measured in a cleavage assay using radiolabeled RNA. The Density Functional Tight Binding methodology with the self-consistent redistribution of Mulliken charge modification was used to explain different activities of DNAzymes. The substitution of 2'-deoxyadenosine with cdA in the catalytic loop decreased the activity of DNAzymes. Inhibition was dependent on the position of cdA and its absolute configuration. The order of activity of DNAzymes was as follows: wt-Dz > ScdA5-Dz ≈ RcdA15-Dz ≈ ScdA15-Dz > RcdA5-Dz. Theoretical studies revealed that the distance between phosphate groups at position 5 in RcdA5-Dz was significantly increased compared to wt-Dz, while the distance between O4 of dT4 and nonbonding oxygen of PO2 attached to 3'O of dG2 was much shorter. The strong inhibitory effect of RcdA5 may result from hampering the flexibility of the catalytic loop (increased rigidity), which is required for the proper positioning of Me2+ and optimal activity.
Collapse
Affiliation(s)
- Marcin Cieślak
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| | - Bolesław T Karwowski
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Nedorezova DD, Dubovichenko MV, Kalnin AJ, Nour MAY, Eldeeb AA, Ashmarova AI, Kurbanov GF, Kolpashchikov DM. Cleaving Folded RNA with DNAzyme Agents. Chembiochem 2024; 25:e202300637. [PMID: 37870555 DOI: 10.1002/cbic.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Cleavage of biological mRNA by DNAzymes (Dz) has been proposed as a variation of oligonucleotide gene therapy (OGT). The design of Dz-based OGT agents includes computational prediction of two RNA-binding arms with low affinity (melting temperatures (Tm ) close to the reaction temperature of 37 °C) to avoid product inhibition and maintain high specificity. However, RNA cleavage might be limited by the RNA binding step especially if the RNA is folded in secondary structures. This calls for the need for two high-affinity RNA-binding arms. In this study, we optimized 10-23 Dz-based OGT agents for cleavage of three RNA targets with different folding energies under multiple turnover conditions in 2 mM Mg2+ at 37 °C. Unexpectedly, one optimized Dz had each RNA-binding arm with a Tm ≥60 °C, without suffering from product inhibition or low selectivity. This phenomenon was explained by the folding of the RNA cleavage products into stable secondary structures. This result suggests that Dz with long (high affinity) RNA-binding arms should not be excluded from the candidate pool for OGT agents. Rather, analysis of the cleavage products' folding should be included in Dz selection algorithms. The Dz optimization workflow should include testing with folded rather than linear RNA substrates.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Mikhail V Dubovichenko
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Arseniy J Kalnin
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Gabdulla F Kurbanov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Chiba K, Yamaguchi T, Obika S. Development of 8-17 XNAzymes that are functional in cells. Chem Sci 2023; 14:7620-7629. [PMID: 37476720 PMCID: PMC10355097 DOI: 10.1039/d3sc01928d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
DNA enzymes (DNAzymes), which cleave target RNA with high specificity, have been widely investigated as potential oligonucleotide-based therapeutics. Recently, xeno-nucleic acid (XNA)-modified DNAzymes (XNAzymes), exhibiting cleavage activity in cultured cells, have been developed. However, a versatile approach to modify XNAzymes that function in cells has not yet been established. Here, we report an X-ray crystal structure-based approach to modify 8-17 DNAzymes; this approach enables us to effectively locate suitable XNAs to modify. Our approach, combined with a modification strategy used in designing antisense oligonucleotides, rationally designed 8-17 XNAzyme ("X8-17") that achieved high potency in terms of RNA cleavage and biostability against nucleases. X8-17, modified with 2'-O-methyl RNA, locked nucleic acid and phosphorothioate, successfully induced endogenous MALAT-1 and SRB1 RNA knockdown in cells. This approach may help in developing XNAzyme-based novel therapeutic agents.
Collapse
Affiliation(s)
- Kosuke Chiba
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 1-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
8
|
Nguyen K, Malik TN, Chaput JC. Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity. Nat Commun 2023; 14:2413. [PMID: 37105964 PMCID: PMC10140269 DOI: 10.1038/s41467-023-38100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Low activity has been the primary obstacle impeding the use of DNA enzymes (DNAzymes) as gene silencing agents in clinical applications. Here we describe the chemical evolution of a DNAzyme with strong catalytic activity under near physiological conditions. The enzyme achieves ~65 turnovers in 30 minutes, a feat only previously witnessed by the unmodified parent sequence under forcing conditions of elevated Mg2+ and pH. Structural constraints imposed by the chemical modifications drive catalysis toward a highly preferred UGUD motif (cut site underlined) that was validated by positive and negative predictions. Biochemical assays support an autonomous RNA cleavage mechanism independent of RNase H1 engagement. Consistent with its strong catalytic activity, the enzyme exhibits persistent allele-specific knock-down of an endogenous mRNA encoding an undruggable oncogenic KRAS target. Together, these results demonstrate that chemical evolution offers a powerful approach for discovering new chemotype combinations that can imbue DNAzymes with the physicochemical properties necessary to support therapeutic applications.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA
| | - Turnee N Malik
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
9
|
Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Taylor AI, Wan CJK, Donde MJ, Peak-Chew SY, Holliger P. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat Chem 2022; 14:1295-1305. [PMID: 36064973 PMCID: PMC7613789 DOI: 10.1038/s41557-022-01021-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
Nucleic-acid catalysts (ribozymes, DNA- and XNAzymes) cleave target (m)RNAs with high specificity but have shown limited efficacy in clinical applications. Here we report on the in vitro evolution and engineering of a highly specific modular RNA endonuclease XNAzyme, FR6_1, composed of 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid (FANA). FR6_1 overcomes the activity limitations of previous DNA- and XNAzymes and can be retargeted to cleave highly structured full-length (>5 kb) BRAF and KRAS mRNAs at physiological Mg2+ concentrations with allelic selectivity for tumour-associated (BRAF V600E and KRAS G12D) mutations. Phosphorothioate-FANA modification enhances FR6_1 biostability and enables rapid KRAS mRNA knockdown in cultured human adenocarcinoma cells with a G12D-allele-specific component provided by in vivo XNAzyme cleavage activity. These results provide a starting point for the development of improved gene-silencing agents based on FANA or other XNA chemistries.
Collapse
Affiliation(s)
- Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.
| | | | - Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
11
|
Li Y, Du S, Jin H, He J. A combination of the modified catalytic core and conjugation of 3'-inverted deoxythymidine for a more efficient and nuclease-resistant 10-23 DNAzyme. Bioorg Med Chem Lett 2022; 62:128633. [PMID: 35189319 DOI: 10.1016/j.bmcl.2022.128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
Abstract
10-23 DNAzyme is a catalytic DNA molecule capable of cleaving complementary RNA. Its high cleavage efficiency is being pursued by chemical modifications, for realizing its genetic therapeutics potential. The most efficient and nuclease-resistant DNAzyme was obtained in this study combined two modifications - 7-aminopropyl-8-aza-7-deaza-2'-deoxyadenosine (residue 1) at A9 and 3'-inverted deoxythymidine residue (iT) at 3'-end. Moreover, this combinatorial modification could be a universal approach for designing efficient and enzyme-resistant 10-23 DNAzyme against other RNA targets, and the catalytic core-modification could be further combined with other recognition arm modifications for practical applications as genetic therapeutics and biosensor tools.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
12
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
13
|
|
14
|
Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 2021; 13:319-326. [DOI: 10.1038/s41557-021-00645-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
|
15
|
Huo W, Li X, Wang B, Zhang H, Zhang J, Yang X, Jin Y. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractDeoxyribozyme (or denoted as DNAzyme), which is produced by in vitro screening technology, has gained extensive research interest in the field of biomedicine due to its high catalytic activity and structure identification. This review introduces the structural characteristics of RNA-cleaving DNAzyme and its application potential in cancer gene therapy, which plays a significant role in cancer-related gene inactivation by specifically cleaving target mRNA and inhibiting the expression of the corresponding protein. However, the low delivery efficiency and cellular uptake hindered the widespread usage of DNAzyme in gene therapy of cancers. Emerging nanotechnology holds great promise for DNAzyme to overcome these obstacles. This review mainly focuses on DNAzyme-based nanotherapeutic platforms in gene therapy of cancers, including oncogene antagonism therapy, treatment resistance gene therapy, immunogene therapy, and antiangiogenesis gene therapy. We also revealed the potential of DNAzyme-based nanotherapeutic platforms as emerging cancer therapy approaches and their security issues.
Collapse
|
16
|
Rosenbach H, Victor J, Etzkorn M, Steger G, Riesner D, Span I. Molecular Features and Metal Ions That Influence 10-23 DNAzyme Activity. Molecules 2020; 25:E3100. [PMID: 32646019 PMCID: PMC7412337 DOI: 10.3390/molecules25133100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Deoxyribozymes (DNAzymes) with RNA hydrolysis activity have a tremendous potential as gene suppression agents for therapeutic applications. The most extensively studied representative is the 10-23 DNAzyme consisting of a catalytic loop and two substrate binding arms that can be designed to bind and cleave the RNA sequence of interest. The RNA substrate is cleaved between central purine and pyrimidine nucleotides. The activity of this DNAzyme in vitro is considerably higher than in vivo, which was suggested to be related to its divalent cation dependency. Understanding the mechanism of DNAzyme catalysis is hindered by the absence of structural information. Numerous biological studies, however, provide comprehensive insights into the role of particular deoxynucleotides and functional groups in DNAzymes. Here we provide an overview of the thermodynamic properties, the impact of nucleobase modifications within the catalytic loop, and the role of different metal ions in catalysis. We point out features that will be helpful in developing novel strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. Consideration of these features will enable to develop improved strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. These insights provide the basis for improving activity in cells and pave the way for developing DNAzyme applications.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Detlev Riesner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| |
Collapse
|
17
|
Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M. Gold nanozyme: Biosensing and therapeutic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110422. [DOI: 10.1016/j.msec.2019.110422] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
|
18
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:1907-1912. [PMID: 36312441 PMCID: PMC9615436 DOI: 10.1002/ange.201912514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 09/07/2024]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10-23 or Zn2+-specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| |
Collapse
|
19
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 59:1891-1896. [PMID: 31746514 DOI: 10.1002/anie.201912514] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+ -specific 10-23 or Zn2+ -specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
20
|
Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Theranostics of cancer using smart biocompatible materials can enable early cancer diagnostics and treatment. Here, we report on a DNA-nanoparticle functional material, which can simultaneously report the presence of an mRNA cancer biomarker and trigger its degradation in cultured cells. The nanodevice consists of two species of magnetic beads, each of which is conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The system is activated only under two conditions: (i) in the presence of a specific target mRNA and (ii) when a magnetic field is applied. We demonstrate that delivery of such a system is markedly enhanced by the application of a magnetic field. The system not only fluorescently detects target mRNA in cultured MCF-7 cancer cells, but also induces its downregulation. Thus, the two-component magnetic nanoparticle system has characteristics of a material that can be used for cancer theranostics.
Collapse
|
21
|
Khachigian LM. Deoxyribozymes as Catalytic Nanotherapeutic Agents. Cancer Res 2019; 79:879-888. [DOI: 10.1158/0008-5472.can-18-2474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
22
|
Kamiya Y, Arimura Y, Ooi H, Kato K, Liang XG, Asanuma H. Development of Visible-Light-Responsive RNA Scissors Based on a 10-23 DNAzyme. Chembiochem 2018; 19:1305-1311. [PMID: 29682882 DOI: 10.1002/cbic.201800020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 01/07/2023]
Abstract
The 10-23 DNAzyme is an artificially developed functional oligonucleotide that can cleave RNA in a sequence-specific manner. In this study, we designed a new photo-driven DNAzyme incorporating a photoresponsive DNA overhang complementary to the catalytic core region. The photoresponsive overhang region of the DNAzyme included either azobenzene components (Azos) or 2,6-dimethyl-4-(methylthio)azobenzene units (SDM-Azos) each attached to a d-threoninol linker. When the Azos or SDM-Azos were in the trans form, the photoresponsive DNA overhang hybridized with the DNAzyme, and the RNA cleavage activity was suppressed. cis Isomerization of Azos or SDM-Azos, induced by 365 or 400 nm light, respectively, destabilized the duplex between the photoresponsive overhang and the catalytic core, and the DNAzyme recovered RNA cleavage activity. Reversible photoswitching of the DNAzyme activity was achieved by use of specific light irradiation. Further, light-dependent photoswitching of protein expression in the presence of the DNAzyme was demonstrated. Thus, this photo-driven DNAzyme has potential for application as a photocontrolled gene silencing system and a photoactivatable gene expression system.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yu Arimura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hideaki Ooi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kenjiro Kato
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Xing-Guo Liang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,School of Food Science and Technology, Ocean University of China, Shinan-qu, Yushan Road No. 5, Qingdao, 266003, China
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
23
|
Wang Y, Liu E, Lam CH, Perrin DM. A densely modified M 2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem Sci 2018; 9:1813-1821. [PMID: 29675226 PMCID: PMC5890787 DOI: 10.1039/c7sc04491g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Sequence-specific cleavage of RNA targets in the absence of a divalent metal cation (M2+) has been a long-standing goal in bioorganic chemistry. Herein, we report the in vitro selection of novel RNA cleaving DNAzymes that are selected using 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP) along with dGTP. These modified dNTPs provide key functionalities reminiscent of the active sites of ribonucleases, notably RNase A. Of several such M2+-free DNAymes, DNAzyme 7-38-32 cleaves a 19 nt all-RNA substrate with multiple-turnover, under simulated physiological conditions wherein only 0.5 mM Mg2+ was present, attaining values of kcat of 1.06 min-1 and a KM of 1.37 μM corresponding to a catalytic efficiency of ∼106 M-1 min-1. Therefore, Dz7-38-32 represents a promising candidate towards the development of therapeutically efficient DNAzymes.
Collapse
Affiliation(s)
- Yajun Wang
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - Erkai Liu
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - Curtis H Lam
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - David M Perrin
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| |
Collapse
|
24
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Dolot R, Sobczak M, Mikołajczyk B, Nawrot B. Synthesis, crystallization and preliminary crystallographic analysis of a 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with a substrate. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:292-301. [PMID: 28323518 DOI: 10.1080/15257770.2016.1276291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with its substrate was synthesized, purified and crystallized by the hanging-drop method using 0.8 M sodium potassium tartrate as a precipitant. A data set to 1.21 Å resolution was collected from a monocrystal at 100 K using synchrotron radiation on a beamline BL14.1 at BESSY. The crystal belonged to the P21 group with unit-cell a = 49.42, b = 24.69, c = 50.23, β = 118.48.
Collapse
Affiliation(s)
- Rafał Dolot
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Department of Bioorganic Chemistry , Łódź , Poland
| | - Milena Sobczak
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Department of Bioorganic Chemistry , Łódź , Poland
| | - Barbara Mikołajczyk
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Department of Bioorganic Chemistry , Łódź , Poland
| | - Barbara Nawrot
- a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Department of Bioorganic Chemistry , Łódź , Poland
| |
Collapse
|
26
|
Sadeghi S, Ahmadi N, Esmaeili A, Javadi-Zarnaghi F. Blue-white screening as a new readout for deoxyribozyme activity in bacterial cells. RSC Adv 2017. [DOI: 10.1039/c7ra09679h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Demonstration of 10–23 deoxyribozyme activity in viable E. coli using blue-white screening as the readout system.
Collapse
Affiliation(s)
- S. Sadeghi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - N. Ahmadi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - A. Esmaeili
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - F. Javadi-Zarnaghi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| |
Collapse
|
27
|
Fokina AA, Chelobanov BP, Fujii M, Stetsenko DA. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin Drug Deliv 2016; 14:1077-1089. [PMID: 27892730 DOI: 10.1080/17425247.2017.1266326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Development of efficient in vivo delivery systems remains a major challenge en route to clinical application of antisense technology, including RNA-cleaving molecules such as deoxyribozymes (DNAzymes). The mechanisms of oligonucleotide uptake and trafficking are clearly dependent on cell type and the type of oligonucleotide analogue. It appears likely that each particular disease target would pose its own specific requirements for a delivery method. Areas covered. In this review we will discuss the available options for DNAzyme delivery in vitro and in vivo, outline various exogenous and endogenous strategies that have been, or are still being, developed and ascertain their applicability with emphasis on those methods that are currently being used in clinical trials. Expert opinion. The available information suggests that a practical system for in vivo delivery has to be biodegradable, as to minimize concerns over long-term toxicity, it should not accumulate in the organism. Extracellular vesicles may offer the most organic way for drug delivery especially as they can be fused with artificial liposomes to produce hybrid nanoparticles. Chemical modification of DNAzymes holds great potential to apply oligonucleotide analogs that would not only be resistant to nuclease digestion, but also able to penetrate cells without external delivery agents.
Collapse
Affiliation(s)
- Alesya A Fokina
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Boris P Chelobanov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Masayuki Fujii
- b Department of Biological & Environmental Chemistry , Kindai University , Iizuka, Fukuoka , Japan
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| |
Collapse
|
28
|
Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. Trends Biochem Sci 2016; 41:595-609. [PMID: 27236301 DOI: 10.1016/j.tibs.2016.04.010] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The discovery of natural RNA enzymes (ribozymes) prompted the pursuit of artificial DNA enzymes (deoxyribozymes) by in vitro selection methods. A key motivation is the conceptual and practical advantages of DNA relative to proteins and RNA. Early studies focused on RNA-cleaving deoxyribozymes, and more recent experiments have expanded the breadth of catalytic DNA to many other reactions. Including modified nucleotides has the potential to widen the scope of DNA enzymes even further. Practical applications of deoxyribozymes include their use as sensors for metal ions and small molecules. Structural studies of deoxyribozymes are only now beginning; mechanistic experiments will surely follow. Following the first report 21 years ago, the field of deoxyribozymes has promise for both fundamental and applied advances in chemistry, biology, and other disciplines.
Collapse
|
29
|
Yang X, Xiao Z, Zhu J, Li Z, He J, Zhang L, Yang Z. Spatial conservation studies of nucleobases in 10–23 DNAzyme by 2′-positioned isonucleotides and enantiomers for increased activity. Org Biomol Chem 2016; 14:4032-8. [DOI: 10.1039/c6ob00390g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
d-/l-Isonucleotides were used to modify the catalytic core and recognition arms of 10–23 DNAzyme and prominently improved its bioactivity.
Collapse
Affiliation(s)
- Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Zhangping Xiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Junfei Zhu
- College of Life Sciences
- Guizhou University
- Guiyang 550025
- China
| | - Zhiwen Li
- College of Life Sciences
- Guizhou University
- Guiyang 550025
- China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| |
Collapse
|
30
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
31
|
Zhu J, Li Z, Yang Z, He J. Studies on the preferred uracil-adenine base pair at the cleavage site of 10-23 DNAzyme by functional group modifications on adenine. Bioorg Med Chem 2015; 23:4256-4263. [PMID: 26145822 DOI: 10.1016/j.bmc.2015.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
10-23 DNAzyme is capable of catalytically cleaving RNA substrates with the preferred cleavage sites rAU and rGU, in which the common base pair U-dA0 forms between the substrate and the DNAzyme in the cleavage reaction. Here its conservation was studied with base modifications on dA and extra functional groups introduced. The nitrogen atom at 7- or 8-position of adenine was demonstrated to be equally important for the cleavage reaction, although it is not related to the thermal stability of the base pair. Deletion of 6-amino group led to decreased stability of the base pair and a slight slower reaction rate. Extra functional groups through 6-amino group were not favorably accommodated in the cleavage site. From these modifications at the level of functional groups, it demonstrated that the base pair U-dA0 not only contributes to the recognition and binding stability, but also it is involved in the active catalytic center by its functional groups and base stacking. This kind of chemical modifications with 7-substituted 8-aza-7-deaza-2'-deoxyadenosine at dA0 is favorable for the introduction of signal molecules for mechanistic studies and biological applications, without significant loss of the catalytic function and structural destruction.
Collapse
Affiliation(s)
- Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Junlin He
- College of Life Science, Guizhou University, Guiyang 550025, China; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
32
|
Fokina AA, Stetsenko DA, François JC. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opin Biol Ther 2015; 15:689-711. [PMID: 25772532 DOI: 10.1517/14712598.2015.1025048] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. AREAS COVERED This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. EXPERT OPINION In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.
Collapse
Affiliation(s)
- Alesya A Fokina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue, Novosibirsk 630090 , Russia
| | | | | |
Collapse
|
33
|
Wang F, Saran R, Liu J. Tandem DNAzymes for mRNA cleavage: choice of enzyme, metal ions and the antisense effect. Bioorg Med Chem Lett 2015; 25:1460-3. [PMID: 25769818 DOI: 10.1016/j.bmcl.2015.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
The concept of DNAzyme-based gene silencing via mRNA cleavage was proposed over twenty years ago. A number of studies regarding intracellular gene silencing have been reported as well. However, questions have been raised regarding the lack of enzyme activity in physiological buffer conditions and it is being doubted that in the previously reported studies, gene silencing might be simply due to an antisense effect. In this work, two classical DNAzymes for RNA cleavage are studied using both chimeric substrates and extracted mRNA. We concluded that the activity of the 8-17 DNAzyme is much higher than that of 10-23 in the same conditions. To illustrate and compare the effect of specific cleavage versus antisense effect in the best possible way, we used tandem DNAzymes. Specific mRNA cleavage occurred with Zn(2+), while with Mg(2+), even the inactive control DNAzymes showed a similar response, suggesting that the antisense effect might be the dominating phenomenon causing gene silencing. This study has thus clarified the choice of DNAzyme sequence, the effect of metal ions and a potential source of antisense effect.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
34
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew Chem Int Ed Engl 2014; 53:7183-7. [PMID: 24890874 PMCID: PMC4134131 DOI: 10.1002/anie.201402691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
35
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal Propagation in Multi‐Layer DNAzyme Cascades Using Structured Chimeric Substrates. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
36
|
Brown CW, Lakin MR, Stefanovic D, Graves SW. Catalytic molecular logic devices by DNAzyme displacement. Chembiochem 2014; 15:950-4. [PMID: 24692254 DOI: 10.1002/cbic.201400047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W Brown
- Center for Biomedical Engineering, MSC01 1141, 1 University of New Mexico, Albuquerque, NM 87131 (USA)
| | | | | | | |
Collapse
|
37
|
Hégarat N, Novopashina D, Fokina AA, Boutorine AS, Venyaminova AG, Praseuth D, François JC. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation. FEBS J 2014; 281:1417-1431. [DOI: 10.1111/febs.12714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Nadia Hégarat
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Darya Novopashina
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Alesya A. Fokina
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Alexandre S. Boutorine
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Alya G. Venyaminova
- Laboratory of RNA Chemistry; Institute of Chemical Biology and Fundamental Medicine; Siberian Division of Russian Academy of Sciences; Novosibirsk Russia
| | - Danièle Praseuth
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
| | - Jean-Christophe François
- Acides nucléiques: dynamique, ciblage et fonctions biologiques; INSERM U565; Paris France
- Département Régulations, développement et diversité moléculaire; MNHN - CNRS UMR7196; Paris France
- Sorbonne Universités; UPMC Univ Paris 06; UMR_S 938; CDR Saint Antoine; Paris France
- Faculté de Médecine and Hôpital Saint Antoine; INSERM; UMR_S 938; CDR Saint Antoine; Paris France
| |
Collapse
|
38
|
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM. Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates. ACS COMBINATORIAL SCIENCE 2013; 15:174-82. [PMID: 23485334 DOI: 10.1021/co3001378] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The convenient use of SELEX and related combinatorial methods of in vitro selection provides a formidable gateway for the generation of DNA enzymes, especially in the context of improving their potential as gene therapeutic agents. Here, we report on the selection of DNAzyme 12-91, a modified nucleic acid catalyst adorned with imidazole, ammonium, and guanidinium groups that provide for efficient M(2+)-independent cleavage of an all-RNA target sequence (kobs = 0.06 min(-1)). While Dz12-91 was selected for intramolecular cleavage of an all-RNA target, it surprisingly cleaves a target containing a lone ribocytosine unit with even greater efficiency (kobs = 0.27 min(-1)) than Dz9-86 (kobs = 0.13 min(-1)). The sequence composition of Dz12-91 bears a marked resemblance to that of Dz9-86 (kobs = 0.0014 min(-1) with an all-RNA substrate) that was selected from the same library to cleave a target containing a single ribonucleotide. However, small alterations in the sequence composition have a profound impact on the substrate preference and catalytic properties. Indeed, Dz12-91 displays the highest known rate enhancement for the M(2+)-independent cleavage of all-RNA targets. Hence, Dz12-91 represents a step toward the generation of potentially therapeutically active DNAzymes and further underscores the usefulness of modified triphosphates in selection experiments.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Christopher J. Hipolito
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Curtis H. Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - David M. Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| |
Collapse
|
39
|
Transfected early growth response gene-1 DNA enzyme prevents stenosis and occlusion of autogenous vein graft in vivo. BIOMED RESEARCH INTERNATIONAL 2013; 2013:310406. [PMID: 23586030 PMCID: PMC3613055 DOI: 10.1155/2013/310406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/20/2012] [Accepted: 11/02/2012] [Indexed: 01/14/2023]
Abstract
The aim of this study was to detect the inhibitory action of the early growth response gene-1 DNA enzyme (EDRz) as a carrying agent by liposomes on vascular smooth muscle cell proliferation and intimal hyperplasia. An autogenous vein graft model was established. EDRz was transfected to the graft vein. The vein graft samples were obtained on each time point after surgery. The expression of the EDRz transfected in the vein graft was detected using a fluorescent microscope. Early growth response gene-1 (Egr-1) mRNA was measured using reverse transcription-PCR and in situ hybridization. And the protein expression of Egr-1 was detected by using western blot and immunohistochemistry analyses. EDRz was located at the media of the vein graft from 2 to 24 h, 7 h after grafting. The Egr-1 protein was mainly located in the medial VSMCs, monocytes, and endothelium cells during the early phase of the vein graft. The degree of VSMC proliferation and thickness of intima were obviously relieved compared with the no-gene therapy group. EDRz can reduce Egr-1 expression in autogenous vein grafts, effectively restrain VSMC proliferation and intimal hyperplasia, and prevent vascular stenosis and occlusion after vein graft.
Collapse
|
40
|
Yehl K, Joshi JP, Greene BL, Dyer RB, Nahta R, Salaita K. Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS NANO 2012; 6:9150-7. [PMID: 22966955 PMCID: PMC3482470 DOI: 10.1021/nn3034265] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
DNAzymes are catalytic oligonucleotides with important applications in gene regulation, DNA computing, responsive soft materials, and ultrasensitive metal-ion sensing. The most significant challenge for using DNAzymes in vivo pertains to nontoxic delivery and maintaining function inside cells. We synthesized multivalent deoxyribozyme "10-23" gold nanoparticle (DzNP) conjugates, varying DNA density, linker length, enzyme orientation, and linker composition in order to study the role of the steric environment and gold surface chemistry on catalysis. DNAzyme catalytic efficiency was modulated by steric packing and proximity of the active loop to the gold surface. Importantly, the 10-23 DNAzyme was asymmetrically sensitive to the gold surface and when anchored through the 5' terminus was inhibited 32-fold. This property was used to generate DNAzymes whose catalytic activity is triggered by thiol displacement reactions or by photoexcitation at λ = 532 nm. Importantly, cell studies revealed that DzNPs are less susceptible to nuclease degradation, readily enter mammalian cells, and catalytically down-regulate GDF15 gene expression levels in breast cancer cells, thus addressing some of the key limitations in the adoption of DNAzymes for in vivo work.
Collapse
Affiliation(s)
- Kevin Yehl
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Jayashree P. Joshi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology, Emory University, Atlanta, GA 30322, United States
| | - Brandon L. Greene
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Rita Nahta
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology, Emory University, Atlanta, GA 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Corresponding Author:
| |
Collapse
|