1
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
3
|
Lin HYJ, Battaje RR, Tan J, Doddareddy M, Dhaked HPS, Srivastava S, Hawkins BA, Al-Shdifat LMH, Hibbs DE, Panda D, Groundwater PW. Discovery of 2',6-Bis(4-hydroxybenzyl)-2-acetylcyclohexanone, a Novel FtsZ Inhibitor. Molecules 2022; 27:6993. [PMID: 36296585 PMCID: PMC9610434 DOI: 10.3390/molecules27206993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 03/04/2024] Open
Abstract
Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hindering the cell division process by perturbing Z-ring dynamics inside the cell. Enol 3 was also shown to inhibit FtsZ polymerization and induce its aggregation in vitro but does not affect the activity of tubulin and alkaline phosphatase. Docking studies show that 3 binds near the T7 loop, which is the catalytic site of FtsZ. Similar effects on Z-ring and FtsZ assembly were observed in B. subtilis, indicating that 3 could be a broad-spectrum anti-bacterial agent useful in targeting Gram-positive bacteria. In conclusion, compound 3 shows strong anti-pneumococcal activity, prompting further pre-clinical studies to explore its potential.
Collapse
Affiliation(s)
- Hsuan-Yu J. Lin
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jinlong Tan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Munikumar Doddareddy
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hemendra Pal Singh Dhaked
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Bryson A. Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - David E. Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research, Nagar 160062, India
| | - Paul W. Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Bacterial FtsZ inhibition by benzo[ d]imidazole-2-carboxamide derivative with anti-TB activity. Future Med Chem 2022; 14:1361-1373. [DOI: 10.4155/fmc-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims: The present study aimed to assess the mode of action of previously reported anti- Mycobacterium tuberculosis benzo[ d]imidazole-2-carboxamides against FtsZ along with their antibacterial potential. Materials & methods: The anti-mycobacterial action of benzo[ d]imidazole-2-carboxamides against FtsZ was evaluated using inhibition of Bacillus subtilis 168, light scattering assay, circular dichroism spectroscopy, in silico molecular docking and molecular dynamics simulations. Results & conclusion: Three compounds (1k, 1o and 1e) were active against isoniazid-resistant strains. Four compounds (1h, 1i, 1o and 4h) showed >70% inhibition against B. subtilis 168. Compound 1o was the most potent inhibitor (91 ± 5% inhibition) of B. subtilis 168 FtsZ and perturbed its secondary structure. Molecular docking and molecular dynamics simulation of complexed 1o suggested M. tuberculosis FtsZ as a possible target for antitubercular activity.
Collapse
|
5
|
Investigating the Antituberculosis Activity of Selected Commercial Essential Oils and Identification of Active Constituents Using a Biochemometrics Approach and In Silico Modeling. Antibiotics (Basel) 2022; 11:antibiotics11070948. [PMID: 35884202 PMCID: PMC9311982 DOI: 10.3390/antibiotics11070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis which has become prevalent due to the emergence of resistant M. tuberculosis strains. The use of essential oils (EOs) as potential anti-infective agents to treat microbial infections, including TB, offers promise due to their long historical use and low adverse effects. The current study aimed to investigate the in vitro anti-TB activity of 85 commercial EOs, and identify compounds responsible for the activity, using a biochemometrics approach. A microdilution assay was used to determine the antimycobacterial activity of the EOs towards some non-pathogenic Mycobacterium strains. In parallel, an Alamar blue assay was used to investigate antimycobacterial activity towards the pathogenic M. tuberculosis strain. Chemical profiling of the EOs was performed using gas chromatography-mass spectrometry (GC-MS) analysis. Biochemometrics filtered out putative biomarkers using orthogonal projections to latent structures discriminant analysis (OPLS-DA). In silico modeling was performed to identify potential therapeutic targets of the active biomarkers. Broad-spectrum antimycobacterial activity was observed for Cinnamomum zeylanicum (bark) (MICs = 1.00, 0.50, 0.25 and 0.008 mg/mL) and Levisticum officinale (MICs = 0.50, 0.5, 0.5 and 0.004 mg/mL) towards M. smegmatis, M. fortuitum, M. gordonae and M. tuberculosis, respectively. Biochemometrics predicted cinnamaldehyde, thymol and eugenol as putative biomarkers. Molecular docking demonstrated that cinnamaldehyde could serve as a scaffold for developing a novel class of antimicrobial compounds by targeting FtsZ and PknB from M. tuberculosis.
Collapse
|
6
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
7
|
Pan Z, An W, Wu L, Fan L, Yang G, Xu C. A New Synthesis Strategy for Rhodanine and Its Derivatives. Synlett 2021. [DOI: 10.1055/a-1485-5925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractRhodanine and its derivatives have been known as privileged structures in pharmacological research because of their wide spectrum of biological activities, but the synthesis method of rhodanine skeleton is limited. In this paper, not only rhodanine skeleton, but also N-aryl rhodanines can be directly prepared via the reaction of thioureas and thioglycolic acid in one step catalyzed by protic acid, which provides a new approach of the synthesis of rhodanine and its derivatives. The developed strategy is straightforward, efficient, atom economical, and convenient in good yields.
Collapse
|
8
|
Han H, Wang Z, Li T, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides. FEBS J 2020; 288:1091-1106. [PMID: 32681661 DOI: 10.1111/febs.15489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
9
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
10
|
Kunal K, Tiwari R, Dhaked HPS, Surolia A, Panda D. Mechanistic insight into the effect of BT‐benzo‐29 on the Z‐ring in
Bacillus subtilis. IUBMB Life 2020; 72:978-990. [DOI: 10.1002/iub.2234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kishore Kunal
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Rishu Tiwari
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Hemendra P. S. Dhaked
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Avadhesha Surolia
- Molecular Biophysics UnitIndian Institute of Science Bangalore India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| |
Collapse
|
11
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
12
|
Zhang TY, Wu YY, Zhang MY, Cheng J, Dube B, Yu HJ, Zhang YX. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep 2019; 9:8319. [PMID: 31165765 PMCID: PMC6549247 DOI: 10.1038/s41598-019-44810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
A total amount of 116 fungal strains, belonging to 30 genera, were acquired from the rhizosphere soil and plant of Galinsoga parviflora. A strain SYPF 7336, isolated from the rhizospheric soil, was identified as Seltsamia galinsogisoli sp. nov., by morphological and molecular analyses, which displayed high antibacterial activity. In order to study the secondary metabolites of Seltsamia galinsogisoli sp. nov., nine compounds were successfully seperated from the strain fermentation broth, including two new compounds and seven known compounds. Their structures were elucidated based on spectral analysis including 1D and 2D NMR. All the seperated compounds were evaluated for their antimicrobial activities. Compounds 2, 5 and 1 displayed antimicrobial activities against Staphylococcus aureus with MIC values of 25, 32 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of S. aureus to be swollen to a volume of 1.4 to 1.7-fold after treatment with compounds 1, 2 and 5, respectively. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 1, 2 and 5.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Blessings Dube
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Jia Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Zheng YY, Du RL, Cai SY, Liu ZH, Fang ZY, Liu T, So LY, Lu YJ, Sun N, Wong KY. Study of Benzofuroquinolinium Derivatives as a New Class of Potent Antibacterial Agent and the Mode of Inhibition Targeting FtsZ. Front Microbiol 2018; 9:1937. [PMID: 30174667 PMCID: PMC6107709 DOI: 10.3389/fmicb.2018.01937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
New generation of antibacterial agents are urgently needed in order to fight the emergence of multidrug-resistant bacteria. FtsZ is currently identified as a promising target for new types of antimicrobial compounds development because of its conservative characteristics and its essential role played in bacterial cell division. In the present study, the antibacterial activity of a series of benzofuroquinolinium derivatives was investigated. The results show that the compounds possess potent antibacterial activity against drug resistant pathogens including MRSA, VREF and NDM-1 Escherichia coli. Biological studies reveal that the compound is an effective inhibitor that is able to suppress FtsZ polymerization and GTPase activity and thus stopping the cell division and causing cell death. More importantly, this series of compounds shows low cytotoxicity on mammalian cells and therefore they could be new chemotypes for the development of new antibacterial agents targeting the cell-division protein FtsZ.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sen-Yuan Cai
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhi-Hua Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yu-Jing Lu
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Goldenpomelo Biotechnology Co., Ltd., Meizhou, China
| | - Ning Sun
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
14
|
Fang Z, Ban L, Li Y, Yuan W, Liu Z, Liu T, Li X, Wong KY, Lu Y, Sun N, Yao X. A quinoline-based FtsZ inhibitor for the study of antimicrobial activity and synergistic effects with β-lactam antibiotics. J Pharmacol Sci 2018; 137:283-289. [DOI: 10.1016/j.jphs.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
|
15
|
Liu J, Ma R, Bi F, Zhang F, Hu C, Venter H, Semple SJ, Ma S. Novel 5-methyl-2-phenylphenanthridium derivatives as FtsZ-targeting antibacterial agents from structural simplification of natural product sanguinarine. Bioorg Med Chem Lett 2018; 28:1825-1831. [DOI: 10.1016/j.bmcl.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
|
16
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
17
|
Groundwater PW, Narlawar R, Liao VWY, Bhattacharya A, Srivastava S, Kunal K, Doddareddy M, Oza PM, Mamidi R, Marrs ECL, Perry JD, Hibbs DE, Panda D. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ. Biochemistry 2017; 56:514-524. [DOI: 10.1021/acs.biochem.6b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Paul W. Groundwater
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Rajeshwar Narlawar
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Vivian Wan Yu Liao
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Anusri Bhattacharya
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kishore Kunal
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Munikumar Doddareddy
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Pratik M. Oza
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Ramesh Mamidi
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Emma C. L. Marrs
- Microbiology
Department, Freeman Hospital, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - John D. Perry
- Microbiology
Department, Freeman Hospital, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - David E. Hibbs
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
18
|
Haranahalli K, Tong S, Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 2016; 24:6354-6369. [PMID: 27189886 PMCID: PMC5157688 DOI: 10.1016/j.bmc.2016.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5years, but also includes significant findings in previous years.
Collapse
Affiliation(s)
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Mathew B, Hobrath JV, Ross L, Connelly MC, Lofton H, Rajagopalan M, Guy RK, Reynolds RC. Screening and Development of New Inhibitors of FtsZ from M. Tuberculosis. PLoS One 2016; 11:e0164100. [PMID: 27768711 PMCID: PMC5074515 DOI: 10.1371/journal.pone.0164100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022] Open
Abstract
A variety of commercial analogs and a newer series of Sulindac derivatives were screened for inhibition of M. tuberculosis (Mtb) in vitro and specifically as inhibitors of the essential mycobacterial tubulin homolog, FtsZ. Due to the ease of preparing diverse analogs and a favorable in vivo pharmacokinetic and toxicity profile of a representative analog, the Sulindac scaffold may be useful for further development against Mtb with respect to in vitro bacterial growth inhibition and selective activity for Mtb FtsZ versus mammalian tubulin. Further discovery efforts will require separating reported mammalian cell activity from both antibacterial activity and inhibition of Mtb FtsZ. Modeling studies suggest that these analogs bind in a specific region of the Mtb FtsZ polymer that differs from human tubulin and, in combination with a pharmacophore model presented herein, future hybrid analogs of the reported active molecules that more efficiently bind in this pocket may improve antibacterial activity while improving other drug characteristics.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama, 35205, United States of America
| | - Judith Varady Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Larry Ross
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama, 35205, United States of America
| | - Michele C. Connelly
- Dept. Chemical Biology & Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, United States of America
| | - Hava Lofton
- The University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - Malini Rajagopalan
- The University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - R. Kiplin Guy
- Dept. Chemical Biology & Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, United States of America
| | - Robert C. Reynolds
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
20
|
Dhaked HPS, Bhattacharya A, Yadav S, Dantu SC, Kumar A, Panda D. Mutation of Arg191 in FtsZ Impairs Cytokinetic Abscission of Bacillus subtilis Cells. Biochemistry 2016; 55:5754-5763. [DOI: 10.1021/acs.biochem.6b00493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hemendra Pal Singh Dhaked
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anusri Bhattacharya
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saroj Yadav
- IITB-Monash
Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sarath Chandra Dantu
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ashutosh Kumar
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
21
|
Broughton CE, Van Den Berg HA, Wemyss AM, Roper DI, Rodger A. Beyond the Discovery Void: New targets for antibacterial compounds. Sci Prog 2016; 99:153-182. [PMID: 28742471 PMCID: PMC10365418 DOI: 10.3184/003685016x14616130512308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotics save many lives, but their efficacy is under threat: overprescription, population growth, and global travel all contribute to the rapid origination and spread of resistant strains. Exacerbating this threat is the fact that no new major classes of antibiotics have been discovered in the last 30 years: this is the "discovery void." We discuss the traditional molecular targets of antibiotics as well as putative novel targets.
Collapse
Affiliation(s)
| | | | - Alan M. Wemyss
- Molecular Organisation and Assembly in Cells Doctoral Training Centre
| | | | | |
Collapse
|
22
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Subhedar DD, Shaikh MH, Nawale L, Yeware A, Sarkar D, Shingate BB. [Et3NH][HSO4] catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their antitubercular activity. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2484-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Ray S, Jindal B, Kunal K, Surolia A, Panda D. BT-benzo-29 inhibits bacterial cell proliferation by perturbing FtsZ assembly. FEBS J 2015; 282:4015-33. [PMID: 26258635 DOI: 10.1111/febs.13403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-4-carboxamide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 ± 3 μm and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.
Collapse
Affiliation(s)
- Shashikant Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Bhavya Jindal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kishore Kunal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
25
|
Li X, Ma S. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. Eur J Med Chem 2015; 95:1-15. [DOI: 10.1016/j.ejmech.2015.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
|
26
|
Ray S, Dhaked HPS, Panda D. Antimicrobial peptide CRAMP (16-33) stalls bacterial cytokinesis by inhibiting FtsZ assembly. Biochemistry 2014; 53:6426-9. [PMID: 25294259 DOI: 10.1021/bi501115p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cathelin-related antimicrobial peptide (CRAMP) of 37 amino acid residues is thought to regulate innate immunity and provide a host defense mechanism in mammals. Here, a part of the CRAMP peptide, CRAMP (16-33) (GEKLKKIGQKIKNFFQKL), was found to bind to FtsZ and to inhibit the assembly and GTPase activity of FtsZ in vitro. A computational analysis indicated that CRAMP (16-33) binds in the cavity of the T7 loop of FtsZ. Both hydrophobic and ionic interactions were involved in the binding interactions. Further, CRAMP (16-33) inhibited the formation of the FtsZ ring in bacteria, indicating that it inhibited bacterial cell division by inhibiting FtsZ assembly.
Collapse
Affiliation(s)
- Shashikant Ray
- Department of Biosciences and Bioengineering, IIT Bombay , Powai, Mumbai 400076, India
| | | | | |
Collapse
|
27
|
Duggirala S, Nankar RP, Rajendran S, Doble M. Phytochemicals as Inhibitors of Bacterial Cell Division Protein FtsZ: Coumarins Are Promising Candidates. Appl Biochem Biotechnol 2014; 174:283-96. [DOI: 10.1007/s12010-014-1056-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
28
|
Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44:377-86. [PMID: 25130096 DOI: 10.1016/j.ijantimicag.2014.06.001] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022]
Abstract
With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research.
Collapse
|
29
|
Singh D, Bhattacharya A, Rai A, Dhaked HPS, Awasthi D, Ojima I, Panda D. SB-RA-2001 inhibits bacterial proliferation by targeting FtsZ assembly. Biochemistry 2014; 53:2979-92. [PMID: 24749867 PMCID: PMC4020581 DOI: 10.1021/bi401356y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
FtsZ
has been recognized as a promising antimicrobial drug target
because of its vital role in bacterial cell division. In this work,
we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM,
respectively. Cell lengths of these microorganisms increased remarkably
in the presence of SB-RA-2001, indicating that it inhibits bacterial
cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization
of the late cell division protein, DivIVA, at the midcell position.
Flow cytometric analysis of the SB-RA-2001-treated cells indicated
that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did
not affect the localization of the chromosomal partitioning protein,
Spo0J, along the two ends of the nucleoids and also had no discernible
effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane
potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly
and bundling of FtsZ protofilaments, and reduced the GTPase activity
of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting
that it does not bind to the GTP binding site on FtsZ. A computational
analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region
between the C-terminal domain and helix H7, and the binding site of
SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized
inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001
inhibits bacterial proliferation by targeting the assembly dynamics
of FtsZ, and this can be exploited further to develop potent FtsZ-targeted
antimicrobials.
Collapse
Affiliation(s)
- Dipty Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Bacterial cell division proteins as antibiotic targets. Bioorg Chem 2014; 55:27-38. [PMID: 24755375 DOI: 10.1016/j.bioorg.2014.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022]
Abstract
Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.
Collapse
|
31
|
Sass P, Brötz-Oesterhelt H. Bacterial cell division as a target for new antibiotics. Curr Opin Microbiol 2013; 16:522-30. [DOI: 10.1016/j.mib.2013.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 01/22/2023]
|
32
|
Jindal B, Panda D. Understanding FtsZ assembly: cues from the behavior of its N- and C-terminal domains. Biochemistry 2013; 52:7071-81. [PMID: 24007276 DOI: 10.1021/bi400129j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtsZ polymerizes to form a cytokinetic ring at the center of a bacterial cell, which engineers bacterial cell division. FtsZ consists of N-terminal and C-terminal core domains followed by a C-terminal spacer and a conserved C-terminal tail region. Though it has been reported that both N- and C-domains can fold independently, the assembly behaviors of the N- and C-domains are not clear. In this study, we created five truncated constructs of Bacillus subtilis FtsZ, two N-domain and three C-domain constructs, and expressed and purified them. We determined their assembly properties and their effect on the assembly of full-length FtsZ to gain insight into the mechanism of FtsZ polymerization. We found that the N-domain of B. subtilis FtsZ can polymerize on its own in a GTP-dependent manner. Further, we obtained evidence indicating that the N-domain could bind to GTP but could not hydrolyze GTP by itself. In addition, the N-domain was found to inhibit the assembly of full-length FtsZ. Interestingly, the N-domain was found to enhance the GTPase activity of full-length FtsZ. An analysis of the effects of the N- and C-domains on FtsZ assembly indicated that the assembly of FtsZ might be directional. The work has provided new insight into the assembly characteristics of FtsZ domains and the mechanism of FtsZ polymerization.
Collapse
Affiliation(s)
- Bhavya Jindal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | |
Collapse
|
33
|
Bhattacharya A, Jindal B, Singh P, Datta A, Panda D. Plumbagin inhibits cytokinesis inBacillus subtilisby inhibiting FtsZ assembly - a mechanistic study of its antibacterial activity. FEBS J 2013; 280:4585-99. [DOI: 10.1111/febs.12429] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Anusri Bhattacharya
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Bhavya Jindal
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Parminder Singh
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Anindya Datta
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
34
|
Ray S, Kumar A, Panda D. GTP regulates the interaction between MciZ and FtsZ: a possible role of MciZ in bacterial cell division. Biochemistry 2012; 52:392-401. [PMID: 23237472 DOI: 10.1021/bi301237m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MciZ, a peptide with 40 amino acid residues, has been shown to be expressed during bacterial sporulation, to inhibit Z-ring formation in bacteria, and to inhibit the assembly of FtsZ in vitro. Here, MciZ was found to bind to FtsZ in vitro with a dissociation constant of 0.3 ± 0.1 μM. Guanosine nucleotides inhibited the binding of MciZ to FtsZ; however, GTP inhibited the binding of MciZ to FtsZ more strongly than GDP. In addition, MciZ inhibited the binding of 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP, a fluorescent analogue of GTP, to FtsZ. The results indicated that MciZ shares its binding site on FtsZ with GTP. Furthermore, M19I, an N-terminal 19-residue peptide (MKVHRMPKGVVLVGKAWEI) of MciZ, inhibited the assembly and GTPase activity of FtsZ in vitro. The results suggested that GTP plays an important role in the regulation of the interaction between FtsZ and MciZ and that M19I may be used as a lead peptide to design peptide inhibitors of FtsZ assembly.
Collapse
Affiliation(s)
- Shashikant Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
35
|
Anderson DE, Kim MB, Moore JT, O’Brien TE, Sorto NA, Grove CI, Lackner LL, Ames JB, Shaw JT. Comparison of small molecule inhibitors of the bacterial cell division protein FtsZ and identification of a reliable cross-species inhibitor. ACS Chem Biol 2012; 7:1918-28. [PMID: 22958099 DOI: 10.1021/cb300340j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin.
Collapse
Affiliation(s)
- David E. Anderson
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Michelle B. Kim
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Moore
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Terrence E. O’Brien
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Nohemy A. Sorto
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Charles I. Grove
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Laura L. Lackner
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - James B. Ames
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Shaw
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| |
Collapse
|
36
|
Rai A, Surolia A, Panda D. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics. PLoS One 2012; 7:e44311. [PMID: 22952952 PMCID: PMC3432122 DOI: 10.1371/journal.pone.0044311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/01/2012] [Indexed: 12/30/2022] Open
Abstract
Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazolidin-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2±1.8 µM), human breast adenocarcinoma (MCF-7) (IC50, 10.0±0.5 µM), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0±1 µM), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8±0.3 µM) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5±1µM) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3±1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (Ki) of 5.2±1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.
Collapse
Affiliation(s)
- Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (DP); (AS)
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (DP); (AS)
| |
Collapse
|