1
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
2
|
Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022; 11:293. [PMID: 35335617 PMCID: PMC8955721 DOI: 10.3390/pathogens11030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines. During viral replication, a single polyprotein precursor (PP) is produced and further cleaved into individual proteins by a viral NS2B-NS3 protease complex together with host proteases. Flavivirus protease is one of the most attractive targets for development of therapeutic antivirals because it is essential for viral PP processing, leading to active viral proteins. In this review, we have summarized recent development in drug discovery targeting the NS2B-NS3 protease of flaviviruses, especially Zika, dengue, and West Nile viruses.
Collapse
Affiliation(s)
- Subodh K. Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
4
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
5
|
Karwal P, Vats ID, Sinha N, Singhal A, Sehgal T, Kumari P. Therapeutic Applications of Peptides against Zika Virus: A Review. Curr Med Chem 2020; 27:3906-3923. [DOI: 10.2174/0929867326666190111115132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
Abstract
Zika Virus (ZIKV) belongs to the class of flavivirus that can be transmitted by Aedes
mosquitoes. The number of Zika virus caused cases of acute infections, neurological disorders and
congenital microcephaly are rapidly growing and therefore, in 2016, the World Health Organization
declared a global “Public Health Emergency of International Concern”. Anti-ZIKV therapeutic and
vaccine development strategies are growing worldwide in recent years, however, no specific and safe
treatment is available till date to save the human life. Currently, development of peptide therapeutics
against ZIKV has attracted rising attention on account of their high safety concern and low development
cost, in comparison to small therapeutic molecules and antibody-based anti-viral drugs. In present
review, an overview of ZIKV inhibition by peptide-based inhibitors including E-protein derived
peptides, antimicrobial peptides, frog skin peptides and probiotic peptides has been discussed. Peptides
inhibitors have also been reported to act against NS5, NS2B-NS3 protease and proteasome in
order to inhibit ZIKV infection. Recent advances in peptide-based therapeutics and vaccine have
been reviewed and their future promise against ZIKV infections has been explored.
Collapse
Affiliation(s)
- Preeti Karwal
- Department of Biochemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Ishwar Dutt Vats
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Niharika Sinha
- Drug Development Laboratory Group, Gautam Buddha University, Noida, India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College, Bengaluru, Karnataka, India
| | - Teena Sehgal
- Department of Chemistry, HMRITM, GGSIP University, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| |
Collapse
|
6
|
Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol 2019; 92:941-955. [PMID: 31784997 DOI: 10.1002/jmv.25646] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Dengue virus is an arbovirus belonging to class Flaviviridae Its clinical manifestation ranges from asymptomatic to extreme conditions (dengue hemorrhagic fever/dengue shock syndrome). A lot of research has been done on this ailment, yet there is no effective treatment available for the disease. This review provides the systematic understanding of all dengue proteins, role of its structural proteins (C-protein, E-protein, prM) in virus entry, assembly, and secretion in host cell, and nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5) in viral assembly, replication, and immune evasion during dengue progression and pathogenesis. Furthermore, the review has highlighted the controversies related to the only commercially available dengue vaccine, that is, Dengvaxia, and the risk associated with it. Lastly, it provides an insight regarding various approaches for developing an effective anti-dengue treatment.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Nitsche C. Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019; 11:157-165. [PMID: 30806881 DOI: 10.1007/s12551-019-00508-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead compounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way forward for successful identification of future lead compounds.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
Sanchez-Fernandez A, Moody GL, Murfin LC, Arnold T, Jackson AJ, King SM, Lewis SE, Edler KJ. Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent. SOFT MATTER 2018; 14:5525-5536. [PMID: 29926037 DOI: 10.1039/c8sm00755a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent investigations have shown that deep eutectic solvents provide a suitable environment for self-organisation of biomolecules, in particular phospholipids and proteins. However, the solvation of complex lyophilic moieties by deep eutectic solvents still remains unclear. Here we explore the behaviour of zwitterionic surfactants in choline chloride:glycerol eutectic mixture. Dodecyl-2-(trimethylammonio)ethylphosphate and N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (alkyl = dodecyl, tetradecyl) surfactants were investigated by means of surface tension, X-ray reflectivity and small-angle neutron scattering. These surfactants were found to remain surface active and form globular micelles in deep eutectic solvents. Still, the surface behaviour of these species was found to differ depending on the headgroup and tail structure. The morphology of the micelles also slightly varies between surfactants, demonstrating differences in the packing of individual monomers. The characteristics of mixtures of the dodecyl surfactants is also reported, showing a deviation from ideal mixing associated with attractive interactions between sulfobetaine and phosphocholine headgroups. Such non-ideality results in variation of the surface behaviour and self-assembly of these surfactant mixtures. The results presented here will potentially lead to the development of new alternatives for drug-delivery, protein solubilisation and biosensing through a better fundamental understanding of the behaviour of zwitterionic surfactants in deep eutectic solvents.
Collapse
Affiliation(s)
- A Sanchez-Fernandez
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gopala Reddy SB, Chin WX, Shivananju NS. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol 2018; 154:54-63. [PMID: 29674002 DOI: 10.1016/j.bcp.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022]
Abstract
Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design.
Collapse
Affiliation(s)
- Sindhoora Bhargavi Gopala Reddy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India.
| |
Collapse
|
10
|
The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:115-129. [PMID: 29845529 DOI: 10.1007/978-981-10-8727-1_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses from the Flavivirus family are the causative agents of dengue fever, Zika, Japanese encephalitis, West Nile encephalitis or Yellow fever and constitute major or emerging public health problems. A better understanding of the flavivirus replication cycle is likely to offer new opportunities for the design of antiviral therapies to treat severe conditions provoked by these viruses, but it should also help reveal fundamental biological mechanisms of the host cell. During virus replication, RNA synthesis is mediated by a dynamic and membrane-bound multi-protein assembly, named the replication complex (RC). The RC is composed of both viral and host-cell proteins that assemble within vesicles composed of the endoplasmic reticulum membrane, near the nucleus. At the heart of the flavivirus RC lies NS4B, a viral integral membrane protein that plays a role in virulence and in down-regulating the innate immune response. NS4B binds to the NS2B-NS3 protease-helicase, which itself interacts with the NS5 methyl-transferase polymerase. We present an overview of recent structural and functional data that augment our understanding of how viral RNA is replicated by dengue virus. We focus on structural data that illuminate the various roles played by proteins NS2B-NS3, NS4B and NS5. By participating in viral RNA cap methylation, the NS5 methyltransferase enables the virus to escape the host cell innate immune response. We present the molecular basis for this activity. We summarize what we know about the network of interactions established by NS2B-NS3, NS4B and NS5 (their "interactome"). This leads to a working model that is captured in the form of a rather naïve "cartoon", which we hope will be refined towards an atomic model in the near future.
Collapse
|
11
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
12
|
Kang C, Keller TH, Luo D. Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 2017; 25:797-808. [PMID: 28789826 DOI: 10.1016/j.tim.2017.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Thomas H Keller
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, 636921, Singapore.
| |
Collapse
|
13
|
Hodge K, Tunghirun C, Kamkaew M, Limjindaporn T, Yenchitsomanus PT, Chimnaronk S. Identification of a Conserved RNA-dependent RNA Polymerase (RdRp)-RNA Interface Required for Flaviviral Replication. J Biol Chem 2016; 291:17437-49. [PMID: 27334920 DOI: 10.1074/jbc.m116.724013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 02/01/2023] Open
Abstract
Dengue virus, an ∼10.7-kb positive-sense RNA virus, is the most common arthropod-communicated pathogen in the world. Despite dengue's clear epidemiological importance, mechanisms for its replication remain elusive. Here, we probed the entire dengue genome for interactions with viral RNA-dependent RNA polymerase (RdRp), and we identified the dominant interaction as a loop-forming ACAG motif in the 3' positive-stranded terminus, complicating the prevailing model of replication. A subset of interactions coincides with known flaviviral recombination sites inside the viral protein-coding region. Specific recognition of the RNA element occurs via an arginine patch in the C-terminal thumb domain of RdRp. We also show that the highly conserved nature of the consensus RNA motif may relate to its tolerance to various mutations in the interacting region of RdRp. Disruption of the interaction resulted in loss of viral replication ability in cells. This unique RdRp-RNA interface is found throughout flaviviruses, implying possibilities for broad disease interventions.
Collapse
Affiliation(s)
- Kenneth Hodge
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | - Chairat Tunghirun
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | - Maliwan Kamkaew
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | | | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarin Chimnaronk
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| |
Collapse
|
14
|
Liew LSY, Lee MY, Wong YL, Cheng J, Li Q, Kang C. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli. Protein Expr Purif 2016; 121:141-8. [DOI: 10.1016/j.pep.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
15
|
Ourique GS, Vianna JF, Neto JXL, Oliveira JIN, Mauriz PW, Vasconcelos MS, Caetano EWS, Freire VN, Albuquerque EL, Fulco UL. A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Adv 2016. [DOI: 10.1039/c6ra10121f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The total interaction energy of the inhibitor Bz-nKRR-H bound to a serine protease of the dengue virus is mainly due to the action of Asn152, Met49, Tyr161, Asp129 and Gly151 (Met84, Met75, Asp81, Asp79 and Asp80) residues at the NS3 (NS2B) subunit.
Collapse
Affiliation(s)
- G. S. Ourique
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. F. Vianna
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - P. W. Mauriz
- Departamento de Física
- Instituto Federal de Educação
- Ciência e Tecnologia do Maranhão
- São Luís
- Brazil
| | - M. S. Vasconcelos
- Escola de Ciência e Tecnologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
16
|
Li Y, Li Q, Wong YL, Liew LSY, Kang C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2244-52. [DOI: 10.1016/j.bbamem.2015.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/20/2015] [Accepted: 06/09/2015] [Indexed: 12/27/2022]
|
17
|
Pambou E, Crewe J, Yaseen M, Padia FN, Rogers S, Wang D, Xu H, Lu JR. Structural Features of Micelles of Zwitterionic Dodecyl-phosphocholine (C₁₂PC) Surfactants Studied by Small-Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9781-9789. [PMID: 26301341 DOI: 10.1021/acs.langmuir.5b02077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Small-angle neutron scattering (SANS) was used to investigate the size and shape of zwitterionic dodecyl phosphocholine (C12PC) micelles formed at various concentrations above its critical micelle concentration (CMC = 0.91 mM). The predominant spherical shape of micelles is revealed by SANS while the average micellar size was found to be broadly consistent with the hydrodynamic diameters determined by dynamic light scattering (DLS). Cryogenic tunneling electron microscopy (cryo-TEM) shows a uniform distribution of structures, proposing micelle monodispersity ( Supporting Information ). H/D substitution was utilized to selectively label the chain, head, or entire surfactant so that structural distributions within the micellar assembly could be investigated using fully protonated, head-deuterated, and tail-deuterated PC surfactants in D2O and fully deuterated surfactants in H2O. Using the analysis software we have developed, the four C12PC contrasts at a given concentration were simultaneously analyzed using various core-shell models consisting of a hydrophobic core and a shell representing hydrated polar headgroups. Results show that at 10 mM, C12PC micelles can be well represented by a spherical core-shell model with a core radius and shell thicknesses of 16.9 ± 0.5 and 10.2 ± 2.0 Å (total radius 27.1 ± 2.0 Å), respectively, with a surfactant aggregation number of 57 ± 5. As the concentration was increased, the SANS data revealed an increase in core-shell mixing, characterized by the emergence of an intermediate mixing region at the spherical core-shell interface. C12PC micelles at 100 mM were found to have a core radius and shell thicknesses of 19.6 ± 0.5 and 7.8 ± 2.0 Å, with an intermediate mixing region of 3.0 ± 0.5 Å. Further reduction in the shell thickness with concentration was also observed, coupled with an increased mixing of the core and shell regions and a reduction in miceller hydration, suggesting that concentration has a significant influence on surfactant packing and aggregation within micelles.
Collapse
Affiliation(s)
- Elias Pambou
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - John Crewe
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mohammed Yaseen
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Faheem N Padia
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah Rogers
- STFC ISIS Facility, Rutherford Appleton Laboratory , Didcot OX11 0QX, United Kingdom
| | - Dong Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
18
|
Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015; 118:148-58. [PMID: 25842996 DOI: 10.1016/j.antiviral.2015.03.014] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.
Collapse
Affiliation(s)
- Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, Singapore 138673, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d'Immunologie et des Maladies Infectieuses, Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France.
| |
Collapse
|
19
|
Lantez V, Nikolaidis I, Rechenmann M, Vernet T, Noirclerc-Savoye M. Rapid automated detergent screening for the solubilization and purification of membrane proteins and complexes. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Violaine Lantez
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Ioulia Nikolaidis
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
- Department of Biochemistry of Membranes; Bijvoet Center for Biomolecular Research, Utrecht University; The Netherlands
| | - Mathias Rechenmann
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Thierry Vernet
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | | |
Collapse
|
20
|
Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations. J Colloid Interface Sci 2015; 437:170-180. [DOI: 10.1016/j.jcis.2014.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/18/2022]
|
21
|
Nitsche C, Holloway S, Schirmeister T, Klein CD. Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev 2014; 114:11348-81. [PMID: 25268322 DOI: 10.1021/cr500233q] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Steven Holloway
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Broecker J, Fiedler S, Gimpl K, Keller S. Polar Interactions Trump Hydrophobicity in Stabilizing the Self-Inserting Membrane Protein Mistic. J Am Chem Soc 2014; 136:13761-8. [DOI: 10.1021/ja5064795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Broecker
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sebastian Fiedler
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Katharina Gimpl
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
23
|
Allosteric pocket of the dengue virus (serotype 2) NS2B/NS3 protease: In silico ligand screening and molecular dynamics studies of inhibition. J Mol Graph Model 2014; 52:103-13. [DOI: 10.1016/j.jmgm.2014.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/20/2022]
|
24
|
Functional interplay among the flavivirus NS3 protease, helicase, and cofactors. Virol Sin 2014; 29:74-85. [PMID: 24691778 DOI: 10.1007/s12250-014-3438-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022] Open
Abstract
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.
Collapse
|
25
|
Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B. Protein Expr Purif 2013; 92:156-62. [PMID: 24084007 DOI: 10.1016/j.pep.2013.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/03/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022]
Abstract
Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV.
Collapse
|