1
|
Escrig J, Marcos-Alcalde Í, Domínguez-Zotes S, Abia D, Gómez-Puertas P, Valbuena A, Mateu MG. Structural Basis for Alternative Self-Assembly Pathways Leading to Different Human Immunodeficiency Virus Capsid-Like Nanoparticles. ACS NANO 2024; 18:27465-27478. [PMID: 39329375 DOI: 10.1021/acsnano.4c07948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The mechanisms that underlie the spontaneous and faithful assembly of virus particles are guiding the design of self-assembling protein-based nanostructures for biomedical or nanotechnological uses. In this study, the human immunodeficiency virus (HIV-1) capsid was used as a model to investigate what molecular feature(s) may determine whether a protein nanoparticle with the intended architecture, instead of an aberrant particle, will be self-assembled in vitro. Attempts of using the HIV-1 capsid protein CA for achieving in vitro the self-assembly of cone-shaped nanoparticles that contain CA hexamers and pentamers, similar to authentic viral capsids, had typically yielded hexamer-only tubular particles. We hypothesized that a reduction in the stability of a transient major assembly intermediate, a trimer of CA dimers (ToD), will increase the propensity of CA to assemble in vitro into cone-shaped particles instead of tubes. Certain amino acid substitutions at CA-CA interfaces strongly favored in vitro the assembly of cone-shaped nanoparticles that resembled authentic HIV-1 capsids. All-atom MD simulations indicated that ToDs formed by CA mutants with increased propensity for assembly into cone-shaped particles are destabilized relative to ToDs formed by wt CA or by another mutant that assembles into tubes. The results also indicated that ToD destabilization is mediated by conformational distortion of different CA-CA interfaces, which removes some interprotein interactions within the ToD. A model is proposed to rationalize the linkage between reduced ToD stability and increased propensity for the formation of CA pentamers during particle growth in vitro, favoring the assembly of cone-shaped HIV-1 capsid-like nanoparticles.
Collapse
Affiliation(s)
- Judith Escrig
- Virus Engineering Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Santos Domínguez-Zotes
- Virus Engineering Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alejandro Valbuena
- Virus Engineering Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mauricio G Mateu
- Virus Engineering Group, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus of the Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Sha H, Zhu F. Hexagonal Lattices of HIV Capsid Proteins Explored by Simulations Based on a Thermodynamically Consistent Model. J Phys Chem B 2024; 128:960-972. [PMID: 38251836 DOI: 10.1021/acs.jpcb.3c06881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
HIV capsid proteins (CAs) may self-assemble into a variety of shapes under in vivo and in vitro conditions. Here, we employed simulations based on a residue-level coarse-grained (CG) model with full conformational flexibility to investigate hexagonal lattices, which are the underlying structural pattern for CA aggregations. Facilitated by enhanced sampling simulations to rigorously calculate CA dimerization and polymerization affinities, we calibrated our model to reproduce the experimentally measured affinities. Using the calibrated model, we performed unbiased simulations on several large systems consisting of 1512 CA subunits, allowing reversible binding and unbinding of the CAs in a thermodynamically consistent manner. In one simulation, a preassembled hexagonal CA sheet developed spontaneous curvatures reminiscent of those observed in experiments, and the edges of the sheet exhibited local curvatures larger than those of the interior. In other simulations starting with randomly distributed CAs at different concentrations, existing CA assemblies grew by binding free capsomeres to the edges and by merging with other assemblies. At high CA concentrations, rapid establishment of predominant aggregates was followed by much slower adjustments toward more regular hexagonal lattices, with increasing numbers of intact CA hexamers and pentamers being formed. Our approach of adapting a general CG model to specific systems by using experimental binding data represents a practical and effective strategy for simulating and elucidating intricate protein aggregations.
Collapse
Affiliation(s)
- Hao Sha
- Department of Physics, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Fangqiang Zhu
- Department of Physics, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Lei X, Gonçalves-Carneiro D, Zang TM, Bieniasz PD. Initiation of HIV-1 Gag lattice assembly is required for recognition of the viral genome packaging signal. eLife 2023; 12:e83548. [PMID: 36688533 PMCID: PMC9908077 DOI: 10.7554/elife.83548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The encapsidation of HIV-1 gRNA into virions is enabled by the binding of the nucleocapsid (NC) domain of the HIV-1 Gag polyprotein to the structured viral RNA packaging signal (Ψ) at the 5' end of the viral genome. However, the subcellular location and oligomeric status of Gag during the initial Gag-Ψ encounter remain uncertain. Domains other than NC, such as capsid (CA), may therefore indirectly affect RNA recognition. To investigate the contribution of Gag domains to Ψ recognition in a cellular environment, we performed protein-protein crosslinking and protein-RNA crosslinking immunoprecipitation coupled with sequencing (CLIP-seq) experiments. We demonstrate that NC alone does not bind specifically to Ψ in living cells, whereas full-length Gag and a CANC subdomain bind to Ψ with high specificity. Perturbation of the Ψ RNA structure or NC zinc fingers affected CANC:Ψ binding specificity. Notably, CANC variants with substitutions that disrupt CA:CA dimer, trimer, or hexamer interfaces in the immature Gag lattice also affected RNA binding, and mutants that were unable to assemble a nascent Gag lattice were unable to specifically bind to Ψ. Artificially multimerized NC domains did not specifically bind Ψ. CA variants with substitutions in inositol phosphate coordinating residues that prevent CA hexamerization were also deficient in Ψ binding and second-site revertant mutants that restored CA assembly also restored specific binding to Ψ. Overall, these data indicate that the correct assembly of a nascent immature CA lattice is required for the specific interaction between Gag and Ψ in cells.
Collapse
Affiliation(s)
- Xiao Lei
- Laboratory of Retrovirology, Rockefeller UniversityNew YorkUnited States
| | | | - Trinity M Zang
- Laboratory of Retrovirology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew York, New YorkUnited States
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew York, New YorkUnited States
| |
Collapse
|
4
|
Computational examination on monomeric, dimeric, trimeric structural and vibrational interactions, AIM, Hirshfeld, IGM and oxygenated solvent effect on optical properties for pyridine N-oxide. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Pak A, Gupta M, Yeager M, Voth GA. Inositol Hexakisphosphate (IP6) Accelerates Immature HIV-1 Gag Protein Assembly toward Kinetically Trapped Morphologies. J Am Chem Soc 2022; 144:10417-10428. [PMID: 35666943 PMCID: PMC9204763 DOI: 10.1021/jacs.2c02568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During the late stages of the HIV-1 lifecycle, immature virions are produced by the concerted activity of Gag polyproteins, primarily mediated by the capsid (CA) and spacer peptide 1 (SP1) domains, which assemble into a spherical lattice, package viral genomic RNA, and deform the plasma membrane. Recently, inositol hexakisphosphate (IP6) has been identified as an essential assembly cofactor that efficiently produces both immature virions in vivo and immature virus-like particles in vitro. To date, however, several distinct mechanistic roles for IP6 have been proposed on the basis of independent functional, structural, and kinetic studies. In this work, we investigate the molecular influence of IP6 on the structural outcomes and dynamics of CA/SP1 assembly using coarse-grained (CG) molecular dynamics (MD) simulations and free energy calculations. Here, we derive a bottom-up, low-resolution, and implicit-solvent CG model of CA/SP1 and IP6, and simulate their assembly under conditions that emulate both in vitro and in vivo systems. Our analysis identifies IP6 as an assembly accelerant that promotes curvature generation and fissure-like defects throughout the lattice. Our findings suggest that IP6 induces kinetically trapped immature morphologies, which may be physiologically important for later stages of viral morphogenesis and potentially useful for virus-like particle technologies.
Collapse
Affiliation(s)
- Alexander
J. Pak
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Manish Gupta
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mark Yeager
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States,Center
for Membrane Biology, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States, United States,Cardiovascular
Research Center, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States,Department
of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States,E-mail:
| |
Collapse
|
6
|
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 2022; 50:1701-1717. [PMID: 35018437 PMCID: PMC8860611 DOI: 10.1093/nar/gkab1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachna Aneja
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Welbourn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Obiaara B Ukah
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Valbuena A, Maity S, Mateu MG, Roos WH. Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS NANO 2020; 14:8724-8734. [PMID: 32633498 PMCID: PMC7392527 DOI: 10.1021/acsnano.0c03207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Mauricio G. Mateu
- Centro
de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
8
|
Summers BJ, Digianantonio KM, Smaga SS, Huang PT, Zhou K, Gerber EE, Wang W, Xiong Y. Modular HIV-1 Capsid Assemblies Reveal Diverse Host-Capsid Recognition Mechanisms. Cell Host Microbe 2019; 26:203-216.e6. [PMID: 31415753 DOI: 10.1016/j.chom.2019.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/21/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The HIV-1 capsid is an ordered protein shell that houses the viral genome during early infection. Its expansive surface consists of an ordered and interfacing array of capsid protein hexamers and pentamers that are recognized by numerous cellular proteins. Many of these proteins recognize specific, assembled capsid interfaces not present in unassembled capsid subunits. We used protein-engineering tools to capture diverse capsid assembly intermediates. We built a repertoire of capsid assemblies (ranging from two to 42 capsid protein molecules) that recreate the various surfaces in infectious capsids. These assemblies reveal unique capsid-targeting mechanisms for each of the anti-HIV factors, TRIMCyp, MxB, and TRIM5α, linked to inhibition of virus uncoating and nuclear entry, as well as the HIV-1 cofactor FEZ1 that facilitates virus intracellular trafficking. This capsid assembly repertoire enables elucidation of capsid recognition modes by known capsid-interacting factors, identification of new capsid-interacting factors, and potentially, development of capsid-targeting therapeutics.
Collapse
Affiliation(s)
- Brady J Summers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | - Sarah S Smaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Pei-Tzu Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kaifeng Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Eva E Gerber
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wei Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Pak AJ, Grime JMA, Yu A, Voth GA. Off-Pathway Assembly: A Broad-Spectrum Mechanism of Action for Drugs That Undermine Controlled HIV-1 Viral Capsid Formation. J Am Chem Soc 2019; 141:10214-10224. [PMID: 31244184 PMCID: PMC6739737 DOI: 10.1021/jacs.9b01413] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/21/2022]
Abstract
The early and late stages of human immunodeficiency virus (HIV) replication are orchestrated by the capsid (CA) protein, which self-assembles into a conical protein shell during viral maturation. Small molecule drugs known as capsid inhibitors (CIs) impede the highly regulated activity of CA. Intriguingly, a few CIs, such as PF-3450074 (PF74) and GS-CA1, exhibit effects at multiple stages of the viral lifecycle at effective concentrations in the pM to nM regimes, while the majority of CIs target a single stage of the viral lifecycle and are effective at nM to μM concentrations. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanisms that enable CIs to have such curious broad-spectrum activity. Our quantitatively analyzed findings show that CIs can have a profound impact on the hierarchical self-assembly of CA by perturbing populations of small CA oligomers. The self-assembly process is accelerated by the emergence of alternative assembly pathways that favor the rapid incorporation of CA pentamers, and leads to increased structural pleomorphism in mature capsids. Two relevant phenotypes are observed: (1) eccentric capsid formation that may fail to encase the viral genome and (2) rapid disassembly of the capsid, which express at late and early stages of infection, respectively. Finally, our study emphasizes the importance of adopting a dynamical perspective on inhibitory mechanisms and provides a basis for the design of future therapeutics that are effective at low stoichiometric ratios of drug to protein.
Collapse
Affiliation(s)
- Alexander J. Pak
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. A. Grime
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable Inhibitor Binding Pocket. mBio 2019; 10:mBio.02858-18. [PMID: 30862755 PMCID: PMC6414707 DOI: 10.1128/mbio.02858-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Precise assembly and disassembly of the HIV-1 capsid core are key to the success of viral replication. The forces that govern capsid core formation and dissociation involve intricate interactions between pentamers and hexamers formed by HIV-1 CA. We identified one particular interaction between E28 of one CA and K30′ of the adjacent CA that appears more frequently in pentamers than in hexamers and that is important for capsid assembly. Targeting the corresponding site could lead to the development of antivirals which disrupt this interaction and affect capsid assembly. HIV-1 capsid protein (CA) plays critical roles in both early and late stages of the viral replication cycle. Mutagenesis and structural experiments have revealed that capsid core stability significantly affects uncoating and initiation of reverse transcription in host cells. This has led to efforts in developing antivirals targeting CA and its assembly, although none of the currently identified compounds are used in the clinic for treatment of HIV infection. A specific interaction that is primarily present in pentameric interfaces in the HIV-1 capsid core was identified and is reported to be important for CA assembly. This is shown by multidisciplinary characterization of CA site-directed mutants using biochemical analysis of virus-like particle formation, transmission electron microscopy of in vitro assembly, crystallographic studies, and molecular dynamic simulations. The data are consistent with a model where a hydrogen bond between CA residues E28 and K30′ from neighboring N-terminal domains (CANTDs) is important for CA pentamer interactions during core assembly. This pentamer-preferred interaction forms part of an N-terminal domain interface (NDI) pocket that is amenable to antiviral targeting.
Collapse
|
11
|
Jefferys EE, Sansom MSP. Computational Virology: Molecular Simulations of Virus Dynamics and Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:201-233. [DOI: 10.1007/978-3-030-14741-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Hadden JA, Perilla JR, Schlicksup CJ, Venkatakrishnan B, Zlotnick A, Schulten K. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 2018; 7:32478. [PMID: 29708495 PMCID: PMC5927769 DOI: 10.7554/elife.32478] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The hepatitis B virus capsid represents a promising therapeutic target. Experiments suggest the capsid must be flexible to function; however, capsid structure and dynamics have not been thoroughly characterized in the absence of icosahedral symmetry constraints. Here, all-atom molecular dynamics simulations are leveraged to investigate the capsid without symmetry bias, enabling study of capsid flexibility and its implications for biological function and cryo-EM resolution limits. Simulation results confirm flexibility and reveal a propensity for asymmetric distortion. The capsid’s influence on ionic species suggests a mechanism for modulating the display of cellular signals and implicates the capsid’s triangular pores as the location of signal exposure. A theoretical image reconstruction performed using simulated conformations indicates how capsid flexibility may limit the resolution of cryo-EM. Overall, the present work provides functional insight beyond what is accessible to experimental methods and raises important considerations regarding asymmetry in structural studies of icosahedral virus capsids.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | | | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
13
|
Tomasini MD, Johnson DS, Mincer JS, Simon SM. Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly. PLoS One 2018; 13:e0196133. [PMID: 29677208 PMCID: PMC5909904 DOI: 10.1371/journal.pone.0196133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/07/2018] [Indexed: 12/24/2022] Open
Abstract
We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results.
Collapse
Affiliation(s)
- Michael D. Tomasini
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York, United States of America
| | - Daniel S. Johnson
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York, United States of America
- Department of Physics and Astronomy, Hofstra University, 151 Hofstra University, Hempstead, New York, United States of America
| | - Joshua S. Mincer
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York, United States of America
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York, United States of America
| |
Collapse
|
14
|
Liu Y, Zou X. Mathematical modeling and quantitative analysis of HIV-1 Gag trafficking and polymerization. PLoS Comput Biol 2017; 13:e1005733. [PMID: 28922356 PMCID: PMC5619834 DOI: 10.1371/journal.pcbi.1005733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 09/28/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Gag, as the major structural protein of HIV-1, is necessary for the assembly of the HIV-1 sphere shell. An in-depth understanding of its trafficking and polymerization is important for gaining further insights into the mechanisms of HIV-1 replication and the design of antiviral drugs. We developed a mathematical model to simulate two biophysical processes, specifically Gag monomer and dimer transport in the cytoplasm and the polymerization of monomers to form a hexamer underneath the plasma membrane. Using experimental data, an optimization approach was utilized to identify the model parameters, and the identifiability and sensitivity of these parameters were then analyzed. Using our model, we analyzed the weight of the pathways involved in the polymerization reactions and concluded that the predominant pathways for the formation of a hexamer might be the polymerization of two monomers to form a dimer, the polymerization of a dimer and a monomer to form a trimer, and the polymerization of two trimers to form a hexamer. We then deduced that the dimer and trimer intermediates might be crucial in hexamer formation. We also explored four theoretical combined methods for Gag suppression, and hypothesized that the N-terminal glycine residue of the MA domain of Gag might be a promising drug target. This work serves as a guide for future theoretical and experimental efforts aiming to understand HIV-1 Gag trafficking and polymerization, and might help accelerate the efficiency of anti-AIDS drug design. The human immunodeficiency virus (HIV-1) is a retrovirus that causes acquired immunodeficiency syndrome (AIDS), an infectious disease with high annual mortality. Gag protein is the major structural protein of HIV-1 and can self-assemble into the HIV-1 sphere shell. Therefore, an in-depth understanding of Gag protein trafficking and polymerization is important for gaining further insights into the mechanisms of HIV-1 replication and the design of antiviral drugs. Through mathematical modeling, optimization and quantitative analysis, we hypothesized the budding and release time of virus-like particles and revealed that the dimer and trimer intermediates might be crucial in hexamer formation. We also concluded that the predominant pathways in hexamer formation might be the polymerization of two monomers to form a dimer, the polymerization of a dimer and a monomer to form a trimer, and the polymerization of two trimers to form a hexamer. Our analysis also suggested that the N-terminal glycine residue of the MA domain of Gag might be a promising drug target. These results serve as a guide for further theoretical and experimental efforts aiming to understand HIV-1 Gag trafficking and polymerization and could aid anti-AIDS drug design.
Collapse
Affiliation(s)
- Yuewu Liu
- School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, China
- College of Science, Hunan Agricultural University, Hunan, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
15
|
Valbuena A, Mateu MG. Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus-Based Nanocoating. Biophys J 2017; 112:663-673. [PMID: 28256226 DOI: 10.1016/j.bpj.2016.11.3209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023] Open
Abstract
Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biologia Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biologia Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
16
|
Miyazaki Y, Miyake A, Doi N, Koma T, Uchiyama T, Adachi A, Nomaguchi M. Comparison of Biochemical Properties of HIV-1 and HIV-2 Capsid Proteins. Front Microbiol 2017; 8:1082. [PMID: 28659897 PMCID: PMC5469281 DOI: 10.3389/fmicb.2017.01082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023] Open
Abstract
Timely disassembly of viral core composed of self-assembled capsid (CA) in infected host cells is crucial for retroviral replication. Extensive in vitro studies to date on the self-assembly/disassembly mechanism of human immunodeficiency virus type 1 (HIV-1) CA have revealed its core structure and amino acid residues essential for CA–CA intermolecular interaction. However, little is known about in vitro properties of HIV-2 CA. In this study, we comparatively analyzed the polymerization properties of bacterially expressed HIV-1 and HIV-2 CA proteins. Interestingly, a much higher concentration of NaCl was required for HIV-2 CA to self-assemble than that for HIV-1 CA, but once the polymerization started, the reaction proceeded more rapidly than that observed for HIV-1 CA. Analysis of a chimeric protein revealed that N-terminal domain (NTD) is responsible for this unique property of HIV-2 CA. To further study the molecular basis for different in vitro properties of HIV-1 and HIV-2 CA proteins, we determined thermal stabilities of HIV-1 and HIV-2 CA NTD proteins at several NaCl concentrations by fluorescent-based thermal shift assays. Experimental data obtained showed that HIV-2 CA NTD was structurally more stable than HIV-1 CA NTD. Taken together, our results imply that distinct in vitro polymerization abilities of the two CA proteins are related to their structural instability/stability, which is one of the decisive factors for viral replication potential. In addition, our assay system described here may be potentially useful for searching for anti-CA antivirals against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi UniversityYamaguchi, Japan
| | - Noya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Tsuneo Uchiyama
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical SciencesTokushima, Japan
| |
Collapse
|
17
|
Smith GR, Xie L, Schwartz R. Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation. PLoS One 2016; 11:e0156547. [PMID: 27244559 PMCID: PMC4887116 DOI: 10.1371/journal.pone.0156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/16/2016] [Indexed: 12/02/2022] Open
Abstract
The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences.
Collapse
Affiliation(s)
- Gregory R. Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lu Xie
- Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Grime JMA, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 2016; 7:11568. [PMID: 27174390 PMCID: PMC4869257 DOI: 10.1038/ncomms11568] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/07/2016] [Indexed: 12/23/2022] Open
Abstract
The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. Significant morphological changes occur during the conversion of the immature HIV virion into a mature infectious form. Here the authors use coarse-grained molecular dynamics simulations to model HIV-1 capsid self-assembly and disassembly events that suggests several metastable capsid intermediates sensitive to local conditions.
Collapse
Affiliation(s)
- John M A Grime
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - James F Dama
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Center for Membrane Biology, Cardiovascular Research Center, and Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Abstract
The HIV genome materials are encaged by a proteinaceous shell called the capsid, constructed from ∼1000-1500 copies of the capsid proteins. Because its stability and integrity are critical to the normal life cycle and infectivity of the virus, the HIV capsid is a promising antiviral drug target. In this paper, we review the studies shaping our understanding of the structure and dynamics of the capsid proteins and various forms of their assemblies, as well as the assembly mechanism.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| |
Collapse
|
20
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|
21
|
Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M. Ferritin Assembly Revisited: A Time-Resolved Small-Angle X-ray Scattering Study. Biochemistry 2016; 55:287-93. [DOI: 10.1021/acs.biochem.5b01152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daisuke Sato
- Department
of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Hideaki Ohtomo
- Department
of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshiteru Yamada
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5189, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyogo 679-5148, Japan
| | - Atsushi Kurobe
- Department
of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department
of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department
of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
22
|
Bocanegra R, Fuertes MÁ, Rodríguez-Huete A, Neira JL, Mateu MG. Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain. Biophys J 2015; 108:338-49. [PMID: 25606682 DOI: 10.1016/j.bpj.2014.11.3472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - José Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, and Instituto de Biocomputación y Física de los Sistemas Complejos, Zaragoza, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
23
|
Qiao X, Jeon J, Weber J, Zhu F, Chen B. Mechanism of polymorphism and curvature of HIV capsid assemblies probed by 3D simulations with a novel coarse grain model. Biochim Biophys Acta Gen Subj 2015; 1850:2353-67. [PMID: 26318016 DOI: 10.1016/j.bbagen.2015.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND During the maturation process, HIV capsid proteins self-assemble into polymorphic capsids. The strong polymorphism precludes high resolution structural characterization under in vivo conditions. In spite of the determination of structural models for various in vitro assemblies of HIV capsid proteins, the assembly mechanism is still not well-understood. METHODS We report 3D simulations of HIV capsid proteins by a novel coarse grain model that captures the backbone of the rigid segments in the protein accurately. The effects of protein dynamics on assembly are emulated by a static ensemble of subunits in conformations derived from molecular dynamics simulation. RESULTS We show that HIV capsid proteins robustly assemble into hexameric lattices in a range of conditions where trimers of dimeric subunits are the dominant oligomeric intermediates. Variations of hexameric lattice curvatures are observed in simulations with subunits of variable inter-domain orientations mimicking the conformation distribution in solution. Simulations with subunits based on pentameric structural models lead to assembly of sharp curved structures resembling the tips of authentic HIV capsids, along a distinct pathway populated by tetramers and pentamers with the characteristic quasi-equivalency of viral capsids. CONCLUSIONS Our results suggest that the polymorphism assembly is triggered by the inter-domain dynamics of HIV capsid proteins in solution. The assembly of highly curved structures arises from proteins in conformation with a highly specific inter-domain orientation. SIGNIFICANCE Our work proposes a mechanism of HIV capsid assembly based on available structural data, which can be readily verified. Our model can be applied to other large biomolecular assemblies.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jaekyun Jeon
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Jeff Weber
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Fangqiang Zhu
- Department of Physics, Indiana University - Purdue University Indianapolis, IN, USA
| | - Bo Chen
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Fangqiang Zhu
- Department
of Physics, Indiana University - Purdue University, Indianapolis, Indiana 46202, United States
| | - Bo Chen
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
25
|
Holmes K, Shepherd DA, Ashcroft AE, Whelan M, Rowlands DJ, Stonehouse NJ. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers. J Biol Chem 2015; 290:16238-45. [PMID: 25953902 PMCID: PMC4481223 DOI: 10.1074/jbc.m114.622035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/08/2015] [Indexed: 01/17/2023] Open
Abstract
Macromolecular complexes are responsible for many key biological processes. However, in most cases details of the assembly/disassembly of such complexes are unknown at the molecular level, as the low abundance and transient nature of assembly intermediates make analysis challenging. The assembly of virus capsids is an example of such a process. The hepatitis B virus capsid (core) can be composed of either 90 or 120 dimers of coat protein. Previous studies have proposed a trimer of dimers as an important intermediate species in assembly, acting to nucleate further assembly by dimer addition. Using novel genetically-fused coat protein dimers, we have been able to trap higher-order assembly intermediates and to demonstrate for the first time that both dimeric and trimeric complexes are on pathway to virus-like particle (capsid) formation.
Collapse
Affiliation(s)
- Kris Holmes
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Dale A Shepherd
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Alison E Ashcroft
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mike Whelan
- iQur Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, United Kingdom
| | - David J Rowlands
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Nicola J Stonehouse
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
26
|
Lad L, Clancy S, Koditek D, Wong MH, Jin D, Niedziela-Majka A, Papalia GA, Hung M, Yant S, Somoza JR, Hu E, Chou C, Tse W, Halcomb R, Sakowicz R, Pagratis N. Functional label-free assays for characterizing the in vitro mechanism of action of small molecule modulators of capsid assembly. Biochemistry 2015; 54:2240-8. [PMID: 25774576 DOI: 10.1021/acs.biochem.5b00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV capsid protein is an important target for antiviral drug design. High-throughput screening campaigns have identified two classes of compounds (PF74 and BI64) that directly target HIV capsid, resulting in antiviral activity against HIV-1 and HIV-2 laboratory strains. Using recombinant proteins, we developed a suite of label-free assays to mechanistically understand how these compounds modulate capsid activity. PF74 preferentially binds to the preassembled hexameric capsid form and prevents disruption of higher-order capsid structures by stabilizing capsid intersubunit interactions. BI64 binds only the monomeric capsid and locks the protein in the assembly incompetent monomeric form by disrupting capsid intersubunit interactions. We also used these assays to characterize the interaction between capsid and the host protein cleavage and polyadenylation specific factor 6 (CPSF6). Consistent with recently published results, our assays revealed CPSF6 activates capsid polymerization and preferentially binds to the preassembled hexameric capsid form similar to the small molecule compound, PF74. Furthermore, these label-free assays provide a robust method for facilitating the identification of a different class of small molecule modulators of capsid function.
Collapse
Affiliation(s)
- Latesh Lad
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Sheila Clancy
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - David Koditek
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Melanie H Wong
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Debi Jin
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Giuseppe A Papalia
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Magdeleine Hung
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen Yant
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - John R Somoza
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric Hu
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Chienhung Chou
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Winston Tse
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Randall Halcomb
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Roman Sakowicz
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Nikos Pagratis
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
27
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
28
|
Smith GR, Xie L, Lee B, Schwartz R. Applying molecular crowding models to simulations of virus capsid assembly in vitro. Biophys J 2014; 106:310-20. [PMID: 24411263 DOI: 10.1016/j.bpj.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/03/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Virus capsid assembly has been widely studied as a biophysical system, both for its biological and medical significance and as an important model for complex self-assembly processes. No current technology can monitor assembly in detail and what information we have on assembly kinetics comes exclusively from in vitro studies. There are many differences between the intracellular environment and that of an in vitro assembly assay, however, that might be expected to alter assembly pathways. Here, we explore one specific feature characteristic of the intracellular environment and known to have large effects on macromolecular assembly processes: molecular crowding. We combine prior particle simulation methods for estimating crowding effects with coarse-grained stochastic models of capsid assembly, using the crowding models to adjust kinetics of capsid simulations to examine possible effects of crowding on assembly pathways. Simulations suggest a striking difference depending on whether or not a system uses nucleation-limited assembly, with crowding tending to promote off-pathway growth in a nonnucleation-limited model but often enhancing assembly efficiency at high crowding levels even while impeding it at lower crowding levels in a nucleation-limited model. These models may help us understand how complicated assembly systems may have evolved to function with high efficiency and fidelity in the densely crowded environment of the cell.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lu Xie
- Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Perkett MR, Hagan MF. Using Markov state models to study self-assembly. J Chem Phys 2014; 140:214101. [PMID: 24907984 PMCID: PMC4048447 DOI: 10.1063/1.4878494] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/30/2014] [Indexed: 11/14/2022] Open
Abstract
Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
30
|
Hung M, Niedziela-Majka A, Jin D, Wong M, Leavitt S, Brendza KM, Liu X, Sakowicz R. Large-scale functional purification of recombinant HIV-1 capsid. PLoS One 2013; 8:e58035. [PMID: 23472130 PMCID: PMC3589475 DOI: 10.1371/journal.pone.0058035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/27/2013] [Indexed: 01/21/2023] Open
Abstract
During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.
Collapse
Affiliation(s)
- Magdeleine Hung
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Debi Jin
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Melanie Wong
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Stephanie Leavitt
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Xiaohong Liu
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences Inc., Foster City, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Grime JMA, Voth GA. Early stages of the HIV-1 capsid protein lattice formation. Biophys J 2012; 103:1774-83. [PMID: 23083721 DOI: 10.1016/j.bpj.2012.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022] Open
Abstract
The early stages in the formation of the HIV-1 capsid (CA) protein lattice are investigated. The underlying coarse-grained (CG) model is parameterized directly from experimental data and examined under various native contact interaction strengths, CA dimer interfacial configurations, and local surface curvatures. The mechanism of early contiguous mature-style CA p6 lattice formation is explored, and a trimer-of-dimers structure is found to be crucial for CA lattice production. Quasi-equivalent generation of both the pentamer and hexamer components of the HIV-1 viral CA is also demonstrated, and the formation of pentamers is shown to be highly sensitive to local curvature, supporting the view that such inclusions in high-curvature regions allow closure of the viral CA surface. The complicated behavior of CA lattice self-assembly is shown to be reducible to a relatively simple function of the trimer-of-dimers behavior.
Collapse
Affiliation(s)
- John M A Grime
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|