1
|
Torres-Paris C, Song HJ, Engelberger F, Ramírez-Sarmiento CA, Komives EA. The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator. Biochemistry 2024; 63:1434-1444. [PMID: 38780522 PMCID: PMC11154964 DOI: 10.1021/acs.biochem.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the β10- and β11-strand, and the β7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the β-strands of the β-barrels to the loops on the other side of the protease domain.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Harriet J. Song
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Felipe Engelberger
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - César A. Ramírez-Sarmiento
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - Elizabeth A. Komives
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| |
Collapse
|
2
|
El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. Biophys Rev 2022; 14:277-301. [PMID: 35340592 PMCID: PMC8921380 DOI: 10.1007/s12551-021-00921-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
The urokinase plasminogen activator (uPA) is a widely studied anticancer drug target with multiple classes of inhibitors reported to date. Many of these inhibitors contain amidine or guanidine groups, while others lacking these groups show improved oral bioavailability. Most of the X-ray co-crystal structures of small molecule uPA inhibitors show a key salt bridge with the side chain carboxylate of Asp189 in the S1 pocket of uPA. This review summarises the different classes of uPA inhibitors, their binding interactions and experimentally measured inhibitory potencies and highlights species selectivity issues with attention to recently described 6-substituted amiloride and 5‑N,N-(hexamethylene)amiloride (HMA) derivatives.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Benjamin J. Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Michael J. Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| |
Collapse
|
3
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
4
|
Ligand binding modulates the structural dynamics and activity of urokinase-type plasminogen activator: A possible mechanism of plasminogen activation. PLoS One 2018; 13:e0192661. [PMID: 29420634 PMCID: PMC5805342 DOI: 10.1371/journal.pone.0192661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
The catalytic activity of trypsin-like serine proteases is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. A trypsin-like serine protease of particular interest is urokinase-type plasminogen activator (uPA), which is involved in extracellular tissue remodeling processes. Herein, we used hydrogen/deuterium exchange mass spectrometry (HDXMS) to study regulation of activity in the catalytic domain of the murine version of uPA (muPA) by two muPA specific monoclonal antibodies. Using a truncated muPA variant (muPA16-243), containing the catalytic domain only, we show that the two monoclonal antibodies, despite binding to an overlapping epitope in the 37s and 70s loops of muPA16-243, stabilize distinct muPA16-243 conformations. Whereas the inhibitory antibody, mU1 was found to increase the conformational flexibility of muPA16-243, the stimulatory antibody, mU3, decreased muPA16-243 conformational flexibility. Furthermore, the HDXMS data unveil the existence of a pathway connecting the 70s loop to the active site region. Using alanine scanning mutagenesis, we further identify the 70s loop as an important exosite for the activation of the physiological uPA substrate plasminogen. Thus, the data presented here reveal important information about dynamics in uPA by demonstrating how various ligands can modulate uPA activity by mediating long-range conformational changes. Moreover, the results provide a possible mechanism of plasminogen activation.
Collapse
|
5
|
Xu P, Andreasen PA, Huang M. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci 2017; 13:1222-1233. [PMID: 29104489 PMCID: PMC5666521 DOI: 10.7150/ijbs.21597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| |
Collapse
|
6
|
Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Sci Rep 2017; 7:3385. [PMID: 28611361 PMCID: PMC5469797 DOI: 10.1038/s41598-017-03457-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 01/15/2023] Open
Abstract
Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.
Collapse
|
7
|
Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions. J Mol Biol 2015; 427:3110-22. [PMID: 26281711 DOI: 10.1016/j.jmb.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/19/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022]
Abstract
We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy.
Collapse
|
8
|
Kromann-Hansen T, Lund IK, Liu Z, Andreasen PA, Høyer-Hansen G, Sørensen HP. Allosteric inactivation of a trypsin-like serine protease by an antibody binding to the 37- and 70-loops. Biochemistry 2013; 52:7114-26. [PMID: 24079451 DOI: 10.1021/bi400491k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine protease catalytic activity is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. Inhibitory monoclonal antibodies binding to such exosites are potential therapeutics and offer opportunities for elucidating fundamental allosteric mechanisms. The monoclonal antibody mU1 has previously been shown to be able to inhibit the function of murine urokinase-type plasminogen activator in vivo. We have now mapped the epitope of mU1 to the catalytic domain's 37- and 70-loops, situated about 20 Å from the S1 specificity pocket of the active site. Our data suggest that binding of mU1 destabilizes the catalytic domain and results in conformational transition into a state, in which the N-terminal amino group of Ile16 is less efficiently stabilizing the oxyanion hole and in which the active site has a reduced affinity for substrates and inhibitors. Furthermore, we found evidence for functional interactions between residues in uPA's C-terminal catalytic domain and its N-terminal A-chain, as deletion of the A-chain facilitates the mU1-induced conformational distortion. The inactive, distorted state is by several criteria similar to the E* conformation described for other serine proteases. Hence, agents targeting serine protease conformation through binding to exosites in the 37- and 70-loops represent a new class of potential therapeutics.
Collapse
Affiliation(s)
- Tobias Kromann-Hansen
- Danish-Chinese Centre for Proteases and Cancer and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|