1
|
Pose M, Dillon KM, Denicola A, Alvarez B, Matson JB, Möller MN, Cuevasanta E. Fluorescent detection of hydrogen sulfide (H 2S) through the formation of pyrene excimers enhances H 2S quantification in biochemical systems. J Biol Chem 2022; 298:102402. [PMID: 35988644 PMCID: PMC9493391 DOI: 10.1016/j.jbc.2022.102402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen sulfide (H2S) is produced endogenously by several enzymatic pathways and modulates physiological functions in mammals. Quantification of H2S in biochemical systems remains challenging because of the presence of interferents with similar reactivity, particularly thiols. Herein, we present a new quantification method based on the formation of pyrene excimers in solution. We synthesized the probe 2-(maleimido)ethyl 4-pyrenylbutanoate (MEPB) and determined that MEPB reacted with H2S in a two-step reaction to yield the thioether-linked dimer (MEPB)2S, which formed excimers upon excitation, with a broad peak of fluorescence emission centered at 480 nm. In contrast, we found that the products formed with thiols showed peaks at 378 and 398 nm. The difference in emission between the products prevented the interference. Furthermore, we showed that the excimer fluorescence signal yielded a linear response to H2S, with a limit of detection of 54 nM in a fluorometer. Our quantification method with MEPB was successfully applied to follow the reaction of H2S with glutathione disulfide and to quantify the production of H2S from cysteine by Escherichia coli. In conclusion, this method represents an addition to the toolkit of biochemists to quantify H2S specifically and sensitively in biochemical systems.
Collapse
Affiliation(s)
- Manuela Pose
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Kothari S, Bala N, Patel AB, Donovan A, Narayanaswami V. The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183618. [PMID: 33831404 PMCID: PMC8211829 DOI: 10.1016/j.bbamem.2021.183618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Apolipoprotein E (apoE) (299 residues) is a highly helical protein that plays a critical role in cholesterol homeostasis. It comprises a four-helix bundle N-terminal (NT) and a C-terminal (CT) domain that can exist in lipid-free and lipid-associated states. In humans, there are two major apoE isoforms, apoE3 and apoE4, which differ in a single residue in the NT domain, with apoE4 strongly increasing risk of Alzheimer's disease (AD) and cardiovascular diseases (CVD). It has been proposed that the CT domain initiates rapid lipid binding, followed by a slower NT domain helix bundle opening and lipid binding to yield discoidal reconstituted high density lipoprotein (rHDL). However, the contribution of the NT domain on the CT domain organization in HDL remains poorly understood. To understand this, we employed Cys-specific cross-linking and spatially-sensitive fluorophores in the NT and CT domains of apoE3 and apoE4, and in isolated CT domain. We noted that the helices in isolated CT domain are oriented parallel to those in the neighboring molecule in rHDL, whereas full length apoE3 and apoE4 adopt either an anti-parallel or hairpin-like organization. It appears that the bulky NT domain determines the spatial organization of its CT domain in rHDL, a finding that has significance for apoE4, which is more susceptible to proteolytic cleavage in AD brains, showing increased accumulation of neurotoxic NT and CT fragments. We envisage that the structural organization of HDL apoE would have profound functional consequences in its ability to regulate cholesterol homeostasis in AD and CVD.
Collapse
Affiliation(s)
- S Kothari
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Bala
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - A B Patel
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - A Donovan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - V Narayanaswami
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., California State University, Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
3
|
Prakashchand DD, Mondal J. Conformational Reorganization of Apolipoprotein E Triggered by Phospholipid Assembly. J Phys Chem B 2021; 125:5285-5295. [PMID: 33979165 DOI: 10.1021/acs.jpcb.1c03011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein E (apoE), a major determinant protein for lipid metabolism, actively participates in lipid transport in the central nervous system via high-affinity interaction with the low-density lipoprotein receptor (LDLR). Prior evidences indicate that the phospholipids first need to assemble around apoE before the protein can recognize its receptor. However, despite multiple attempts via spectroscopic and biochemical investigations, it is unclear what are the impacts of lipid assembly on the globular structure of apoE. Here, using a combination of all-atom and coarse-grained molecular dynamics simulations, we demonstrate that an otherwise compact tertiary fold of monomeric apoE3 spontaneously unwraps in an aqueous phospholipid solution in two distinct stages. Interestingly, these structural reorganizations are triggered by an initial localized binding of lipid molecules to the C-terminal domain of the protein, which induce a rapid separation of the C-terminal domain of apoE3 from the rest of its tertiary fold. This is followed by a slow lipid-induced interhelix separation event within the N-terminal domain of the protein, as seen in an extensively long coarse-grained simulation. Remarkably, the resultant complex takes the shape of an "open conformation" of the lipid-stabilized unwrapped protein, which intriguingly coincides with an earlier proposal by a small-angle X-ray scattering (SAXS) experiment. The lipid-binding activity and the lipid-induced protein conformation are found to be robust across a monomeric mutant and wild-type sequence of apoE3. The "open" complex derived in coarse-grained simulation retains its structural morphology after reverse-mapping to the all-atom representation. Collectively, the investigation puts forward a plausible structure of currently elusive conformationally activated state of apoE3, which is primed for recognition by the lipoprotein receptor and can be exploited for eventual lipid transport.
Collapse
Affiliation(s)
- Dube Dheeraj Prakashchand
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
4
|
Peng Y, Kelle R, Little C, Michonova E, Kornev KG, Alexov E. pH-Dependent Interactions of Apolipophorin-III with a Lipid Disk. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416520420041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apolipophorin-III (ApoLp-III) is required for stabilization of molecular shuttles of lipid fuels in insects and is found to contribute to the insect immune reaction. Rearrangement of its five [Formula: see text]-helices enables ApoLp-III to reversibly associate with lipids. We investigate computationally the conformational changes of ApoLp-III and the pH-dependence of the binding free energy of ApoLp-III association with a lipid disk. A dominant binding mode along with several minor, low population, modes of the ApoLp-III binding to a lipid disk was identified. The pH-dependence of the binding energy for ApoLp-III with the lipid disk is predicted to be significant, with the pH-optimum at pH[Formula: see text]. The calculations suggest that there are no direct interactions between the lipid head groups and titratable residues of ApoLp-III. In the physiological pH range from 6.0 to 9.0, the binding free energy of ApoLp-III with the lipid disk decreases significantly with respect to its optimal value at pH 8.0 (at pH[Formula: see text], it is 1.02[Formula: see text]kcal/mol and at pH[Formula: see text] it is 0.23[Formula: see text]kcal/mol less favorable than at the optimal pH[Formula: see text]), indicating that the pH is an important regulator of ApoLp-III lipid disk association.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
| | - Rudolfs Kelle
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Erskine College, Due West, SC 29639, USA
| | - Chandler Little
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Erskine College, Due West, SC 29639, USA
| | | | - Kostantin G. Kornev
- Department of Material Sciences and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics and Astronomy, College of Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Material Sciences and Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Xu J, Tojo S, Fujitsuka M, Kawai K. Dynamics of Single‐Stranded RNA Looping Probed and Photoregulated by Sulfonated Pyrene. ChemistrySelect 2020. [DOI: 10.1002/slct.202002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jie Xu
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
6
|
Xu J, Miyamoto S, Tojo S, Kawai K. Sulfonated Pyrene as a Photoregulator for Single‐Stranded DNA Looping. Chemistry 2020; 26:5075-5084. [DOI: 10.1002/chem.202000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Xu
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
7
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
8
|
Zhang T, Taylor SD, Palmer M, Duhamel J. Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophys J 2017; 111:1267-1277. [PMID: 27653485 DOI: 10.1016/j.bpj.2016.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022] Open
Abstract
A54145 is a lipopeptide antibiotic related to daptomycin that permeabilizes bacterial cell membranes. Its action requires both calcium and phosphatidylglycerol in the target membrane, and it is accompanied by the formation of membrane-associated oligomers. We here probed the interaction of A54145 with model membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, using the steady-state and time-resolved fluorescence of a pyrene-labeled derivative (Py-A54145). In solution, the labeled peptide was found to exist as a monomer. Its membrane interaction occurred in two stages that could be clearly distinguished by varying the calcium concentration. In the first stage, which was observed between 0.15 and 1 mM calcium, Py-A54145 bound to the membrane, as indicated by a strong increase in pyrene monomer emission. At the same calcium concentration, excimer emission increased also, suggesting that Py-A54145 had oligomerized. A global analysis of the time-resolved pyrene monomer and excimer fluorescence confirmed that Py-A54145 forms oligomers quantitatively and concomitantly with membrane binding. When calcium was raised beyond 1 mM, a distinct second transition was observed that may correspond to a doubling of the number of oligomer subunits. The collective findings confirm and extend our understanding of the action mode of A54145 and daptomycin.
Collapse
Affiliation(s)
- TianHua Zhang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jean Duhamel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
9
|
Frieden C, Wang H, Ho CMW. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. Proc Natl Acad Sci U S A 2017; 114:6292-6297. [PMID: 28559318 PMCID: PMC5474821 DOI: 10.1073/pnas.1705080114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relative to the apolipoprotein E (apoE) E3 allele of the APOE gene, apoE4 strongly increases the risk for the development of late-onset Alzheimer's disease. However, apoE4 differs from apoE3 by only a single amino acid at position 112, which is arginine in apoE4 and cysteine in apoE3. It remains unclear why apoE3 and apoE4 are functionally different. Described here is a proposal for understanding the functional differences between these two isoforms with respect to lipid binding. A mechanism is proposed that is based on the full-length monomeric structure of the protein, on hydrogen-deuterium exchange mass spectrometry data, and on the role of intrinsically disordered regions to control protein motions. It is proposed that lipid binds between the N-terminal and C-terminal domains and that separation of the two domains, along with the presence of intrinsically disordered regions, controls this process. The mechanism explains why apoE3 differs from apoE4 with respect to different lipid-binding specificities, why lipid increases the binding of apoE to its receptor, and why specific residues are conserved.
Collapse
Affiliation(s)
- Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Hanliu Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Chris M W Ho
- Drug Design Methodologies LLC, St. Louis, MO 63103
| |
Collapse
|
10
|
Farhangi S, Casier R, Li L, Thoma JL, Duhamel J. Characterization of the Long-Range Internal Dynamics of Pyrene-Labeled Macromolecules by Pyrene Excimer Fluorescence. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shiva Farhangi
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Remi Casier
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lu Li
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Janine Lydia Thoma
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Affiliation(s)
- Shiva Farhangi
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research,
Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
12
|
Mondal T, Wang H, DeKoster GT, Baban B, Gross ML, Frieden C. ApoE: In Vitro Studies of a Small Molecule Effector. Biochemistry 2016; 55:2613-21. [PMID: 27065061 DOI: 10.1021/acs.biochem.6b00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Apolipoprotein E4 (apoE4), one of three isoforms of apoE, is the major risk factor for developing late onset Alzheimer's disease. The only differences among these isoforms (apoE2, apoE3, and apoE4) are single amino acid changes. Yet these proteins are functionally very different. One approach to ameliorating the effect of apoE4 with respect to Alzheimer's disease would be to find small molecular weight compounds that affect the behavior of apoE4. Few studies of this approach have been carried out in part because there was no complete structure of any full-length apoE isoform until 2011. Here, we focus on one small molecular weight compound, EZ-482, and explore the effects of its binding to apoE. Using hydrogen-deuterium exchange, we determined that EZ-482 binds to the C-terminal domains of both apoE3 and apoE4. The binding to apoE4, however, is accompanied by a unique N-terminal allosteric effect. Using fluorescence methods, we determined an apparent dissociation constant of approximately 8 μM. Although EZ-482 binds to the C-terminal domain, it blocks heparin binding to the N-terminal domain. The residues of apoE that bind heparin are the same as those involved in apoE binding to LDL and LRP-1 receptors. The methods and the data presented here may serve as a template for future studies using small molecular weight compounds to modulate the behavior of apoE.
Collapse
Affiliation(s)
- Tridib Mondal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Hanliu Wang
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Berevan Baban
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Mizuguchi C, Ogata F, Mikawa S, Tsuji K, Baba T, Shigenaga A, Shimanouchi T, Okuhira K, Otaka A, Saito H. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. J Biol Chem 2015; 290:20947-20959. [PMID: 26175149 DOI: 10.1074/jbc.m115.664227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/01/2023] Open
Abstract
The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Fuka Ogata
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Shiho Mikawa
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Teruhiko Baba
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Keiichiro Okuhira
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Saito
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
14
|
Mizuguchi C, Hata M, Dhanasekaran P, Nickel M, Okuhira K, Phillips MC, Lund-Katz S, Saito H. Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1716-24. [PMID: 25281910 DOI: 10.1016/j.bbalip.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Abstract
Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site- directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indi- cating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.
Collapse
|
15
|
Lai G, Forti KM, Renthal R. Kinetics of lipid mixing between bicelles and nanolipoprotein particles. Biophys Chem 2015; 197:47-52. [PMID: 25660392 DOI: 10.1016/j.bpc.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 11/19/2022]
Abstract
Nanolipoprotein particles (NLPs), also known as nanodiscs, are lipid bilayers bounded by apolipoprotein. Lipids and membrane proteins cannot exchange between NLPs. However, the addition of bicelles opens NLPs and transfers their contents to bicelles, which freely exchange lipids and proteins. NLP-bicelle interactions may provide a new method for studying membrane protein oligomerization. The interaction mechanism was investigated by stopped flow fluorometry. NLPs with lipids having fluorescence resonance energy transfer (FRET) donors and acceptors were mixed with a 200-fold molar excess of dihexanoyl phosphatidylcholine (DHPC)/dimyristoyl phosphatidylcholine (DMPC) bicelles, and the rate of lipid transfer was monitored by the disappearance of FRET. Near or below the DMPC phase transition temperature, the kinetics were sigmoidal. Free DHPC and apolipoprotein were ruled out as participants in autocatalytic mechanisms. The NLP-bicelle mixing rate showed a strong temperature dependence (activation energy = 28 kcal/mol). Models are proposed for the NLP-bicelle mixing, including one involving fusion pores.
Collapse
Affiliation(s)
- Ginny Lai
- Biology Department, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | - Robert Renthal
- Biology Department, University of Texas at San Antonio, San Antonio, TX 78249, USA; Biochemistry Department, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Nguyen D, Dhanasekaran P, Nickel M, Mizuguchi C, Watanabe M, Saito H, Phillips MC, Lund-Katz S. Influence of domain stability on the properties of human apolipoprotein E3 and E4 and mouse apolipoprotein E. Biochemistry 2014; 53:4025-33. [PMID: 24871385 PMCID: PMC4071092 DOI: 10.1021/bi500340z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The human apolipoprotein (apo) E4
isoform, which differs from wild-type
apoE3 by the single amino acid substitution C112R, is associated with
elevated risk of cardiovascular and Alzheimer’s diseases, but
the molecular basis for this variation between isoforms is not understood.
Human apoE is a two-domain protein comprising an N-terminal helix
bundle and a separately folded C-terminal region. Here, we examine
the concept that the ability of the protein to bind to lipid surfaces
is influenced by the stability (or readiness to unfold) of these domains.
The lipid-free structures and abilities to bind to lipid and lipoprotein
particles of a series of human and mouse apoE variants with varying
domain stabilities and domain–domain interactions are compared.
As assessed by urea denaturation, the two domains are more unstable
in apoE4 than in apoE3. To distinguish the contributions of the destabilization
of each domain to the greater lipid-binding ability of apoE4, the
properties of the apoE4 R61T and E255A variants, which have the same
helix bundle stabilities but altered C-terminal domain stabilities,
are compared. In these cases, the effects on lipid-binding properties
are relatively minor, indicating that the destabilization of the helix
bundle domain is primarily responsible for the enhanced lipid-binding
ability of apoE4. Unlike human apoE, mouse apoE behaves essentially
as a single domain, and its lipid-binding characteristics are more
similar to those of apoE4. Together, the results show that the overall
stability of the entire apoE molecule exerts a major influence on
its lipid- and lipoprotein-binding properties.
Collapse
|
17
|
Liu J, Kong N, Li A, Luo X, Cui L, Wang R, Feng S. Graphene bridged enzyme electrodes for glucose biosensing application. Analyst 2013; 138:2567-75. [PMID: 23486775 DOI: 10.1039/c3an36929c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of glucose oxidase (GOx) enzyme electrodes with controlled alternate enzyme and graphene layers is described. GOx was first modified with pyrene functionalities in order to be self-assembled onto a graphene basal plane via non-covalent π-π stacking interaction. Fluorescence spectroscopy analysis revealed that about 5.4 pyrene functional groups were attached to each GOx and the pyrene functionalized GOx retained more than 76% of the biocatalytical activity compared with the native enzyme. Via alternate layer-by-layer self-assembly of graphene and pyrene functionalized GOx, mono- and multi-layered enzyme electrodes with controlled biocatalytical activity can be easily fabricated. The biocatalytical activity of the as-prepared enzyme electrodes increased with increasing graphene and GOx layers and increased insignificantly when the layers reached four. Such multi-layered enzyme electrodes with controlled nanostructure exhibited reliable application in human serum samples analysis with high detection sensitivity, good stability and repeatability. A broad linear detection limit of 0.2 to 40 mM was obtained.
Collapse
Affiliation(s)
- Jingquan Liu
- College of Chemistry, Chemical and Environmental Engineering, Laboratory of Fiber Materials and Modern Textile, Qingdao University, Qingdao 266071, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Li H, Dhanasekaran P, Alexander ET, Rader DJ, Phillips MC, Lund-Katz S. Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein-cholesterol levels. Arterioscler Thromb Vasc Biol 2013; 33:687-93. [PMID: 23413428 DOI: 10.1161/atvbaha.112.301193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The goal of this study was to understand the molecular basis of how the amino acid substitution C112R that distinguishes human apolipoprotein (apo) E4 from apoE3 causes the more proatherogenic plasma lipoprotein-cholesterol distribution that is known to be associated with the expression of apoE4. APPROACH AND RESULTS Adeno-associated viruses, serotype 8 (AAV8), were used to express different levels of human apoE3, apoE4, and several C-terminal truncation and internal deletion variants in C57BL/6 apoE-null mice, which exhibit marked dysbetalipoproteinemia. Plasma obtained from these mice 2 weeks after the AAV8 treatment was analyzed for cholesterol and triglyceride levels, as well as for the distribution of cholesterol between the lipoprotein fractions. Hepatic expression of apoE3 and apoE4 induced similar dose-dependent decreases in plasma cholesterol and triglyceride to the levels seen in control C57BL/6 mice. Importantly, at the same reduction in plasma total cholesterol, expression of apoE4 gave rise to higher very low-density lipoprotein-cholesterol (VLDL-C) and lower high-density lipoprotein-cholesterol levels relative to the apoE3 situation. The C-terminal domain and residues 261 to 272 in particular play a critical role, because deleting them markedly affected the performance of both isoforms. CONCLUSIONS ApoE4 possesses enhanced lipid and VLDL-binding ability relative to apoE3, which gives rise to impaired lipolytic processing of VLDL in apoE4-expressing mice. These effects reduce VLDL remnant clearance from the plasma compartment and decrease the amount of VLDL surface components available for incorporation into the high-density lipoprotein pool, accounting for the more proatherogenic lipoprotein profile (higher VLDL-C/high-density lipoprotein-cholesterol ratio) occurring in apoE4-expressing animals compared with their apoE3 counterparts.
Collapse
Affiliation(s)
- Hui Li
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Phillips MC. New insights into the determination of HDL structure by apolipoproteins: Thematic review series: high density lipoprotein structure, function, and metabolism. J Lipid Res 2012; 54:2034-2048. [PMID: 23230082 DOI: 10.1194/jlr.r034025] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein (apo)A-I is the principal protein component of HDL, and because of its conformational adaptability, it can stabilize all HDL subclasses. The amphipathic α-helix is the structural motif that enables apoA-I to achieve this functionality. In the lipid-free state, the helical segments unfold and refold in seconds and are located in the N-terminal two thirds of the molecule where they are loosely packed as a dynamic, four-helix bundle. The C-terminal third of the protein forms an intrinsically disordered domain that mediates initial binding to phospholipid surfaces, which occurs with coupled α-helix formation. The lipid affinity of apoA-I confers detergent-like properties; it can solubilize vesicular phospholipids to create discoidal HDL particles with diameters of approximately 10 nm. Such particles contain a segment of phospholipid bilayer and are stabilized by two apoA-I molecules that are arranged in an anti-parallel, double-belt conformation around the edge of the disc, shielding the hydrophobic phospholipid acyl chains from exposure to water. The apoA-I molecules are in a highly dynamic state, and they stabilize discoidal particles of different sizes by certain segments forming loops that detach reversibly from the particle surface. The flexible apoA-I molecule adapts to the surface of spherical HDL particles by bending and forming a stabilizing trefoil scaffold structure. The above characteristics of apoA-I enable it to partner with ABCA1 in mediating efflux of cellular phospholipid and cholesterol and formation of a heterogeneous population of nascent HDL particles. Novel insights into the structure-function relationships of apoA-I should help reveal mechanisms by which HDL subclass distribution can be manipulated.
Collapse
Affiliation(s)
- Michael C Phillips
- Lipid Research Group, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|