1
|
Montoya A, Wisniewski M, Goodsell JL, Angerhofer A. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Molecules 2024; 29:4414. [PMID: 39339409 PMCID: PMC11433825 DOI: 10.3390/molecules29184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
Collapse
Affiliation(s)
| | | | | | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
McLeod MJ, Barwell SAE, Holyoak T, Thorne RE. A structural perspective on the temperature-dependent activity of enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609221. [PMID: 39229032 PMCID: PMC11370597 DOI: 10.1101/2024.08.23.609221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzymes are biomolecular catalysts whose activity varies with temperature. Unlike for small-molecule catalysts, the structural ensembles of enzymes can vary substantially with temperature, and it is in general unclear how this modulates the temperature dependence of activity. Here multi-temperature X-ray crystallography was used to record structural changes from -20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes underlying the kinetic constantk c a t . Both inhibitors, substrates and catalytically relevant loop motifs increasingly populate catalytically competent conformations as temperature increases. These changes occur even in temperature ranges where kinetic measurements show roughly linear Arrhenius/Eyring behavior where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy / enthalpy values vary with temperature, e.g., due to structural changes, and that the underlying thermodynamic parameters can be far from values derived from Arrhenius/Eyring model fits. Our results indicate a critical role for temperature-dependent atomic-resolution structural data in interpreting temperature-dependent kinetic data from enzymatic systems.
Collapse
Affiliation(s)
| | | | - Todd Holyoak
- University of Waterloo, Waterloo Ontario, Canada. Department of Biology
| | | |
Collapse
|
3
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Liu Y, Li L, Yang Z, Liao LX, Yao XJ, Tu PF, Zeng KW. Allosteric regulation of the lid domain of PCK2 as a novel strategy for modulating mitochondrial dynamics. Chem Commun (Camb) 2023; 59:13514-13517. [PMID: 37885376 DOI: 10.1039/d3cc02781c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Aberrant PCK2 overexpression has been linked to an unfavorable prognosis and shorter survival, particularly in hepatocellular carcinoma (HCC). Thus, the inactivation of PCK2 provides a promising strategy for HCC treatment. In this study, we used a chemical genetic strategy to identify a natural-derived small-molecule cucurbitacin B (CuB) as a selective PCK2 inhibitor. CuB covalently bound to PCK2 at a unique Cys63 site, blocking the Ω-loop lid domain formation via a previously undisclosed allosteric mechanism. Additionally, targeted lipidomics analysis also revealed that CuB destroyed mitochondrial membrane integrity, leading to the disruption of mitochondrial fusion-fission dynamics. Taken together, this study highlights the discovery of a small-molecule CuB, which reprograms lipid metabolism for controlling mitochondrial dynamics via targeting PCK2 in cancer cells.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Barwell S, Duman R, Wagner A, Holyoak T. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions. Biochem Biophys Res Commun 2022; 637:218-223. [DOI: 10.1016/j.bbrc.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
7
|
Clinger JA, Moreau DW, McLeod MJ, Holyoak T, Thorne RE. Millisecond mix-and-quench crystallography (MMQX) enables time-resolved studies of PEPCK with remote data collection. IUCRJ 2021; 8:784-792. [PMID: 34584739 PMCID: PMC8420759 DOI: 10.1107/s2052252521007053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/08/2021] [Indexed: 05/28/2023]
Abstract
Time-resolved crystallography of biomolecules in action has advanced rapidly as methods for serial crystallography have improved, but the large number of crystals and the complex experimental infrastructure that are required remain serious obstacles to its widespread application. Here, millisecond mix-and-quench crystallography (MMQX) has been developed, which yields millisecond time-resolved data using far fewer crystals and routine remote synchrotron data collection. To demonstrate the capabilities of MMQX, the conversion of oxaloacetic acid to phosphoenolpyruvate by phosphoenolpyruvate carboxy-kinase (PEPCK) is observed with a time resolution of 40 ms. By lowering the entry barrier to time-resolved crystallography, MMQX should enable a broad expansion in structural studies of protein dynamics.
Collapse
Affiliation(s)
- Jonathan A. Clinger
- Physics Department, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA
| | - David W. Moreau
- Physics Department, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA
| | - Matthew J. McLeod
- Physics Department, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert E. Thorne
- Physics Department, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021; 519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.
Collapse
Affiliation(s)
- Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangfei Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Widespread protein lysine acetylation in gut microbiome and its alterations in patients with Crohn's disease. Nat Commun 2020; 11:4120. [PMID: 32807798 PMCID: PMC7431864 DOI: 10.1038/s41467-020-17916-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lysine acetylation (Kac), an abundant post-translational modification (PTM) in prokaryotes, regulates various microbial metabolic pathways. However, no studies have examined protein Kac at the microbiome level, and it remains unknown whether Kac level is altered in patient microbiomes. Herein, we use a peptide immuno-affinity enrichment strategy coupled with mass spectrometry to characterize protein Kac in the microbiome, which successfully identifies 35,200 Kac peptides from microbial or human proteins in gut microbiome samples. We demonstrate that Kac is widely distributed in gut microbial metabolic pathways, including anaerobic fermentation to generate short-chain fatty acids. Applying to the analyses of microbiomes of patients with Crohn’s disease identifies 52 host and 136 microbial protein Kac sites that are differentially abundant in disease versus controls. This microbiome-wide acetylomic approach aids in advancing functional microbiome research. Intestinal microbiota is increasingly reported to influence human health, but little is known on how its functions are regulated. Here the authors characterize microbiome protein acetylation and demonstrate its potential roles in shaping gut microbial functions and the onset of Crohn’s disease.
Collapse
|
10
|
Żądło-Dobrowolska A, Hammerer L, Pavkov-Keller T, Gruber K, Kroutil W. Rational Engineered C-Acyltransferase Transforms Sterically Demanding Acyl Donors. ACS Catal 2020; 10:1094-1101. [PMID: 32030315 PMCID: PMC6996649 DOI: 10.1021/acscatal.9b04617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/12/2019] [Indexed: 02/08/2023]
Abstract
The biocatalytic Friedel-Crafts acylation has been identified recently for the acetylation of resorcinol using activated acetic acid esters for the synthesis of acetophenone derivatives catalyzed by an acyltransferase. Because the wild-type enzyme is limited to acetic and propionic derivatives as the substrate, variants were designed to extend the substrate scope of this enzyme. By rational protein engineering, the key residue in the active site was identified which can be replaced to allow binding of bulkier acyl moieties. The single-point variant F148V enabled the transformation of previously inaccessible medium chain length alkyl and alkoxyalkyl carboxylic esters as donor substrates with up to 99% conversion and up to >99% isolated yield.
Collapse
Affiliation(s)
- Anna Żądło-Dobrowolska
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Lucas Hammerer
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
11
|
Mcleod MJ, Krismanich AP, Assoud A, Dmitrienko GI, Holyoak T. Characterization of 3-[(Carboxymethyl)thio]picolinic Acid: A Novel Inhibitor of Phosphoenolpyruvate Carboxykinase. Biochemistry 2019; 58:3918-3926. [PMID: 31461616 DOI: 10.1021/acs.biochem.9b00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) has traditionally been characterized for its role in the first committed step of gluconeogenesis. The current understanding of PEPCK's metabolic role has recently expanded to include it serving as a general mediator of tricarboxylic acid cycle flux. Selective inhibition of PEPCK in vivo and in vitro has been achieved with 3-mercaptopicolinic acid (MPA) (Ki ∼ 8 μM), whose mechanism of inhibition has been elucidated only recently. On the basis of crystallographic and mechanistic data of various inhibitors of PEPCK, MPA was used as the initial chemical scaffold to create a potentially more selective inhibitor, 3-[(carboxymethyl)thio]picolinic acid (CMP), which has been characterized both structurally and kinetically here. These data demonstrate that CMP acts as a competitive inhibitor at the OAA/PEP binding site, with its picolinic acid moiety coordinating directly with the M1 metal in the active site (Ki ∼ 29-55 μM). The extended carboxy tail occupies a secondary binding cleft that was previously shown could be occupied by sulfoacetate (Ki ∼ 82 μM) and for the first time demonstrates the simultaneous occupation of both OAA/PEP subsites by a single molecular structure. By occupying both the OAA/PEP binding subsites simultaneously, CMP and similar molecules can potentially be used as a starting point for the creation of additional selective inhibitors of PEPCK.
Collapse
|
12
|
Baptista LPR, Sinatti VV, Da Silva JH, Dardenne LE, Guimarães AC. Computational evaluation of natural compounds as potential inhibitors of human PEPCK-M: an alternative for lung cancer therapy. Adv Appl Bioinform Chem 2019; 12:15-32. [PMID: 31496750 PMCID: PMC6689533 DOI: 10.2147/aabc.s197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide. Among its subtypes, non-small cell lung cancer (NSCLC) is the most common. Recently, the mitochondrial isoform of the enzyme phosphoenolpyruvate carboxykinase (HsPEPCK-M) was identified as responsible for the metabolic adaptation in the NSCLC allowing tumor growth even under conditions of glucose deficiency. This adaptation is possible due to the role of HsPEPCK-M in gluconeogenesis, converting the oxaloacetate to phosphoenolpyruvate in the presence of GTP, which plays an important role in the energetic support of these tumors. In this context, it was shown that the inhibition or knockdown of this enzyme was able to induce apoptosis in NSCLC under low glucose conditions. Purpose In this study, novel putative inhibitors were proposed for the human PEPCK-M (HsPEPCK-M) based on a computer-aided approach. Methods Comparative modeling was used to generate 3D models for HsPEPCK-M. Subsequently, the set of natural compounds of the ZINC database was screened against HsPEPCK-M models using structure-based pharmacophore modeling and molecular docking approaches. The selected compounds were evaluated according to its chemical diversity and clustered based on chemical similarity. Results The pharmacophore hypotheses, generated based on known PEPCK inhibitors, were able to select 7,124 candidate compounds. These compounds were submitted to molecular docking studies using three conformations of HsPEPCK-M generated by comparative modeling. The aim was to select compounds with high predicted binding affinity for at least one of the conformations of HsPEPCK-M. After molecular docking, 612 molecules were selected as potential inhibitors of HsPEPCK-M. These compounds were clustered according to their structural similarity. Chemical profiling and binding mode analyses of these compounds allowed the proposal of four promising compounds: ZINC01656421, ZINC895296, ZINC00895535 and ZINC02571340. Conclusion These compounds may be considered as potential candidates for HsPEPCK-M inhibitors and may also be used as lead compounds for the development of novel HsPEPCK-M inhibitors.
Collapse
Affiliation(s)
- Luiz Phillippe R Baptista
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Vanessa Vc Sinatti
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Joao Hm Da Silva
- Group for Computational Modelling, Fiocruz, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - Laurent Emmanuel Dardenne
- Group for Molecular Modelling of Biologic Systems, National Laboratory of Scientific Computing, Petrópolis, RJ, Brazil
| | - Ana Carolina Guimarães
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, López-Buesa P, Carrodeguas JA, Denu JM. Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 2018; 71:718-732.e9. [PMID: 30193097 PMCID: PMC6188669 DOI: 10.1016/j.molcel.2018.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3β-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Eric A Armstrong
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Lindsay E Wu
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Genetics, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
14
|
Genistein: is the multifarious botanical a natural anthelmintic too? J Parasit Dis 2018; 42:151-161. [PMID: 29844617 DOI: 10.1007/s12639-018-0984-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/26/2018] [Indexed: 01/03/2023] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is naturally present in plants of the soy family and is known to have various pharmacological activities, such as anti-cancer, anti-diabetic, anti-oxidant, etc. The phytoestrogen is one of the major isoflavones found in some medicinal plants having anthelmintic properties. This review describes the putative role of genistein as an anthelmintic, which has been tested on some helminth parasites in vitro. Genistein has been shown to cause paralysis and alterations in the tegument and tegumental enzymes (acid phosphatase, alkaline phosphatase, adenosine triphosphatase, and 5'-nucleotidase) of helminth parasites. Alterations in the activities of several enzymes associated with the coordination system (specifically non-specific esterases, acetylcholine esterase, and nitric oxide synthase), and changes in the concentration of nitric oxide, cGMP, free amino acid pool, and tissue ammonia are observed in helminth parasites treated with genistein. The phytoestrogen also affects the carbohydrate metabolism by altering the activities of key enzymes involved in glycogen- and glucose-metabolism of a cestode parasite. Considering the significance of phosphoenolpyruvate carboxykinase (PEPCK) in glycolysis of the cestode parasite, Ki of the phytoestrogen for PEPCK in the parasite has been determined, and molecular docking of genistein into the active site of the enzyme has also been described. The potential beneficial role of genistein as a natural alternative in management of helminth parasites needs to be further explored, particularly considering its in vivo efficacy and pharmacokinetics.
Collapse
|
15
|
Lv Z, Qiu L, Wang W, Liu Z, Xue Z, Yu Z, Song X, Chen H, Wang L, Song L. A GTP-dependent Phosphoenolpyruvate Carboxykinase from Crassostrea gigas Involved in Immune Recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:318-329. [PMID: 28888537 DOI: 10.1016/j.dci.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is well known as a key enzyme involved in the metabolic pathway of gluconeogenesis in organisms, but the information about its involvement in immune response is still very limited. In the present study, a novel PEPCK homolog named CgPEPCK was identified from oyster Crassostrea gigas. The deduced amino acid sequence of CgPEPCK shared 52%-74% similarities with those from other known PEPCKs. There were one conserved guanosine triphosphate (GTP) binding site, one substrate binding site, one metal binding site and one active site in CgPEPCK. The mRNA transcripts of CgPEPCK were constitutively expressed in all the tested tissues including hemolymph, mantle, gill, muscle, gonad and hepatopancreas. CgPEPCK proteins were mainly distributed in adductor muscle, gonad, gill and mantle, and rarely detected in hepatopancreas by using immunohistochemical analysis. After the stimulations with lipopolysaccharide (LPS), peptidoglycan (PGN), Vibrio splendidus and V. anguillarum, CgPEPCK transcripts in hemocytes were significantly up-regulated and peaked at 6 h (LPS, 9.62-fold, p < 0.01), 9 h (PGN, 4.25-fold, p < 0.01), 12 h (V. splendidus, 5.72-fold, p < 0.01), 3 h (V. anguillarum, 2.87-fold, p < 0.01), respectively. The recombinant CgPEPCK protein (rCgPEPCK) exhibited Mn2+/Mg2+ dependent GTP binding activity, and the activities to bind LPS and PGN, but not β-1,3-glucan (GLU), lipoteichoic acid (LTA), mannan (MAN) nor polyinosinic-polycytidylic (Poly I: C). It could also bind Escherichia coli, Staphylococcus aureus, Micrococcus luteus and significantly inhibit their growth. All these results collectively suggested that CgPEPCK could not only exert GTP binding activity involved in gluconeogenesis, but also mediate the bacteria recognition and clearance in immune response of oysters.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
16
|
Dkhar B, Khongsti K, Thabah D, Syiem D, Satyamoorthy K, Das B. Genistein represses PEPCK-C expression in an insulin-independent manner in HepG2 cells and in alloxan-induced diabetic mice. J Cell Biochem 2017; 119:1953-1970. [PMID: 28816409 DOI: 10.1002/jcb.26356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Genistein has been reported to exert beneficial effects on type 2 diabetes mellitus (T2DM); however, the underlying molecular mechanisms involved therein have not been clearly elucidated. To address this question, the effect of genistein on the expression of phosphoenolpyruvate carboxykinase (PEPCK), and glucose production in HepG2 cells and in alloxan-induced diabetic mice was investigated. HepG2 cells were exposed to different concentration of genistein in presence or absence of modulators, and the expression of cytosolic PEPCK (PEPCK-C) and the signaling pathways was studied. Further, the biological relevance of the in vitro study was tested in alloxan-induced diabetic mice. Genistein lowered PEPCK-C expression and glucose production in HepG2 cells accompanied with increased in phosphorylation states of AMPK, MEK½, ERK½, and CRTC2. Treatment with the AMPK inhibitor (compound C) enhanced genistein-induced MEK½ and ERK½ activity indicating a potential cross-talk between the two signaling pathways. In vivo, genistein also reduced fasting glucose levels accompanied with reduced PEPCK-C expression and increased in AMPK and ERK½ phosphorylation states in the liver of genistein-treated alloxan-induced diabetic mice. Genistein fulfills the criteria of a suitable anti-diabetic agent by reducing glucose production and inhibiting PEPCK-C expression in HepG2 cells and also in alloxan-induced diabetic mice. These results indicate that genistein is an effective candidate for preventing T2DM through the modulation of AMPK-CRTC2 and MEK/ERK signaling pathways, which may allow a novel approach to modulate dysfunction in hepatic gluconeogenesis in T2DM.
Collapse
Affiliation(s)
- Barilin Dkhar
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | | | - Daiahun Thabah
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Donkupar Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal, Karnataka, India
| | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
17
|
Biological significance of phosphoenolpyruvate carboxykinase in a cestode parasite, Raillietina echinobothrida and effect of phytoestrogens on the enzyme from the parasite and its host, Gallus domesticus. Parasitology 2017; 144:1264-1274. [PMID: 28485262 DOI: 10.1017/s0031182017000518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is involved in glycolysis in the cestode parasite, Raillietina echinobothrida; whereas, it executes a gluconeogenic role in its host, Gallus domesticus. Because of its differing primary function in the cestode parasite and its host, this enzyme is regarded as a plausible anthelmintic target. Hence, the biological significance of PEPCK in the parasite was analysed using siRNA against PEPCK from R. echinobothrida (RePEPCK). In order to find out the functional differences between RePEPCK and GdPEPCK (PEPCK from its host, G. domesticus), PEPCK genes from both sources were cloned, over-expressed, characterized, and some properties of the purified enzymes were compared. RePEPCK and GdPEPCK showed a standard Michaelis-Menten kinetics with K mapp of 46.9 and 22.9 µ m, respectively, for phosphoenolpyruvate and K mapp of 15.4 µ m for oxaloacetate in GdPEPCK decarboxylation reaction. Here, we report antagonist behaviours of recombinant PEPCKs derived from the parasite and its host. In search of possible modulators for PEPCK, few phytoestrogens were examined on the purified enzymes and their inhibitory constants were determined and discussed. This study stresses the potential of these findings to validate PEPCK as the anthelmintic drug target for parasitism management.
Collapse
|
18
|
Cui DS, Broom A, Mcleod MJ, Meiering EM, Holyoak T. Asymmetric Anchoring Is Required for Efficient Ω-Loop Opening and Closing in Cytosolic Phosphoenolpyruvate Carboxykinase. Biochemistry 2017; 56:2106-2115. [PMID: 28345895 DOI: 10.1021/acs.biochem.7b00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mobile Ω-loops play essential roles in the function of many enzymes. Here we investigated the importance of a residue lying outside of the mobile Ω-loop element in the catalytic function of an H477R variant of cytosolic phosphoenolpyruvate carboxykinase using crystallographic, kinetic, and computational analysis. The crystallographic data suggest that the efficient transition of the Ω-loop to the closed conformation requires stabilization of the N-terminus of the loop through contacts between R461 and E588. In contrast, the C-terminal end of the Ω-loop undergoes changing interactions with the enzyme body through contacts between H477 at the C-terminus of the loop and E591 located on the enzyme body. Potential of mean force calculations demonstrated that altering the anchoring of the C-terminus of the Ω-loop via the H477R substitution results in the destabilization of the closed state of the Ω-loop by 3.4 kcal mol-1. The kinetic parameters for the enzyme were altered in an asymmetric fashion with the predominant effect being observed in the direction of oxaloacetate synthesis. This is exemplified by a reduction in kcat for the H477R mutant by an order of magnitude in the direction of OAA synthesis, while in the direction of PEP synthesis, it decreased by a factor of only 2. The data are consistent with a mechanism for loop conformational exchange between open and closed states in which a balance between fixed anchoring of the N-terminus of the Ω-loop and a flexible, unattached C-terminus drives the transition between a disordered (open) state and an ordered (closed) state.
Collapse
Affiliation(s)
- Danica S Cui
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Aron Broom
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Matthew J Mcleod
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Elizabeth M Meiering
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| | - Todd Holyoak
- Department of Biology and ‡Department of Chemistry, University of Waterloo , Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
19
|
Dutta S, Kundu S, Saha A, Nandi N. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. J Biomol Struct Dyn 2017; 36:878-892. [PMID: 28317434 DOI: 10.1080/07391102.2017.1301272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
Collapse
Affiliation(s)
- Saheb Dutta
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Soumya Kundu
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Amrita Saha
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Nilashis Nandi
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
20
|
Johnson TA, Mcleod MJ, Holyoak T. Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 2016; 55:575-87. [PMID: 26709450 DOI: 10.1021/acs.biochem.5b01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states. The mechanism by which these disorder-order transitions are coupled to the ligation state of the active site however is not fully understood. To further investigate the mechanisms by which the mobility of the active site loops is coupled to enzymatic function and the transitioning of the enzyme between the two conformational states, we have conducted structural and functional studies of point mutants of E89. E89 is a proposed key member of the interaction network of mobile elements as it resides in the R-loop region of the enzyme active site. These new data demonstrate the importance of the R-loop in coordinating interactions between substrates at the OAA/PEP binding site and the mobile R- and Ω-loop domains. In turn, the studies more generally demonstrate the mechanisms by which the intrinsic ligand binding energy can be utilized in catalysis to drive unfavorable conformational changes, changes that are subsequently required for both optimal catalytic activity and fidelity.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Matthew J Mcleod
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
21
|
Biocomputational analysis of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite, and its interaction with possible modulators. Parasitology 2015; 143:300-13. [PMID: 26690489 DOI: 10.1017/s0031182015001742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) involved in gluconeogenesis in higher vertebrates opposedly plays a significant role in glucose oxidation of the cestode parasite, Raillietina echinobothrida. Considering the importance of the enzyme in the parasite and lack of its structural details, there exists an urgent need for understanding the molecular details and development of possible modulators. Hence, in this study, PEPCK gene was obtained using rapid amplification of cDNA ends, and various biocomputational analyses were performed. Homology model of the enzyme was generated, and docking simulations were executed with its substrate, co-factor, and modulators. Computer hits were generated after structure- and ligand-based screening using Discovery Studio 4.1 software; the predicted interactions were compared with those of the existing structural information of PEPCK. In order to evaluate the docking simulation results of the modulators, PEPCK gene was cloned and the overexpressed protein was purified for kinetic studies. Enzyme kinetics and in vitro studies revealed that out of the modulators tested, tetrahydropalmatine (THP) inhibited the enzyme with lowest inhibition constant value of 93 nm. Taking the results together, we conclude that THP could be a potential inhibitor for PEPCK in the parasite.
Collapse
|
22
|
Balan MD, Mcleod MJ, Lotosky WR, Ghaly M, Holyoak T. Inhibition and Allosteric Regulation of Monomeric Phosphoenolpyruvate Carboxykinase by 3-Mercaptopicolinic Acid. Biochemistry 2015; 54:5878-87. [PMID: 26322521 DOI: 10.1021/acs.biochem.5b00822] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For almost 40 years, it has been known that tryptophan metabolites and picolinic acid analogues act as inhibitors of gluconeogenesis. Early studies observed that 3-mercaptopicolinic acid (MPA) was a potent hypoglycemic agent via inhibition of glucose synthesis through the specific inhibition of phosphoenolpyruvate carboxykinase (PEPCK) in the gluconeogenesis pathway. Despite prior kinetic investigation, the mechanism of the inhibition by MPA is unclear. To clarify the mechanism of inhibition exerted by MPA on PEPCK, we have undertaken structural and kinetic studies. The kinetic data in concert with crystallographic structures of PEPCK in complex with MPA and the substrates for the reaction illustrate that PEPCK is inhibited by the binding of MPA at two discrete binding sites: one acting in a competitive fashion with PEP/OAA (∼10 μM) and the other acting at a previously unidentified allosteric site (Ki ∼ 150 μM). The structural studies suggest that binding of MPA to the allosteric pocket stabilizes an altered conformation of the nucleotide-binding site that in turn reduces the affinity of the enzyme for the nucleotide.
Collapse
Affiliation(s)
- Marc D Balan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Matthew J Mcleod
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - William R Lotosky
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Mark Ghaly
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
23
|
Dutta S, Nandi N. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri. J Phys Chem B 2015; 119:10832-48. [PMID: 25794108 DOI: 10.1021/jp511585w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Saheb Dutta
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Nilashis Nandi
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
24
|
Zhu L, Yin Q, Irwin DM, Zhang S. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats. PLoS One 2015; 10:e0118666. [PMID: 25807515 PMCID: PMC4373879 DOI: 10.1371/journal.pone.0118666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - Qiuyuan Yin
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| |
Collapse
|
25
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
26
|
Reyes A, Zhai X, Morgan KT, Reinhardt CJ, Amyes TL, Richard JP. The activating oxydianion binding domain for enzyme-catalyzed proton transfer, hydride transfer, and decarboxylation: specificity and enzyme architecture. J Am Chem Soc 2015; 137:1372-82. [PMID: 25555107 PMCID: PMC4311969 DOI: 10.1021/ja5123842] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/29/2022]
Abstract
The kinetic parameters for activation of yeast triosephosphate isomerase (ScTIM), yeast orotidine monophosphate decarboxylase (ScOMPDC), and human liver glycerol 3-phosphate dehydrogenase (hlGPDH) for catalysis of reactions of their respective phosphodianion truncated substrates are reported for the following oxydianions: HPO3(2-), FPO3(2-), S2O3(2-), SO4(2-) and HOPO3(2-). Oxydianions bind weakly to these unliganded enzymes and tightly to the transition state complex (E·S(‡)), with intrinsic oxydianion Gibbs binding free energies that range from -8.4 kcal/mol for activation of hlGPDH-catalyzed reduction of glycolaldehyde by FPO3(2-) to -3.0 kcal/mol for activation of ScOMPDC-catalyzed decarboxylation of 1-β-d-erythrofuranosyl)orotic acid by HOPO3(2-). Small differences in the specificity of the different oxydianion binding domains are observed. We propose that the large -8.4 kcal/mol and small -3.8 kcal/mol intrinsic oxydianion binding energy for activation of hlGPDH by FPO3(2-) and S2O3(2-), respectively, compared with activation of ScTIM and ScOMPDC reflect stabilizing and destabilizing interactions between the oxydianion -F and -S with the cationic side chain of R269 for hlGPDH. These results are consistent with a cryptic function for the similarly structured oxydianion binding domains of ScTIM, ScOMPDC and hlGPDH. Each enzyme utilizes the interactions with tetrahedral inorganic oxydianions to drive a conformational change that locks the substrate in a caged Michaelis complex that provides optimal stabilization of the different enzymatic transition states. The observation of dianion activation by stabilization of active caged Michaelis complexes may be generalized to the many other enzymes that utilize substrate binding energy to drive changes in enzyme conformation, which induce tight substrate fits.
Collapse
Affiliation(s)
- Archie
C. Reyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Xiang Zhai
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Kelsey T. Morgan
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Christopher J. Reinhardt
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
27
|
Adams DR, Yuan H, Holyoak T, Arajs KH, Hakimi P, Markello TC, Wolfe LA, Vilboux T, Burton BK, Fajardo KF, Grahame G, Holloman C, Sincan M, Smith ACM, Wells GA, Huang Y, Vega H, Snyder JP, Golas GA, Tifft CJ, Boerkoel CF, Hanson RW, Traynelis SF, Kerr DS, Gahl WA. Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity. Mol Genet Metab 2014; 113:161-70. [PMID: 24863970 PMCID: PMC4219933 DOI: 10.1016/j.ymgme.2014.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 01/28/2023]
Abstract
The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases.
Collapse
Affiliation(s)
- David R Adams
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Katrina H Arajs
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Parvin Hakimi
- Department of Biochemistry, Case Western Reserve University, USA; Department of Pediatrics, Case Western Reserve University, USA
| | - Thomas C Markello
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital, Northwestern University, Chicago, IL, USA; Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karin Fuentes Fajardo
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - George Grahame
- Center for Inherited Disorders of Energy Metabolism, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Conisha Holloman
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Murat Sincan
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Ann C M Smith
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Gordon A Wells
- Department of Chemistry, Emory University, Atlanta, GA, USA; Department of Biochemistry, University of Stellenbosch, South Africa
| | - Yan Huang
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Hugo Vega
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Gretchen A Golas
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Cornelius F Boerkoel
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Richard W Hanson
- Department of Biochemistry, Case Western Reserve University, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA, USA
| | - Douglas S Kerr
- Department of Biochemistry, Case Western Reserve University, USA; Department of Pediatrics, Case Western Reserve University, USA; Center for Inherited Disorders of Energy Metabolism, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - William A Gahl
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
28
|
Machová I, Snašel J, Zimmermann M, Laubitz D, Plocinski P, Oehlmann W, Singh M, Dostál J, Sauer U, Pichová I. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J Biol Chem 2014; 289:13066-78. [PMID: 24659783 DOI: 10.1074/jbc.m113.536748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis remains a major health concern worldwide. Eradication of its causative agent, the bacterial pathogen Mycobacterium tuberculosis, is particularly challenging due to a vast reservoir of latent carriers of the disease. Despite the misleading terminology of a so-called dormant state associated with latent infections, the bacteria have to maintain basic metabolic activities. Hypoxic conditions have been widely used as an in vitro system to study this dormancy. Such studies identified a rearrangement of central carbon metabolism to exploit fermentative processes caused by the lack of oxygen. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is the enzyme at the center of these metabolic rearrangements. Although Pck is associated with gluconeogenesis under standard growth conditions, the enzyme can catalyze the reverse reaction, supporting anaplerosis of the tricarboxylic acid cycle, under conditions leading to slowed or stopped bacterial replication. To study the mechanisms that regulate the switch between two Pck functions, we systematically investigated factors influencing the gluconeogenic and anaplerotic reaction kinetics. We demonstrate that a reducing environment, as found under hypoxia-triggered non-replicating conditions, accelerates the reaction in the anaplerotic direction. Furthermore, we identified proteins that interact with Pck. The interaction between Pck and the reduced form of mycobacterial thioredoxin, gene expression of which is increased under hypoxic conditions, also increased the Pck anaplerotic activity. We thus propose that a reducing environment and the protein-protein interaction with thioredoxin in particular enable the Pck anaplerotic function under fermentative growth conditions.
Collapse
Affiliation(s)
- Iva Machová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|