1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Wimalasena K, Adetuyi O, Eldani M. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: implications for selective neuronal death in Parkinson's disease. Front Aging Neurosci 2024; 16:1339295. [PMID: 38450382 PMCID: PMC10914975 DOI: 10.3389/fnagi.2024.1339295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is an age-related irreversible neurodegenerative disease which is characterized as a progressively worsening involuntary movement disorder caused by the loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). Two main pathophysiological features of PD are the accumulation of inclusion bodies in the affected neurons and the predominant loss of neuromelanin-containing DA neurons in substantia nigra pars compacta (SNpc) and noradrenergic (NE) neurons in locus coeruleus (LC). The inclusion bodies contain misfolded and aggregated α-synuclein (α-Syn) fibrils known as Lewy bodies. The etiology and pathogenic mechanisms of PD are complex, multi-dimensional and associated with a combination of environmental, genetic, and other age-related factors. Although individual factors associated with the pathogenic mechanisms of PD have been widely investigated, an integration of the findings to a unified causative mechanism has not been envisioned. Here we propose an integrated mechanism for the degeneration of DA neurons in SNpc and NE neurons in LC in PD, based on their unique high metabolic activity coupled elevated energy demand, using currently available experimental data. The proposed hypothetical mechanism is primarily based on the unique high metabolic activity coupled elevated energy demand of these neurons. We reason that the high vulnerability of a selective group of DA neurons in SNpc and NE neurons in LC in PD could be due to the cellular energy modulations. Such cellular energy modulations could induce dysregulation of DA and NE metabolism and perturbation of the redox active metal homeostasis (especially copper and iron) in these neurons.
Collapse
Affiliation(s)
- Kandatege Wimalasena
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
| | | | | |
Collapse
|
3
|
Uceda AB, Ramis R, Pauwels K, Adrover M, Mariño L, Frau J, Vilanova B. Understanding the effect of the membrane-mimetic micelles on the interplay between α-synuclein and Cu(II)/Cu(I) cations. J Inorg Biochem 2023; 247:112344. [PMID: 37542850 DOI: 10.1016/j.jinorgbio.2023.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Rafael Ramis
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Kris Pauwels
- Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Miquel Adrover
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| |
Collapse
|
4
|
Chen J, Gao X, Zheng C, Zhang C, Li P, He K, Liu G, Huang X, Liu J, Xie Y, Yang X. Low-dose Cu exposure enhanced α-synuclein accumulation associates with mitochondrial impairments in mice model of Parkinson's disease. Toxicol Lett 2023; 387:14-27. [PMID: 37717680 DOI: 10.1016/j.toxlet.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that mainly affects the elder population, and its etiology is enigmatic. Both environmental risks and genetics may influence the development of PD. Excess copper causes neurotoxicity and accelerates the progression of neurodegenerative diseases. However, the underlying mechanisms of copper-induced neurotoxicity remain controversial. In this study, A53T transgenic α-synuclein (A53T) mice and their matching wild-type (WT) mice were treated with a low dose of copper (0.13 ppm copper chlorinated drinking water, equivalent to the copper exposure of human daily copper intake dose) for 4 months, and copper poisoning was performed on human A53T mutant SHSY5Y cells overexpressed with α-synuclein (dose of 1/4 IC50), to test the effects of copper exposure on the body. The results of the open field test showed that the moto function of Cu-treated mice was impaired. Proteomics revealed changes in neurodevelopment, transport function, and mitochondrial membrane-related function in Cu-treated WT mice, which were associated with reduced expression of mitochondrial complex (NDUFA10, ATP5A), dopamine neurons (TH), and dopamine transporter (DAT). Mitochondrial function, nervous system development, synaptic function, and immune response were altered in Cu-treated A53T mice. These changes were associated with increased mitochondrial splitting protein (Drp1), decreased mitochondrial fusion protein (OPA1, Mfn1), abnormalities in mitochondrial autophagy protein (LC3BII/I, P62), decreased dopamine neuron (TH) expression, increased α-synuclein expression, inflammatory factors (IL-6, IL-1β, and TNF-α) release and microglia (Iba1) activation. In addition, we found that Cu2+ (30 μM) induced excessive ROS production and reduced mitochondrial ATP production in human A53T mutant α-synuclein overexpressing SHSY5Y cells by in vitro experiments. In conclusion, low-dose copper treatment altered critical proteins involved in mitochondrial, neurodevelopmental, and inflammatory responses and affected mitochondria's ROS and ATP production levels.
Collapse
Affiliation(s)
- Jie Chen
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xufang Gao
- Department of Neurology, General Hospital of The Yangtze River Shipping and Wuhan Brain Hospital, Wuhan, Hubei 430010, China
| | - Chengyou Zheng
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Rd., Luohu district, Shenzhen 518020, China
| | - Kaiwu He
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
5
|
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023; 13:biom13020287. [PMID: 36830656 PMCID: PMC9953312 DOI: 10.3390/biom13020287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.
Collapse
|
6
|
Savva L, Platts JA. How Cu(II) binding affects structure and dynamics of α-synuclein revealed by molecular dynamics simulations. J Inorg Biochem 2023; 239:112068. [PMID: 36403437 DOI: 10.1016/j.jinorgbio.2022.112068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
We report accelerated molecular dynamics simulations of α-Synuclein and its complex with two Cu(II) ions bound to experimentally determined binding sites. Adding two Cu(II) ions, one bound to the N-terminal region and one to the C-terminus, decreases size and flexibility of the peptide while introducing significant new contacts within and between N-terminus and non-Aβ component (NAC). Cu(II) ions also alter the pattern of secondary structure within the peptide, inducing more and longer-lasting elements of secondary structure such as β-strands and hairpins. Free energy surfaces, obtained from reweighting the accelerated molecular dynamics boost potential, further demonstrate the restriction on size and flexibility that results from binding of copper ions.
Collapse
Affiliation(s)
- Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK..
| |
Collapse
|
7
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
8
|
Wang H, Mörman C, Sternke-Hoffmann R, Huang CY, Prota A, Ma P, Luo J. Cu 2+ ions modulate the interaction between α-synuclein and lipid membranes. J Inorg Biochem 2022; 236:111945. [PMID: 35952593 DOI: 10.1016/j.jinorgbio.2022.111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
α-synuclein protein aggregates are the major constituent of Lewy bodies, which is a main pathogenic hallmark of Parkinson's disease. Both lipid membranes and Cu2+ ions can bind to α-synuclein and modulate its aggregation propensity and toxicity. However, the synergistic effect of copper ions and lipid membranes on α-synuclein remains to be explored. Here, we investigate how Cu2+ and α-synuclein simultaneously influence the lipidic structure of lipidic cubic phase(LCP) matrix by using small-angle X-ray scattering. α-Syn proteins destabilize the cubic-Pn3m phase of LCP that can be further recovered after the addition of Cu2 ions even at a low stoichiometric ratio. By using circular dichroism and nuclear magnetic resonance, we also study how lipid membranes and Cu2+ ions impact the secondary structures of α-synuclein at an atomic level. Although the secondary structure of α-synuclein with lipid membranes is not significantly changed to a large extent in the presence of Cu2+ ions, lipid membranes promote the interaction between α-synuclein C-terminus and Cu2+ ions. The modulation of Cu2+ ions and lipid membranes on α-synuclein dynamics and structure may play an important role in the molecular pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Cecilia Mörman
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | | | - Chia-Ying Huang
- Swiss Light Source at Paul Scherrer Institut, Forschungstrasse 111, Villigen-PSI, Villigen 5232, Switzerland
| | - Andrea Prota
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Pikyee Ma
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| |
Collapse
|
9
|
Quintanar L, Millhauser GL. EPR of copper centers in the prion protein. Methods Enzymol 2022; 666:297-314. [PMID: 35465923 PMCID: PMC9870711 DOI: 10.1016/bs.mie.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Most proteins implicated in neurodegenerative diseases bind metal ions, notably copper and zinc. Metal ion binding may be part of the protein's function or, alternatively, may promote a deleterious gain of function. With regard to Cu2+ ions, electron paramagnetic resonance techniques have proven to be instrumental in determining the biophysical characteristics of the copper binding sites, as well as structural features of the coordinating protein and how they are impacted by metal binding. Here, the most useful methods are described as they apply to the prion protein, which serves as a model for the broader spectrum of neurodegenerative proteins.
Collapse
Affiliation(s)
- Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico,Corresponding authors: ;
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, UC Santa Cruz, Santa Cruz, CA, United States,Corresponding authors: ;
| |
Collapse
|
10
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Georgieva ER. Protein Conformational Dynamics upon Association with the Surfaces of Lipid Membranes and Engineered Nanoparticles: Insights from Electron Paramagnetic Resonance Spectroscopy. Molecules 2020; 25:E5393. [PMID: 33218036 PMCID: PMC7698768 DOI: 10.3390/molecules25225393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Detailed study of conformational rearrangements and dynamics of proteins is central to our understanding of their physiological functions and the loss of function. This review outlines the applications of the electron paramagnetic resonance (EPR) technique to study the structural aspects of proteins transitioning from a solution environment to the states in which they are associated with the surfaces of biological membranes or engineered nanoobjects. In the former case these structural transitions generally underlie functional protein states. The latter case is mostly relevant to the application of protein immobilization in biotechnological industries, developing methods for protein purification, etc. Therefore, evaluating the stability of the protein functional state is particularly important. EPR spectroscopy in the form of continuous-wave EPR or pulse EPR distance measurements in conjunction with protein spin labeling provides highly versatile and sensitive tools to characterize the changes in protein local dynamics as well as large conformational rearrangements. The technique can be widely utilized in studies of both protein-membrane and engineered nanoobject-protein complexes.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Calvo JS, Mulpuri NV, Dao A, Qazi NK, Meloni G. Membrane insertion exacerbates the α-Synuclein-Cu(II) dopamine oxidase activity: Metallothionein-3 targets and silences all α-synuclein-Cu(II) complexes. Free Radic Biol Med 2020; 158:149-161. [PMID: 32712192 PMCID: PMC7484060 DOI: 10.1016/j.freeradbiomed.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Copper binding to α-synuclein (α-Syn), the major component of intracellular Lewy body inclusions in substantia nigra dopaminergic neurons, potentiate its toxic redox-reactivity and plays a detrimental role in the etiology of Parkinson disease (PD). Soluble α-synuclein-Cu(II) complexes possess dopamine oxidase activity and catalyze ROS production in the presence of biological reducing agents via Cu(II)/Cu(I) redox cycling. These metal-centered redox reactivities harmfully promote the oxidation and oligomerization of α-Syn. While this chemistry has been investigated on recombinantly expressed soluble α-Syn, in vivo, α-Syn is acetylated at its N-terminus and is present in equilibrium between soluble and membrane-bound forms. This post-translational modification and membrane-binding alter the Cu(II) coordination environment and binding modes and are expected to affect the α-Syn-Cu(II) reactivity. In this work, we first investigated the reactivity of acetylated and membrane-bound complexes, and subsequently addressed whether the brain metalloprotein Zn7-metallothionein-3 (Zn7MT-3) possesses a multifaceted-role in targeting these aberrant copper interactions and consequent reactivity. Through biochemical characterization of the reactivity of the non-acetylated/N-terminally acetylated soluble or membrane-bound α-Syn-Cu(II) complexes towards dopamine, oxygen, and ascorbate, we reveal that membrane insertion dramatically exacerbates the catechol oxidase-like reactivity of α-Syn-Cu(II) as a result of a change in the Cu(II) coordination environment, thereby potentiating its toxicity. Moreover, we show that Zn7MT-3 can efficiently target all α-Syn-Cu(II) complexes through Cu(II) removal, preventing their deleterious redox activities. We demonstrate that the Cu(II) reduction by the thiolate ligands of Zn7MT-3 and the formation of Cu(I)4Zn4MT-3 featuring an unusual redox-inert Cu(I)4-thiolate cluster is the molecular mechanism responsible for the protective effect exerted by MT-3 towards α-Syn-Cu(II). This work provides the molecular basis for new therapeutic interventions to control the deleterious bioinorganic chemistry of α-Syn-Cu(II).
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Neha V Mulpuri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Alex Dao
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nabeeha K Qazi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
13
|
Schilling KM, Tao L, Wu B, Kiblen JTM, Ubilla-Rodriguez NC, Pushie MJ, Britt RD, Roseman GP, Harris DA, Millhauser GL. Both N-Terminal and C-Terminal Histidine Residues of the Prion Protein Are Essential for Copper Coordination and Neuroprotective Self-Regulation. J Mol Biol 2020; 432:4408-4425. [PMID: 32473880 PMCID: PMC7387163 DOI: 10.1016/j.jmb.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.
Collapse
Affiliation(s)
- Kevin M Schilling
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA
| | - Joseph T M Kiblen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Natalia C Ubilla-Rodriguez
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, Saskatoon, SK S7N 5E5, Canada
| | - R David Britt
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
14
|
|
15
|
González N, Arcos-López T, König A, Quintanar L, Menacho Márquez M, Outeiro TF, Fernández CO. Effects of alpha-synuclein post-translational modifications on metal binding. J Neurochem 2019; 150:507-521. [PMID: 31099098 DOI: 10.1111/jnc.14721] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nazareno González
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Trinidad Arcos-López
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Mauricio Menacho Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
16
|
Abeyawardhane DL, Heitger DR, Fernández RD, Forney AK, Lucas HR. C-Terminal Cu II Coordination to α-Synuclein Enhances Aggregation. ACS Chem Neurosci 2019; 10:1402-1410. [PMID: 30384594 DOI: 10.1021/acschemneuro.8b00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structurally dynamic amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in Parkinson's disease (PD). Copper, which acts as a neuronal signaling agent, is also an effector of αS structure, aggregation, and localization in vivo. In humans, αS is known to carry an acetyl group on the starting methionine residue, capping the N-terminal free amine which was a known high-affinity CuII binding site. We now report the first detailed characterization data using electron paramagnetic resonance (EPR) spectroscopy to describe the CuII coordination modes of N-terminally acetylated αS (NAcαS). Through use of EPR hyperfine structure analyses and the Peisach-Blumberg correlation, an N3O1 binding mode was established that involves the single histidine residue at position 50 and a lower population of a second CuII-binding mode that may involve a C-terminal contribution. We additionally generated an N-terminally acetylated disease-relevant variant, NAcH50Q, that promotes a shift in the CuII binding site to the C-terminus of the protein. Moreover, fibrillar NAcH50Q-CuII exhibits enhanced parallel β-sheet character and increased hydrophobic surface area compared to NAcαS-CuII and to both protein variants that lack a coordinated cupric ion. The results presented herein demonstrate the differential impact of distinct CuII binding sites within NAcαS, revealing that C-terminal CuII binding exacerbates the structural consequences of the H50Q missense mutation. Likewise, the global structural modifications that result from N-terminal capping augment the properties of CuII coordination. Hence, consideration of the effect of CuII on NAcαS and NAcH50Q misfolding may shed light on the extrinsic or environmental factors that influence PD pathology.
Collapse
Affiliation(s)
| | - Denver R. Heitger
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ricardo D. Fernández
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
17
|
Wongkongkathep P, Han JY, Choi TS, Yin S, Kim HI, Loo JA. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1870-1880. [PMID: 29951842 PMCID: PMC6087494 DOI: 10.1007/s13361-018-2002-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) has been a major challenge in the field of protein science due to limited capabilities to obtain full-length high-resolution structures. Native ESI-MS with top-down MS was utilized to obtain structural features of protein-ligand binding for the Parkinson's disease-related protein, α-synuclein (αSyn), which is natively unstructured. Binding of heavy metals has been implicated in the accelerated formation of αSyn aggregation. Using high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, native top-down MS with various fragmentation methods, including electron capture dissociation (ECD), collisional activated dissociation (CAD), and multistage tandem MS (MS3), deduced the binding sites of cobalt and manganese to the C-terminal region of the protein. Ion mobility MS (IM-MS) revealed a collapse toward compacted states of αSyn upon metal binding. The combination of native top-down MS and IM-MS provides structural information of protein-ligand interactions for intrinsically disordered proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Ranjan P, Ghosh D, Yarramala DS, Das S, Maji SK, Kumar A. Differential copper binding to alpha-synuclein and its disease-associated mutants affect the aggregation and amyloid formation. Biochim Biophys Acta Gen Subj 2017; 1861:365-374. [DOI: 10.1016/j.bbagen.2016.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
|
19
|
Andrade VM, Aschner M, Marreilha dos Santos AP. Neurotoxicity of Metal Mixtures. ADVANCES IN NEUROBIOLOGY 2017; 18:227-265. [DOI: 10.1007/978-3-319-60189-2_12] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Hecel A, De Ricco R, Valensin D. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Coordination and redox properties of copper interaction with α-synuclein. J Inorg Biochem 2016; 163:292-300. [DOI: 10.1016/j.jinorgbio.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
22
|
Peres TV, Parmalee NL, Martinez-Finley EJ, Aschner M. Untangling the Manganese-α-Synuclein Web. Front Neurosci 2016; 10:364. [PMID: 27540354 PMCID: PMC4972813 DOI: 10.3389/fnins.2016.00364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process.
Collapse
Affiliation(s)
- Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Nancy L Parmalee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
23
|
Coherent and Contradictory Facts, Feats and Fictions Associated with Metal Accumulation in Parkinson's Disease: Epicenter or Outcome, Yet a Demigod Question. Mol Neurobiol 2016; 54:4738-4755. [PMID: 27480264 DOI: 10.1007/s12035-016-0016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
Unwarranted exposure due to liberal use of metals for maintaining the lavish life and to achieve the food demand for escalating population along with an incredible boost in the average human life span owing to orchestrated progress in rejuvenation therapy have gradually increased the occurrence of Parkinson's disease (PD). Etiology is albeit elusive; association of PD with metal accumulation has never been overlooked due to noteworthy similitude between metal-exposure symptoms and a few cardinal features of disease. Even though metals are entailed in the vital functions, a hysterical shift, primarily augmentation, escorts the stern nigrostriatal dopaminergic neurodegeneration. An increase in the passage of metals through the blood brain barrier and impaired metabolic activity and elimination system could lead to metal accumulation in the brain, which eventually makes dopaminergic neurons quite susceptible. In the present article, an update on implication of metal accumulation in PD/Parkinsonism has been provided. Moreover, encouraging and paradoxical facts and fictions associated with metal accumulation in PD/Parkinsonism have also been compiled. Systematic literature survey of PD is performed to describe updated information if metal accumulation is an epicenter or merely an outcome. Finally, a perspective on the association of metal accumulation with pesticide-induced Parkinsonism has been explained to unveil the likely impact of the former in the latter.
Collapse
|
24
|
Dell’Acqua S, Pirota V, Monzani E, Camponeschi F, De Ricco R, Valensin D, Casella L. Copper(I) Forms a Redox-Stable 1:2 Complex with α-Synuclein N-Terminal Peptide in a Membrane-Like Environment. Inorg Chem 2016; 55:6100-6. [DOI: 10.1021/acs.inorgchem.6b00641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone Dell’Acqua
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valentina Pirota
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Camponeschi
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro
2, 53100 Siena, Italy
| | - Riccardo De Ricco
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro
2, 53100 Siena, Italy
| | - Daniela Valensin
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro
2, 53100 Siena, Italy
| | - Luigi Casella
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
25
|
Drew SC. Probing the quaternary structure of metal-bridged peptide oligomers. J Inorg Biochem 2016; 158:30-34. [DOI: 10.1016/j.jinorgbio.2016.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/17/2015] [Accepted: 01/07/2016] [Indexed: 11/27/2022]
|
26
|
Zhang Z, Miah M, Culbreth M, Aschner M. Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochem Res 2016; 41:409-22. [PMID: 26869037 DOI: 10.1007/s11064-016-1844-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Autophagy generally refers to cell catabolic and recycling process in which cytoplasmic components are delivered to lysosomes for degradation. During the last two decades, autophagy research has experienced a recent boom because of a newfound connection between this process and many human diseases. Autophagy plays a significant role in maintaining cellular homeostasis and protects cells from varying insults, including misfolded and aggregated proteins and damaged organelles, which is particularly crucial in neuronal survival. Mounting evidence has implicated autophagic dysfunction in the pathogenesis of several major neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. In addition, autophagy has also been found to affect neurotoxicity induced by exposure to essential metals, such as manganese, copper, and iron, and other heavy metals, such as cadmium, lead, and methylmercury. This review examines current literature on the role of autophagy in the mechanisms of disease pathogenesis amongst common neurodegenerative disorders and of metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Mahfuzur Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA.
| |
Collapse
|
27
|
McDowall JS, Brown DR. Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics 2016; 8:385-97. [DOI: 10.1039/c6mt00026f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
D'Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int 2015; 90:36-45. [PMID: 26187063 DOI: 10.1016/j.neuint.2015.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
29
|
Drew SC. The N Terminus of α-Synuclein Forms CuII-Bridged Oligomers. Chemistry 2015; 21:7111-8. [DOI: 10.1002/chem.201500236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 12/31/2022]
|
30
|
Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease. Metallomics 2015; 7:395-404. [DOI: 10.1039/c4mt00339j] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of different metals with the Parkinson's disease-associated protein alpha-synuclein results in oxidative stress, protein aggregation and pathology progression.
Collapse
Affiliation(s)
- Eleonora Carboni
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| | - Paul Lingor
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| |
Collapse
|
31
|
Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun (Camb) 2015; 51:5556-71. [DOI: 10.1039/c4cc10366a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper ions are crucial to life, and some fundamental roles of copper in pathophysiology have been elucidated using fluorescent sensors.
Collapse
Affiliation(s)
- Peter Verwilst
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Kyoung Sunwoo
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| |
Collapse
|
32
|
Vermaas JV, Tajkhorshid E. Conformational heterogeneity of α-synuclein in membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:3107-17. [PMID: 25135664 PMCID: PMC4194229 DOI: 10.1016/j.bbamem.2014.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
α-Synuclein (αS) is a natively disordered protein in solution, thought to be involved in the fusion of neurotransmitter vesicles to cellular membranes during neurotransmission. Monomeric αS has been previously characterized in two distinct membrane-associated conformations: a broken-helix structure, and an extended helix. By employing atomistic molecular dynamics and a novel membrane representation with significantly enhanced lipid mobility (HMMM), we investigate the process of spontaneous membrane binding of αS and the conformational dynamics of monomeric αS in its membrane-bound form. By repeatedly placing helical αS monomers in solution above a planar lipid bilayer and observing their spontaneous association and its spontaneous insertion into the membrane during twenty independent unbiased simulations, we are able to characterize αS in its membrane-bound state, suggesting that αS has a highly variable membrane insertion depth at equilibrium. Our simulations also capture two distinct states of αS, the starting broken-helix conformation seen in the micelle bound NMR structures, and a semi-extended helix. Analysis of lipid distributions near αS monomers indicates that the transition to a semi-extended helix is facilitated by concentration of phosphatidyl-serine headgroups along the inner edge of the protein. Such a lipid-mediated transition between helix-turn-helix and extended conformations of αS may also occur in vivo, and may be important for the physiological function of αS.
Collapse
Affiliation(s)
- Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
34
|
Siligardi G, Hussain R, Patching SG, Phillips-Jones MK. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:34-42. [PMID: 23811229 DOI: 10.1016/j.bbamem.2013.06.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022]
Abstract
A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; School of Biological Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
35
|
α-Synuclein mutations cluster around a putative protein loop. Neurosci Lett 2013; 546:67-70. [PMID: 23669636 PMCID: PMC3694303 DOI: 10.1016/j.neulet.2013.04.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/27/2013] [Indexed: 12/17/2022]
Abstract
We map all five missense SNCA mutations on the proposed α-synuclein protein models. 4 mutations cluster around the protein loop linking the two legs of the hairpin. 4 mutations cluster around the point of hairpin convergence for tetramer formation.
With the recent identification of two new pathogenic mutations in α-synuclein, we map the five known pathogenic mutations onto the best available models of the protein structure. We show that four of the five mutations map to a potential fold in the protein with the exception being the A30P mutation in which the substitution would be expected to have a profound effect on protein structure. We discuss this localisation in terms of the proposed mechanisms for mutation pathogenicity.
Collapse
|