1
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|
2
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
3
|
Lee YJ, Dai N, Müller SI, Guan C, Parker MJ, Fraser ME, Walsh SE, Sridar J, Mulholland A, Nayak K, Sun Z, Lin YC, Comb DG, Marks K, Gonzalez R, Dowling DP, Bandarian V, Saleh L, Corrêa IR, Weigele PR. Pathways of thymidine hypermodification. Nucleic Acids Res 2021; 50:3001-3017. [PMID: 34522950 PMCID: PMC8989533 DOI: 10.1093/nar/gkab781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/15/2022] Open
Abstract
The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Nan Dai
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Stephanie I Müller
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Chudi Guan
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Mackenzie J Parker
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Morgan E Fraser
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Shannon E Walsh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Janani Sridar
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Andrew Mulholland
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Krutika Nayak
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Zhiyi Sun
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Yu-Cheng Lin
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Donald G Comb
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Katherine Marks
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Reyaz Gonzalez
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Daniel P Dowling
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, UT 84112, USA
| | - Lana Saleh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Ivan R Corrêa
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| |
Collapse
|
4
|
Benjdia A, Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front Chem 2021; 9:678068. [PMID: 34350157 PMCID: PMC8326336 DOI: 10.3389/fchem.2021.678068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| |
Collapse
|
5
|
Pagnier A, Yang H, Jodts RJ, James CD, Shepard EM, Impano S, Broderick WE, Hoffman BM, Broderick JB. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. J Am Chem Soc 2020; 142:18652-18660. [PMID: 32966073 DOI: 10.1021/jacs.0c08585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase is a radical S-adenosyl-l-methionine (SAM) enzyme with the unusual property that addition of SAM to the [4Fe-4S]1+ enzyme absent substrate results in rapid electron transfer to SAM with accompanying homolytic S-C5' bond cleavage. Herein, we demonstrate that this unusual reaction forms the organometallic intermediate Ω in which the unique Fe atom of the [4Fe-4S] cluster is bound to C5' of the 5'-deoxyadenosyl radical (5'-dAdo•). During catalysis, homolytic cleavage of the Fe-C5' bond liberates 5'-dAdo• for reaction with substrate, but here, we use Ω formation without substrate to determine the thermal stability of Ω. The reaction of Geobacillus thermodenitrificans SPL (GtSPL) with SAM forms Ω within ∼15 ms after mixing. By monitoring the decay of Ω through rapid freeze-quench trapping at progressively longer times we find an ambient temperature decay time of the Ω Fe-C5' bond of τ ≈ 5-6 s, likely shortened by enzymatic activation as is the case with the Co-C5' bond of B12. We have further used hand quenching at times up to 10 min, and thus with multiple SAM turnovers, to probe the fate of the 5'-dAdo• radical liberated by Ω. In the absence of substrate, Ω undergoes low-probability conversion to a stable protein radical. The WT enzyme with valine at residue 172 accumulates a Val•; mutation of Val172 to isoleucine or cysteine results in accumulation of an Ile• or Cys• radical, respectively. The structures of the radical in WT, V172I, and V172C variants have been established by detailed EPR/DFT analyses.
Collapse
Affiliation(s)
- Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher D James
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| |
Collapse
|
6
|
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018; 57:3402-3415. [PMID: 29630358 DOI: 10.1021/acs.biochem.8b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O•/OH) ( E°' = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the Δ E°' between NH2Y32(O•/OH) and Y32(O•/OH) when measured under reversible conditions is ∼300-400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of ribonucleotide reductase (RNR), which when incubated with β2/CDP/ATP generates the D6-NH2Y731•-α2/β2 complex. By multifrequency electron paramagnetic resonance (35, 94, and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establish RNH2• planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNRs.
Collapse
Affiliation(s)
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Michael Huynh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | | | - Cyrille Costentin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States.,Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591 , Université Paris Diderot, Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean de Baïf , 75205 Paris Cedex 13 , France
| | - Isabel Bejenke
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
7
|
Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O. Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. J Am Chem Soc 2018; 140:2469-2477. [PMID: 29253341 PMCID: PMC5824343 DOI: 10.1021/jacs.7b08402] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.
Collapse
Affiliation(s)
- Aubérie Parent
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Benjamin Lefranc
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Yang L, Li L. Insights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue. Front Chem 2017; 5:14. [PMID: 28401144 PMCID: PMC5368176 DOI: 10.3389/fchem.2017.00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
UV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at least a cysteine and two tyrosine residues. This mechanism is consistent with the recently solved SPL structure that shows all three residues are located in proximity and thus able to participate in the radical transfer process during the enzyme catalysis. In contrast, an earlier in vivo mutational study identified a glycine to arginine mutation at the position 168 on the B. subtilis SPL that is >15 Å away from the enzyme active site. This mutation appears to abolish the enzyme activity because endospores carrying this mutant were sensitive to UV light. To understand the molecular basis for this rendered enzyme activity, we constructed two SPL mutations G168A and G168R, examined their repair of dinucleotide SP TpT, and found that both mutants exhibit reduced enzyme activity. Comparing with the wildtype (WT) SPL enzyme, the G168A mutant slows down the SP TpT repair by 3~4-fold while the G168R mutant by ~ 80-fold. Both mutants exhibit a smaller apparent (DV) kinetic isotope effect (KIE) but a bigger competitive (DV/K) KIE than that by the WT SPL. Moreover, the G168R mutant also produces a large portion of the abortive repair product TpT-[Formula: see text]; the formation of which indicates that cysteine 141 is no longer well positioned as the H-donor to the thymine allylic radical intermediate. All these data imply that the mutation at the remote glycine 168 residue alters the enzyme 3D structure, subsequently reducing the SPL activity by changing the positions of the essential amino acids involved in the radical transfer process.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
- Department of Dermatology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
9
|
Yang L, Jian Y, Setlow P, Li L. Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase. DNA Repair (Amst) 2017; 53:31-42. [PMID: 28320593 DOI: 10.1016/j.dnarep.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
Abstract
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min-1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min-1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
10
|
Berteau O, Benjdia A. DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Photochem Photobiol 2017; 93:67-77. [DOI: 10.1111/php.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Olivier Berteau
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alhosna Benjdia
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| |
Collapse
|
11
|
Yang L, Adhikari J, Gross ML, Li L. Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the Clostridium acetobutylicum Spore Photoproduct Lyase. Photochem Photobiol 2017; 93:331-342. [PMID: 27992649 PMCID: PMC5315627 DOI: 10.1111/php.12697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase (SPL) catalyzes the direct reversal of a thymine dimer 5-thyminyl-5,6-dihydrothymine (i.e. the spore photoproduct (SP)) to two thymine residues in germinating endospores. Previous studies suggest that SPL from the bacterium Bacillus subtilis (Bs) harbors an unprecedented radical-transfer pathway starting with cysteine 141 proceeding through tyrosine 99. However, in SPL from the bacterium Clostridium acetobutylicum (Ca), the cysteine (at position 74) and the tyrosine are located on the opposite sides of a substrate-binding pocket that has to collapse to bring the two residues into proximity, enabling the C→Y radical passage as implied in SPL(Bs) . To test this hypothesis, we adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to show that C74(Ca) is located at a highly flexible region. The repair of dinucleotide SP TpT by SPL(Ca) is eight-fold to 10-fold slower than that by SPL(Bs) ; the process also generates a large portion of the aborted product TpTSO2- . SPL(Ca) exhibits apparent (D V) kinetic isotope effects (KIEs) of ~6 and abnormally large competitive (D V/K) KIEs (~20), both of which are much larger than the KIEs observed for SPL(Bs) . All these observations indicate that SPL(Ca) possesses a flexible active site and readily undergoes conformational changes during catalysis.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
| | - Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
12
|
Heidinger L, Kneuttinger AC, Kashiwazaki G, Weber S, Carell T, Schleicher E. Direct observation of a deoxyadenosyl radical in an active enzyme environment. FEBS Lett 2016; 590:4489-4494. [PMID: 27878994 DOI: 10.1002/1873-3468.12498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/11/2022]
Abstract
5'-deoxyadenosyl radicals have been proposed as the first common intermediate in the molecular reaction mechanism of the family of radical S-adenosyl-l-methionine (SAM) enzymes. However, this radical species has not yet been directly observed in a catalytically active enzyme environment. In a reduced and SAM-containing C140A mutant of the spore photoproduct lyase from Geobacillus thermodenitrificans, a mutant with altered catalytic activity, we were able to identify an organic radical with pronounced hyperfine structure using electron paramagnetic resonance spectroscopy. Guided by quantum-chemical computations at the density functional theory level of theory, this radical could be tentatively assigned to a deoxyadenosyl radical, which provides first experimental evidence for this intermediate in the reaction mechanism of radical SAM enzymes.
Collapse
Affiliation(s)
- Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Andrea C Kneuttinger
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | - Gengo Kashiwazaki
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Thomas Carell
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
13
|
Hayes EC, Jian Y, Li L, Stoll S. EPR Study of UV-Irradiated Thymidine Microcrystals Supports Radical Intermediates in Spore Photoproduct Formation. J Phys Chem B 2016; 120:10923-10931. [DOI: 10.1021/acs.jpcb.6b06587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ellen C. Hayes
- Department
of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195, United States
| | - Yajun Jian
- Department
of Chemistry and Chemical Biology, 402 N. Blackford Street, LD 326, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Lei Li
- Department
of Chemistry and Chemical Biology, 402 N. Blackford Street, LD 326, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Stefan Stoll
- Department
of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Adhikari S, Lin G, Li L. Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions. J Org Chem 2016; 81:8570-6. [PMID: 27537985 DOI: 10.1021/acs.joc.6b01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA lesions may reduce the electron density at the nucleobases, making them prone to further modifications upon the alkaline treatment. The dominant DNA photolesion found in UV-irradiated bacterial endospores is a thymine dimer, 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP). Here we report a stepwise addition/elimination reaction in the SP hydrolysis product under strong basic conditions where a ureido group is added to the carboxyl moiety to form a cyclic amide, regenerating SP after eliminating a hydroxide ion. Direct amidation of carboxylic acids by reaction with amines in the presence of a catalyst is well documented; however, it is very rare for an amidation reaction to occur without activation. This uncatalyzed SP reverse reaction in aqueous solution is even more surprising because the carboxyl moiety is not a good electrophile due to the negative charge it carries. Examination of the base-catalyzed hydrolyses of two other saturated pyrimidine lesions, 5,6-dihydro-2'-deoxyuridine and pyrimidine (6-4) pyrimidone photoproduct, reveals that neither reaction is reversible even though all three hydrolysis reactions may share the same gem-diol intermediate. Therefore, the SP structure where the two thymine residues maintain a stacked conformation likely provides the needed framework enabling this highly unusual carboxyl addition/elimination reaction.
Collapse
Affiliation(s)
- Surya Adhikari
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States.,Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
15
|
Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J Am Chem Soc 2016; 138:7951-64. [PMID: 27276098 PMCID: PMC4929525 DOI: 10.1021/jacs.6b03605] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Fluorinated tyrosines
(FnY’s, n = 2
and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the
recently evolved M. jannaschii Y-tRNA synthetase/tRNA
pair. Class Ia RNRs require four redox active Y’s, a stable
Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356
in β and 731 and 730 in α) to initiate the radical-dependent
nucleotide reduction process. FnY (3,5;
2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β
and the X-ray structures of each resulting β with a diferric
cluster are reported and compared with wt-β2 crystallized under
the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1
Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide
reduction with activities that vary from 5% to 85% that of wt-β2.
Each FnY·-β2 has been characterized
by 9 and 130 GHz electron paramagnetic resonance and high-field electron
nuclear double resonance spectroscopies. The hyperfine interactions
associated with the 19F nucleus provide unique signatures
of each FnY· that are readily distinguishable
from unlabeled Y·’s. The variability of the abiotic FnY pKa’s
(6.4 to 7.8) and reduction potentials (−30 to +130 mV relative
to Y at pH 7.5) provide probes of enzymatic reactions proposed to
involve Y·’s in catalysis and to investigate the importance
and identity of hopping Y·’s within redox active proteins
proposed to protect them from uncoupled radical chemistry.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | - Paul A Stucky
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Troy A Stich
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
16
|
Abstract
Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.
Collapse
|
17
|
Setlow P, Li L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem Photobiol 2015; 91:1263-90. [PMID: 26265564 PMCID: PMC4631623 DOI: 10.1111/php.12506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
18
|
Benjdia A, Heil K, Winkler A, Carell T, Schlichting I. Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chem Commun (Camb) 2015; 50:14201-4. [PMID: 25285338 DOI: 10.1039/c4cc05158k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radical SAM enzyme, spore photoproduct lyase, requires an H-atom transfer (HAT) pathway to catalyze DNA repair. By rational engineering, we demonstrate that it is possible to rewire its HAT pathway, a first step toward the development of novel catalysts based on the radical SAM enzyme scaffold.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Spore photoproduct lyase (SPL) repairs 5-thyminyl-5,6-dihydrothymine, a thymine dimer that is also called the spore photoproduct (SP), in germinating endospores. SPL is a radical S-adenosylmethionine (SAM) enzyme, utilizing the 5'-deoxyadenosyl radical generated by SAM reductive cleavage reaction to revert SP to two thymine residues. Here we review the current progress in SPL mechanistic studies. Protein radicals are known to be involved in SPL catalysis; however, how these radicals are quenched to close the catalytic cycle is under debate.
Collapse
Affiliation(s)
- Linlin Yang
- From the Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202 and
| | - Lei Li
- From the Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202 and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), Indianapolis, Indiana 46202
| |
Collapse
|
20
|
Wang J, Woldring RP, Román-Meléndez GD, McClain AM, Alzua BR, Marsh ENG. Recent advances in radical SAM enzymology: new structures and mechanisms. ACS Chem Biol 2014; 9:1929-38. [PMID: 25009947 PMCID: PMC4168785 DOI: 10.1021/cb5004674] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The radical S-adenosylmethionine
(SAM) superfamily of enzymes catalyzes
an amazingly diverse variety of reactions ranging from simple hydrogen
abstraction to complicated multistep rearrangements and insertions.
The reactions they catalyze are important for a broad range of biological
functions, including cofactor and natural product biosynthesis, DNA
repair, and tRNA modification. Generally conserved features of the
radical SAM superfamily include a CX3CX2C motif
that binds an [Fe4S4] cluster essential for
the reductive cleavage of SAM. Here, we review recent advances in
our understanding of the structure and mechanisms of these enzymes
that, in some cases, have overturned widely accepted mechanisms.
Collapse
Affiliation(s)
- Jiarui Wang
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rory P. Woldring
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Alan M. McClain
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian R. Alzua
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Nicolet Y, Zeppieri L, Amara P, Fontecilla-Camps JC. Crystal Structure of Tryptophan Lyase (NosL): Evidence for Radical Formation at the Amino Group of Tryptophan. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Nicolet Y, Zeppieri L, Amara P, Fontecilla-Camps JC. Crystal Structure of Tryptophan Lyase (NosL): Evidence for Radical Formation at the Amino Group of Tryptophan. Angew Chem Int Ed Engl 2014; 53:11840-4. [DOI: 10.1002/anie.201407320] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/13/2014] [Indexed: 12/23/2022]
|
23
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 591] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
24
|
Singh I, Lian Y, Li L, Georgiadis MM. The structure of an authentic spore photoproduct lesion in DNA suggests a basis for recognition. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:752-9. [PMID: 24598744 PMCID: PMC3949526 DOI: 10.1107/s1399004713032987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/05/2013] [Indexed: 11/12/2022]
Abstract
The spore photoproduct lesion (SP; 5-thymine-5,6-dihydrothymine) is the dominant photoproduct found in UV-irradiated spores of some bacteria such as Bacillus subtilis. Upon spore germination, this lesion is repaired in a light-independent manner by a specific repair enzyme: the spore photoproduct lyase (SP lyase). In this work, a host-guest approach in which the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase (MMLV RT) serves as the host and DNA as the guest was used to determine the crystal structures of complexes including 16 bp oligonucleotides with and without the SP lesion at 2.14 and 1.72 Å resolution, respectively. In contrast to other types of thymine-thymine lesions, the SP lesion retains normal Watson-Crick hydrogen bonding to the adenine bases of the complementary strand, with shorter hydrogen bonds than found in the structure of the undamaged DNA. However, the lesion induces structural changes in the local conformation of what is otherwise B-form DNA. The region surrounding the lesion differs significantly in helical form from B-DNA, and the minor groove is widened by almost 3 Å compared with that of the undamaged DNA. Thus, these unusual structural features associated with SP lesions may provide a basis for recognition by the SP lyase.
Collapse
Affiliation(s)
- Isha Singh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yajun Lian
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Lei Li
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T. Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions. Photochem Photobiol 2013; 90:1-14. [PMID: 24354557 DOI: 10.1111/php.12197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
Direct repair of UV-induced DNA lesions represents an elegant method for many organisms to deal with these highly mutagenic and cytotoxic compounds. Although the participating proteins are structurally well investigated, the exact repair mechanism of the photolyase enzymes remains a vivid subject of current research. In this review, we summarize and highlight the recent contributions to this exciting field.
Collapse
Affiliation(s)
- Andrea Christa Kneuttinger
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Gengo Kashiwazaki
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Stefan Prill
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Korbinian Heil
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Markus Müller
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Thomas Carell
- Center for Integrated Protein Sciences at the Department of Chemistry, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
26
|
Vatansever F, Ferraresi C, de Sousa MVP, Yin R, Rineh A, Sharma SK, Hamblin MR. Can biowarfare agents be defeated with light? Virulence 2013; 4:796-825. [PMID: 24067444 PMCID: PMC3925713 DOI: 10.4161/viru.26475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023] Open
Abstract
Biological warfare and bioterrorism is an unpleasant fact of 21st century life. Highly infectious and profoundly virulent diseases may be caused in combat personnel or in civilian populations by the appropriate dissemination of viruses, bacteria, spores, fungi, or toxins. Dissemination may be airborne, waterborne, or by contamination of food or surfaces. Countermeasures may be directed toward destroying or neutralizing the agents outside the body before infection has taken place, by destroying the agents once they have entered the body before the disease has fully developed, or by immunizing susceptible populations against the effects. A range of light-based technologies may have a role to play in biodefense countermeasures. Germicidal UV (UVC) is exceptionally active in destroying a wide range of viruses and microbial cells, and recent data suggests that UVC has high selectivity over host mammalian cells and tissues. Two UVA mediated approaches may also have roles to play; one where UVA is combined with titanium dioxide nanoparticles in a process called photocatalysis, and a second where UVA is combined with psoralens (PUVA) to produce "killed but metabolically active" microbial cells that may be particularly suitable for vaccines. Many microbial cells are surprisingly sensitive to blue light alone, and blue light can effectively destroy bacteria, fungi, and Bacillus spores and can treat wound infections. The combination of photosensitizing dyes such as porphyrins or phenothiaziniums and red light is called photodynamic therapy (PDT) or photoinactivation, and this approach cannot only kill bacteria, spores, and fungi, but also inactivate viruses and toxins. Many reports have highlighted the ability of PDT to treat infections and stimulate the host immune system. Finally pulsed (femtosecond) high power lasers have been used to inactivate pathogens with some degree of selectivity. We have pointed to some of the ways light-based technology may be used to defeat biological warfare in the future.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
| | - Cleber Ferraresi
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Electro-thermo-phototherapy; Department of Physical Therapy; Federal University of São Carlos; São Paulo, Brazil
- Post-Graduation Program in Biotechnology; Federal University of São Carlos; São Paulo, Brazil
- Optics Group; Physics Institute of Sao Carlos; University of São Paulo; São Carlos, Brazil
| | - Marcelo Victor Pires de Sousa
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Laboratory of Radiation Dosimetry and Medical Physics; Institute of Physics, São Paulo University, São Paulo, Brazil
| | - Rui Yin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Department of Dermatology; Southwest Hospital; Third Military Medical University; Chongqing, PR China
| | - Ardeshir Rineh
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- School of Chemistry; University of Wollongong; Wollongong, NSW Australia
| | - Sulbha K Sharma
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Raja Ramanna Centre for Advanced Technology; Indore, India
| | - Michael R Hamblin
- Wellman Center for Photomedicine; Massachusetts General Hospital; Boston MA USA
- Harvard Medical School; Department of Dermatology; Boston, MA USA
- Harvard-MIT Division of Health Sciences and Technology; Cambridge, MA USA
| |
Collapse
|
27
|
Yang L, Li L. The enzyme-mediated direct reversal of a dithymine photoproduct in germinating endospores. Int J Mol Sci 2013; 14:13137-53. [PMID: 23799365 PMCID: PMC3742179 DOI: 10.3390/ijms140713137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022] Open
Abstract
Spore photoproduct lyase (SPL) repairs a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct, or SP, in germinating endospores. SP is the exclusive DNA photo-damaging product found in endospores; its generation and swift repair by SPL are responsible for the spores’ extremely high UV resistance. Early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair SP in the absence of light. Recently, it has been established that SPL belongs to the radical S-adenosylmethionine (SAM) superfamily. The enzymes in this superfamily utilize a tri-cysteine CXXXCXXC motif to bind a [4Fe-4S] cluster. The cluster provides an electron to the S-adenosylmethionine (SAM) to reductively cleave its C5′-S bond, generating a reactive 5′-deoxyadenosyl (5′-dA) radical. This 5′-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. The H atom donor is suggested to be a conserved cysteine141 in B. subtilis SPL; the resulting thiyl radical likely interacts with a neighboring tyrosine99 before oxidizing the 5′-dA to 5′-dA radical and, subsequently, regenerating SAM. These findings suggest SPL to be the first enzyme in the large radical SAM superfamily (>44,000 members) to utilize a radical transfer pathway for catalysis; its study should shed light on the mechanistic understanding of the SAM regeneration process in other members of the superfamily.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA; E-Mail:
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, IN 46202, USA; E-Mail:
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-317-278-2202; Fax: +1-317-274-4701
| |
Collapse
|