1
|
Gampala S, Moon HR, Wireman R, Peil J, Kiran S, Mitchell DK, Brewster K, Mang H, Masters A, Bach C, Smith-Kinnamen W, Doud EH, Rai R, Mosley AL, Quinney SK, Clapp DW, Hamdouchi C, Wikel J, Zhang C, Han B, Georgiadis MM, Kelley MR, Fishel ML. New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacol Res 2024; 201:107092. [PMID: 38311014 PMCID: PMC10962275 DOI: 10.1016/j.phrs.2024.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacqueline Peil
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Kiran
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dana K Mitchell
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kylee Brewster
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Henry Mang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andi Masters
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christine Bach
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Whitney Smith-Kinnamen
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H Doud
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ratan Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L Mosley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sara K Quinney
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chafiq Hamdouchi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James Wikel
- Apexian Pharmaceuticals, Indianapolis, IN, USA
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biohealth Informatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Mijit M, Kpenu E, Chowdhury NN, Gampala S, Wireman R, Liu S, Babb O, Georgiadis MM, Wan J, Fishel ML, Kelley MR. In vitro and In vivo evidence demonstrating chronic absence of Ref-1 Cysteine 65 impacts Ref-1 folding configuration, redox signaling, proliferation and metastasis in pancreatic cancer. Redox Biol 2024; 69:102977. [PMID: 38056311 PMCID: PMC10749280 DOI: 10.1016/j.redox.2023.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ref-1/APE1 (Redox Effector/Apurinic Endonuclease 1) is a multifunctional enzyme that serves as a redox factor for several transcription factors (TFs), e.g., NF-kB, HIF-1α, which in an oxidized state fail to bind DNA. Conversion of these TFs to a reduced state serves to regulate various biological responses such as cell growth, inflammation, and cellular metabolism. The redox activity involves a thiol exchange reaction for which Cys65 (C65) serves as the nucleophile. Using CRISPR editing in human pancreatic ductal adenocarcinoma (PDAC) cells, we changed C65 to Ala (C65A) in Ref-1 to evaluate alteration of Ref-1 redox dynamics as well as chronic loss of Ref-1 redox activity on cell signaling pathways, specifically those regulated by NF-kB and HIF-1α. The redox activity of Ref-1 requires partial unfolding to expose C65, which is buried in the folded structure. Labeling of Ref-1 with polyethylene glycol-maleimide (PEGm) provides a readout of reduced Cys residues in Ref-1 and thereby an assessment of partial unfolding in Ref-1. In comparing Ref-1WT vs Ref-1C65A cell lines, we found an altered distribution of oxidized versus reduced states of Ref-1. Accordingly, activation of NF-kB and HIF-1α in Ref-1C65A lines was significantly lower compared to Ref-1WT lines. The bioinformatic data revealed significant downregulation of metabolic pathways including OXPHOS in Ref-1C65A expressing clones compared to Ref-1WT line. Ref-1C65A also demonstrated reduced cell proliferation and use of tricarboxylic acid (TCA) substrates compared to Ref-1WT lines. A subcutaneous as well as PDAC orthotopic in vivo model demonstrated a significant reduction in tumor size, weight, and growth in the Ref-1C65A lines compared to the Ref-1WT lines. Moreover, mice implanted with Ref-1C65A redox deficient cells demonstrate significantly reduced metastatic burden to liver and lung compared to mice implanted with Ref-1 redox proficient cells. These results from the current study provide direct evidence that the chronic absence of Cys65 in Ref-1 results in redox inactivity of the protein in human PDAC cells, and subsequent biological results confirm a critical involvement of Ref-1 redox signaling and tumorigenic phenotype.
Collapse
Affiliation(s)
- M Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N N Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - S Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - O Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M M Georgiadis
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - J Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
4
|
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J Pharmacol Exp Ther 2023; 386:15-25. [PMID: 37142441 PMCID: PMC10289243 DOI: 10.1124/jpet.122.001563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Song
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahmut Mijit
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Rai R, Dawodu OI, Johnson SM, Vilseck JZ, Kelley MR, Ziarek JJ, Georgiadis MM. Chemically induced partial unfolding of the multifunctional Apurinic/apyrimidinic endonuclease 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547112. [PMID: 37425839 PMCID: PMC10327033 DOI: 10.1101/2023.06.29.547112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Targeting of the multifunctional enzyme apurinic/apyrimidinic endonuclease I/redox factor 1 (APE1) has produced small molecule inhibitors of both its endonuclease and redox activities. While one of the small molecules, the redox inhibitor APX3330, completed a Phase I clinical trial for solid tumors and a Phase II clinical trial for Diabetic Retinopathy/Diabetic Macular Edema, the mechanism of action for this drug has yet to be fully understood. Here, we demonstrate through HSQC NMR studies that APX3330 induces chemical shift perturbations (CSPs) of both surface and internal residues in a concentration-dependent manner, with a cluster of surface residues defining a small pocket on the opposite face from the endonuclease active site of APE1. Furthermore, APX3330 induces partial unfolding of APE1 as evidenced by a time-dependent loss of chemical shifts for approximately 35% of the residues within APE1 in the HSQC NMR spectrum. Notably, regions that are partially unfolded include adjacent strands within one of two beta sheets that comprise the core of APE1. One of the strands comprises residues near the N-terminal region and a second strand is contributed by the C-terminal region of APE1, which serves as a mitochondrial targeting sequence. These terminal regions converge within the pocket defined by the CSPs. In the presence of a duplex DNA substrate mimic, removal of excess APX3330 resulted in refolding of APE1. Our results are consistent with a reversible mechanism of partial unfolding of APE1 induced by the small molecule inhibitor, APX3330, defining a novel mechanism of inhibition.
Collapse
|
6
|
Chen L, Lu H, Peng D, Cao LL, Ballout F, Srirmajayam K, Chen Z, Bhat A, Wang TC, Capobianco A, Que J, McDonald OG, Zaika A, Zhang S, El-Rifai W. Activation of NOTCH signaling via DLL1 is mediated by APE1-redox-dependent NF-κB activation in oesophageal adenocarcinoma. Gut 2023; 72:421-432. [PMID: 35750470 PMCID: PMC9789198 DOI: 10.1136/gutjnl-2022-327076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Oesophageal adenocarcinoma (EAC) arises in the setting of Barrett's oesophagus, an intestinal metaplastic precursor lesion that can develop in patients with chronic GERD. Here, we investigated the role of acidic bile salts, the mimicry of reflux, in activation of NOTCH signaling in EAC. DESIGN This study used public databases, EAC cell line models, L2-IL1β transgenic mouse model and human EAC tissue samples to identify mechanisms of NOTCH activation under reflux conditions. RESULTS Analysis of public databases demonstrated significant upregulation of NOTCH signaling components in EAC. In vitro studies demonstrated nuclear accumulation of active NOTCH1 cleaved fragment (NOTCH intracellular domain) and upregulation of NOTCH targets in EAC cells in response to reflux conditions. Additional investigations identified DLL1 as the predominant ligand contributing to NOTCH1 activation under reflux conditions. We discovered a novel crosstalk between APE1 redox function, reflux-induced inflammation and DLL1 upregulation where NF-κB can directly bind to and induce the expression of DLL1. The APE1 redox function was crucial for activation of the APE1-NF-κB-NOTCH axis and promoting cancer cell stem-like properties in response to reflux conditions. Overexpression of APE1 and DLL1 was detected in gastro-oesophageal junctions of the L2-IL1ß transgenic mouse model and human EAC tissue microarrays. DLL1 high levels were associated with poor overall survival in patients with EAC. CONCLUSION These findings underscore a unique mechanism that links redox balance, inflammation and embryonic development (NOTCH) into a common pro-tumorigenic pathway that is intrinsic to EAC cells.
Collapse
Affiliation(s)
- Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Long Long Cao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Farah Ballout
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kannappan Srirmajayam
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajaz Bhat
- Sidra Medicine, Doha, Ad Dawhah, Qatar
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Anthony Capobianco
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Manage SAH, Fleming AM, Chen HN, Burrows CJ. Cysteine Oxidation to Sulfenic Acid in APE1 Aids G-Quadruplex Binding While Compromising DNA Repair. ACS Chem Biol 2022; 17:2583-2594. [PMID: 36037088 PMCID: PMC9931449 DOI: 10.1021/acschembio.2c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apurinic/apyrimidinic endonuclease-1 (APE1) is a base excision repair (BER) enzyme that is also engaged in transcriptional regulation. Previous work demonstrated that the enzymatic stalling of APE1 on a promoter G-quadruplex (G4) recruits transcription factors during oxidative stress for gene regulation. Also, during oxidative stress, cysteine (Cys) oxidation is a post-translational modification (PTM) that can change a protein's function. The current study provides a quantitative survey of cysteine oxidation to sulfenic acid in APE1 and how this PTM at specific cysteine residues affects the function of APE1 toward the NEIL3 gene promoter G4 bearing an abasic site. Of the seven cysteine residues in APE1, five (C65, C93, C208, C296, and C310) were prone to carbonate radical anion oxidation to yield sulfenic acids that were identified and quantified by mass spectrometry. Accordingly, five Cys-to-serine (Ser) mutants of APE1 were prepared and found to have attenuated levels of endonuclease activity, depending on the position, while KD values generally decreased for G4 binding, indicating greater affinity. These data support the concept that cysteine oxidation to sulfenic acid can result in modified APE1 that enhances G4 binding at the expense of endonuclease activity during oxidative stress. Cysteine oxidation to sulfenic acid residues should be considered as one of the factors that may trigger a switch from base excision repair activity to transcriptional modulation by APE1.
Collapse
Affiliation(s)
- Shereen A. Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Hsiao-Nung Chen
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
8
|
Antoniali G, Dalla E, Mangiapane G, Zhao X, Jing X, Cheng Y, De Sanctis V, Ayyildiz D, Piazza S, Li M, Tell G. APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b. Cell Mol Life Sci 2022; 79:446. [PMID: 35876890 PMCID: PMC9314295 DOI: 10.1007/s00018-022-04443-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.
Collapse
Affiliation(s)
- Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Xiaolong Zhao
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xinming Jing
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Veronica De Sanctis
- Next Generation Sequence Facility, Department CIBIO, University of Trento, Trento, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, Department CIBIO, University of Trento, Trento, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
9
|
Mijit M, Wireman R, Armstrong L, Gampala S, Hassan Z, Schneeweis C, Schneider G, Zhang C, Fishel ML, Kelley MR. RelA Is an Essential Target for Enhancing Cellular Responses to the DNA Repair/Ref-1 Redox Signaling Protein and Restoring Perturbated Cellular Redox Homeostasis in Mouse PDAC Cells. Front Oncol 2022; 12:826617. [PMID: 35402225 PMCID: PMC8988139 DOI: 10.3389/fonc.2022.826617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a poor response to current treatment regimens. The multifunctional DNA repair-redox signaling protein Ref-1 has a redox signaling function that activates several transcriptional factors (TFs) including NF-κB (RelA), STAT3, AP-1. These have been implicated in signaling in PDAC and associated with cancer progression and therapy resistance. Numerous studies have shown a role for RelA in PDAC inflammatory responses and therapy resistance, little is known as to how these inflammatory responses are modulated through Ref-1 redox signaling pathways during pancreatic pathogenesis. RelA and STAT3 are two major targets of Ref-1 and are important in PDAC pathogenesis. To decipher the mechanistic role of RelA in response to Ref-1 inhibition, we used PDAC cells (KC3590) from a genetically engineered Kras G12D-driven mouse model that also is functionally deficient for RelA (Parent/Vector) or KC3590 cells with fully functional RelA added back (clone 13; C13). We demonstrated that RelA deficient cells are more resistant to Ref-1 redox inhibitors APX3330, APX2009, and APX2014, and their sensitivity is restored in the RelA proficient cells. Knockdown of STAT3 did not change cellular sensitivity to Ref-1 redox inhibitors in either cell type. Gene expression analysis demonstrated that Ref-1 inhibitors significantly decreased IL-8, FOSB, and c-Jun when functional RelA is present. We also demonstrated that PRDX1, a known Ref-1 redox modulator, contributes to Ref-1 inhibitor cellular response. Knockdown of PRDX1 when functional RelA is present resulted in dramatically increased PDAC killing in response to Ref-1 inhibitors. The enhanced cell killing was not due to increased intracellular ROS production. Although Ref-1 inhibition decreased the NADP/NADPH ratio in the cells, the addition of PRDX1 knockdown did not further this redox imbalance. This data suggests that the mechanism of cell killing following Ref-1 inhibition is at least partially mediated through RelA and not STAT3. Further imbalancing of the redox signaling through disruption of the PRDX1-Ref-1 interaction may have therapeutic implications. Our data further support a pivotal role of RelA in mediating Ref-1 redox signaling in PDAC cells with the Kras G12D genotype and provide novel therapeutic strategies to combat PDAC drug resistance.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randall Wireman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lee Armstrong
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zonera Hassan
- Department of Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Schneeweis
- Department of Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Guenter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biohealth Informatics, Indiana University-Purdue University (IUPUI), Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
10
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
11
|
Barros CCDS, Freitas RDA, Miguel MCDC, Dantas da Silveira ÉJ. DNA damage through oxidative stress is an important event in oral leukoplakia. Arch Oral Biol 2022; 135:105359. [DOI: 10.1016/j.archoralbio.2022.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
12
|
Oliveira TT, Fontes-Dantas FL, de Medeiros Oliveira RK, Pinheiro DML, Coutinho LG, da Silva VL, de Souza SJ, Agnez-Lima LF. Chemical Inhibition of Apurinic-Apyrimidinic Endonuclease 1 Redox and DNA Repair Functions Affects the Inflammatory Response via Different but Overlapping Mechanisms. Front Cell Dev Biol 2021; 9:731588. [PMID: 34616737 PMCID: PMC8488223 DOI: 10.3389/fcell.2021.731588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | | | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Vandeclecio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
13
|
Inhibition of APE1/Ref-1 for Neovascular Eye Diseases: From Biology to Therapy. Int J Mol Sci 2021; 22:ijms221910279. [PMID: 34638620 PMCID: PMC8508814 DOI: 10.3390/ijms221910279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR), neovascular age-related macular degeneration (nvAMD), retinopathy of prematurity (ROP) and other eye diseases are characterized by retinal and/or choroidal neovascularization, ultimately causing vision loss in millions of people worldwide. nvAMD and PDR are associated with aging and the number of those affected is expected to increase as the global median age and life expectancy continue to rise. With this increase in prevalence, the development of novel, orally bioavailable therapies for neovascular eye diseases that target multiple pathways is critical, since current anti-vascular endothelial growth factor (VEGF) treatments, delivered by intravitreal injection, are accompanied with tachyphylaxis, a high treatment burden and risk of complications. One potential target is apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1). The multifunctional protein APE1/Ref-1 may be targeted via inhibitors of its redox-regulating transcription factor activation activity to modulate angiogenesis, inflammation, oxidative stress response and cell cycle in neovascular eye disease; these inhibitors also have neuroprotective effects in other tissues. An APE1/Ref-1 small molecule inhibitor is already in clinical trials for cancer, PDR and diabetic macular edema. Efforts to develop further inhibitors are underway. APE1/Ref-1 is a novel candidate for therapeutically targeting neovascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal injections.
Collapse
|
14
|
Heisel C, Yousif J, Mijiti M, Charizanis K, Brigell M, Corson TW, Kelley MR. APE1/Ref-1 as a Novel Target for Retinal Diseases. JOURNAL OF CELLULAR SIGNALING 2021; 2:133-138. [PMID: 34322687 PMCID: PMC8315574 DOI: 10.33696/signaling.2.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
APE1/Ref-1 (also called Ref-1) has been extensively studied for its role in DNA repair and reduction-oxidation (redox) signaling. The review titled: “The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease” by Caston et. al. summarizes the molecular functions of Ref-1 and the role it plays in a number of diseases, with a specific focus on various types of cancer [1]. Previous studies have demonstrated that Ref-1 plays a critical role in regulating specific transcription factors (TFs) involved in a number of pathways, not only in cancer, but other disease indications as well. Disease indications of particular therapeutic interest include retinal vascular diseases such as diabetic retinopathy (DR), diabetic macular edema (DME), and neovascular age-related macular degeneration (nvAMD). While Ref-1 controls a number of TFs that are under redox regulation, three have been found to directly link cancer studies to retinal diseases; HIF-1α, NF-κB and STAT3. HIF-1α controls the expression of VEGF for angiogenesis while NF-κB and STAT3 regulate a number of known cytokines and factors involved in inflammation. These pathways are highly implicated and validated as major players in DR, DME and AMD. Therefore, findings in cancer studies for Ref-1 and its inhibition may be translated to these ocular diseases. This report discusses the path from cancer to the potential treatment of retinal disease, the Ref-1 redox signaling function as a possible target, and the current small molecules which have been identified to block this activity. One molecule, APX3330, is in clinical trials, while the others are in preclinical development. Inhibition of Ref-1 and its effects on inflammation and angiogenesis makes it a potential new therapeutic target for the treatment of retinal vascular diseases. This commentary summarizes the retinal-relevant research that built on the results summarized in the review by Caston et. al. [1].
Collapse
Affiliation(s)
- Curtis Heisel
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Jonah Yousif
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Mahmut Mijiti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | | - Timothy W Corson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
16
|
Hu J, Wang Y, Yuan Y. Inhibitors of APE1 redox function effectively inhibit γ-herpesvirus replication in vitro and in vivo. Antiviral Res 2020; 185:104985. [PMID: 33271272 DOI: 10.1016/j.antiviral.2020.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
APE1 is a multi-functional protein with a redox function in its N-terminal domain and an apurinic/apyrimidinic endonuclease activity in the C-terminal domain. APE1 redox function plays an important role in regulating cell proliferation and survival through activating specific transcriptional activators. APE1 redox function is also found to be associated with some cancer occurrence. In this study, we demonstrated that APE1 redox function is essential for Epstein-Barr virus (EBV) lytic replication as the silencing of APE1 expression or treatment with APE1 redox inhibitors C10 and E3330 can inhibit EBV lytic replication and virion production. Furthermore, C10 and E3330 also inhibit MHV-68 replication in vitro and in vivo. C10 and E3330 were able to significantly reduce the loss of pulmonary alveoli and thickening of alveolar septa in mice caused by MHV-68 infection. Altogether, (i) APE1 redox function is validated as a new antiviral target; (ii) APE1 redox inhibitors, especially C10, have potentials to be used for the treatment of γ-herpesvirus infection and associated diseases; (iii) MHV-68 is validated to be a surrogate for the study of the pathogenesis and therapy of EBV and KSHV infection in vivo.
Collapse
Affiliation(s)
- Jiayuan Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Codrich M, Comelli M, Malfatti MC, Mio C, Ayyildiz D, Zhang C, Kelley MR, Terrosu G, Pucillo CEM, Tell G. Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair (Amst) 2019; 82:102675. [PMID: 31450087 PMCID: PMC7092503 DOI: 10.1016/j.dnarep.2019.102675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.
Collapse
Affiliation(s)
- Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Marina Comelli
- Laboratory of Bioenergetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Catia Mio
- Institute of Medical Genetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and Pharmacology & Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Giovanni Terrosu
- General Surgery and Transplantation Unit, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Carlo E M Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy.
| |
Collapse
|
18
|
Sun Y, Feng Y, Zhang G, Xu Y. The endonuclease APE1 processes miR-92b formation, thereby regulating expression of the tumor suppressor LDLR in cervical cancer cells. Ther Adv Med Oncol 2019; 11:1758835919855859. [PMID: 31320936 PMCID: PMC6624912 DOI: 10.1177/1758835919855859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Background The molecular mechanisms underlying cervical cancer require elucidation to identify novel therapeutic targets. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is a multifunctional apurinic/apyrimidinic (AP) endonuclease that influences the transcription of many cancer-related genes via microRNome regulation. Herein, we examine the role of miR-92b-3p (hereinafter miR-92b), whose processing may be regulated by APE1, in cervical cancer progression. Methods APE1's processing of miR-92b from its pri-miR form was measured by a quantitative reverse transcription polymerase chain reaction (qRT-PCR)-based ratio. APE1's endonuclease activity was measured with AP-site incision assays. APE1-DROSHA interaction was studied with immunofluorescence, confocal and proximity ligation analyses. The miR-92b's targeting of low-density lipoprotein receptor (LDLR) was investigated with luciferase reporter assays. The miR-92b mimics and shRNA-based miR-92b silencing, as well as LDLR overexpression and short interfering RNA (siRNA)-based LDLR silencing, were employed in CaSki and SiHa cervical cancer cells. Cell proliferation and chemosensitivity to paclitaxel and cisplatin were assayed. Cell-cycle progression and apoptosis were assessed by flow cytometry. Tumor growth was studied in a murine xenograft model. Results APE1's endonuclease activity, via association with the DROSHA-processing complex, is necessary for processing mature miR-92b, thereby regulating expression of miR-92b's direct target LDLR. The miR-92b promotes cell proliferation in vitro and in vivo, promotes cell-cycle progression, and reduces apoptosis and chemosensitivity. LDLR silencing recapitulated miR-92b's transformative effects, while LDLR overexpression rescued these effects. Conclusions APE1 enhances miR-92b processing, thereby suppressing LDLR expression and enhancing cervical carcinoma progression. Our identification of the novel APE1-miR-92b-LDLR axis improves our understanding of the complex pathogenesis of cervical carcinoma and reveals a novel therapeutic strategy for combating this disease.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Laboratory Medicine, the First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Kunming, Yunnan Province, China
| | - Yun Feng
- Department of Reproductive Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guiqian Zhang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Ya Xu
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| |
Collapse
|
19
|
Frossi B, Antoniali G, Yu K, Akhtar N, Kaplan MH, Kelley MR, Tell G, Pucillo CEM. Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination. J Biol Chem 2019; 294:5198-5207. [PMID: 30705092 DOI: 10.1074/jbc.ra118.006601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Indexed: 11/06/2022] Open
Abstract
The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.
Collapse
Affiliation(s)
- Barbara Frossi
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Kefei Yu
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, and
| | - Nahid Akhtar
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark H Kaplan
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark R Kelley
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gianluca Tell
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy,
| | - Carlo E M Pucillo
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy,
| |
Collapse
|
20
|
Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects pancreatic cancer cell survival. Sci Rep 2018; 8:13759. [PMID: 30214007 PMCID: PMC6137035 DOI: 10.1038/s41598-018-32034-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has reactive stroma that promotes tumor signaling, fibrosis, inflammation, and hypoxia, which activates HIF-1α to increase tumor cell metastasis and therapeutic resistance. Carbonic anhydrase IX (CA9) stabilizes intracellular pH following induction by HIF-1α. Redox effector factor-1 (APE1/Ref-1) is a multifunctional protein with redox signaling activity that converts certain oxidized transcription factors to a reduced state, enabling them to upregulate tumor-promoting genes. Our studies evaluate PDAC hypoxia responses and APE1/Ref-1 redox signaling contributions to HIF-1α-mediated CA9 transcription. Our previous studies implicated this pathway in PDAC cell survival under hypoxia. We expand those studies, comparing drug responses using patient-derived PDAC cells displaying differential hypoxic responses in 3D spheroid tumor-stroma models to characterize second generation APE1/Ref-1 redox signaling and CA9 inhibitors. Our data demonstrates that HIF-1α-mediated CA9 induction differs between patient-derived PDAC cells and that APE1/Ref-1 redox inhibition attenuates this induction by decreasing hypoxia-induced HIF-1 DNA binding. Dual-targeting of APE1/Ref-1 and CA9 in 3D spheroids demonstrated that this combination effectively kills PDAC tumor cells displaying drastically different levels of CA9. New APE1/Ref-1 and CA9 inhibitors were significantly more potent alone and in combination, highlighting the potential of combination therapy targeting the APE1-Ref-1 signaling axis with significant clinical potential.
Collapse
|
21
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
22
|
Sardar Pasha SPB, Sishtla K, Sulaiman RS, Park B, Shetty T, Shah F, Fishel ML, Wikel JH, Kelley MR, Corson TW. Ref-1/APE1 Inhibition with Novel Small Molecules Blocks Ocular Neovascularization. J Pharmacol Exp Ther 2018; 367:108-118. [PMID: 30076264 DOI: 10.1124/jpet.118.248088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 μM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 μM, APX2014: 5.0 μM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.
Collapse
Affiliation(s)
- Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Fenil Shah
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Melissa L Fishel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - James H Wikel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Mark R Kelley
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| |
Collapse
|
23
|
McIlwain DW, Fishel ML, Boos A, Kelley MR, Jerde TJ. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget 2018; 9:10962-10977. [PMID: 29541389 PMCID: PMC5834255 DOI: 10.18632/oncotarget.23493] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 01/23/2023] Open
Abstract
A key feature of prostate cancer progression is the induction and activation of survival proteins, including the Inhibitor of Apoptosis (IAP) family member survivin. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating oncogenic transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of oncogenic transcriptional activators NFĸB and STAT3 in survivin protein expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, we assessed selective inhibition of APE1/Ref-1's redox function as a novel method to halt prostate cancer cell growth and survival. Our study demonstrates that survivin and APE1/Ref-1 are significantly higher in human prostate cancer specimens compared to noncancerous controls and that APE1/Ref-1 redox-specific inhibition with small molecule inhibitor, APX3330 and a second-generation inhibitor, APX2009, decreases prostate cancer cell proliferation and induces cell cycle arrest. Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional activity, survivin mRNA and survivin protein levels. These data indicate that APE1/Ref-1 is a key regulator of survivin and a potentially viable target in prostate cancer.
Collapse
Affiliation(s)
- David W. McIlwain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa L. Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Boos
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
La Manna S, Lopez-Sanz L, Leone M, Brandi P, Scognamiglio PL, Morelli G, Novellino E, Gomez-Guerrero C, Marasco D. Structure-activity studies of peptidomimetics based on kinase-inhibitory region of suppressors of cytokine signaling 1. Biopolymers 2017; 110. [PMID: 29154500 DOI: 10.1002/bip.23082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022]
Abstract
Suppressors of Cytokine Signaling (SOCS) proteins are negative regulators of JAK proteins that are receptor-associated tyrosine kinases, which play key roles in the phosphorylation and subsequent activation of several transcription factors named STATs. Unlike the other SOCS proteins, SOCS1 and 3 show, in the N-terminal portion, a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Drug discovery processes of compounds based on KIR sequence demonstrated promising in functional in vitro and in inflammatory animal models and we recently developed a peptidomimetic called PS5, as lead compound. Here, we investigated the cellular ability of PS5 to mimic SOCS1 biological functions in vascular smooth muscle cells and simultaneously we set up a new binding assay for the screening and identification of JAK2 binders based on a SPR experiment that revealed more robust with respect to previous ELISAs. On this basis, we designed several peptidomimetics bearing new structural constraints that were analyzed in both affinities toward JAK2 and conformational features through Circular Dichroism and NMR spectroscopies. Introduced chemical modifications provided an enhancement of serum stabilities of new sequences that could aid the design of future mimetic molecules of SOCS1 as novel anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
| | - Laura Lopez-Sanz
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28040, Spain
| | - Marilisa Leone
- Institute of Biostructure and Bioimaging, National Research Council, Naples, 80134, Italy
| | - Paola Brandi
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Naples, 80134, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Group, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28040, Spain
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples "Federico II,", Naples, 80134, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Naples, 80134, Italy
| |
Collapse
|
25
|
Antoniali G, Serra F, Lirussi L, Tanaka M, D'Ambrosio C, Zhang S, Radovic S, Dalla E, Ciani Y, Scaloni A, Li M, Piazza S, Tell G. Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat Commun 2017; 8:797. [PMID: 28986522 PMCID: PMC5630600 DOI: 10.1038/s41467-017-00842-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/28/2017] [Indexed: 01/31/2023] Open
Abstract
Mammalian apurinic/apyrimidinic endonuclease 1 is a DNA repair enzyme involved in genome stability and expression of genes involved in oxidative stress responses, tumor progression and chemoresistance. However, the molecular mechanisms underlying the role of apurinic/apyrimidinic endonuclease 1 in these processes are still unclear. Recent findings point to a novel role of apurinic/apyrimidinic endonuclease 1 in RNA metabolism. Through the characterization of the interactomes of apurinic/apyrimidinic endonuclease 1 with RNA and other proteins, we demonstrate here a role for apurinic/apyrimidinic endonuclease 1 in pri-miRNA processing and stability via association with the DROSHA-processing complex during genotoxic stress. We also show that endonuclease activity of apurinic/apyrimidinic endonuclease 1 is required for the processing of miR-221/222 in regulating expression of the tumor suppressor PTEN. Analysis of a cohort of different cancers supports the relevance of our findings for tumor biology. We also show that apurinic/apyrimidinic endonuclease 1 participates in RNA-interactomes and protein-interactomes involved in cancer development, thus indicating an unsuspected post-transcriptional effect on cancer genes. APE1 plays an important role in the cellular response to oxidative stress, and mutations are linked to tumor progression and chemoresistance. Here, the authors characterize the interactions of APE1 with RNA and demonstrate a role in microRNA processing.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy
| | - Fabrizio Serra
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.,Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Lisa Lirussi
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.,Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Sykehusveien 27, Nordbyhagen, 1474, Norway
| | - Mikiei Tanaka
- Laboratory of Biochemistry, National Heart Lung and Blood Institute, National Institutes of Health, 50 South Drive, MSC-8012, Bethesda, MD, 20892-8012, USA
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM) National Research Council (CNR) of Italy, via Argine 1085, Naples, 80147, Italy
| | - Shiheng Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | | | - Emiliano Dalla
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy
| | - Yari Ciani
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM) National Research Council (CNR) of Italy, via Argine 1085, Naples, 80147, Italy
| | - Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Silvano Piazza
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy. .,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 18, Povo, Trento, TN, 38123, Italy.
| | - Gianluca Tell
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.
| |
Collapse
|
26
|
DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1. DNA Repair (Amst) 2017; 59:44-56. [PMID: 28946035 DOI: 10.1016/j.dnarep.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far.
Collapse
|
27
|
Pan S, Jang SY, Wang D, Liew SS, Li Z, Lee JS, Yao SQ. A Suite of “Minimalist” Photo-Crosslinkers for Live-Cell Imaging and Chemical Proteomics: Case Study with BRD4 Inhibitors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sijun Pan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Korea
| | - Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhengqiu Li
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Korea
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
28
|
Pan S, Jang SY, Wang D, Liew SS, Li Z, Lee JS, Yao SQ. A Suite of "Minimalist" Photo-Crosslinkers for Live-Cell Imaging and Chemical Proteomics: Case Study with BRD4 Inhibitors. Angew Chem Int Ed Engl 2017; 56:11816-11821. [PMID: 28783236 DOI: 10.1002/anie.201706076] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Indexed: 11/08/2022]
Abstract
Affinity-based probes (AfBPs) provide a powerful tool for large-scale chemoproteomic studies of drug-target interactions. The development of high-quality probes capable of recapitulating genuine drug-target engagement, however, could be challenging. "Minimalist" photo-crosslinkers, which contain an alkyl diazirine group and a chemically tractable tag, could alleviate such challenges, but few are currently available. Herein, we have developed new alkyl diazirine-containing photo-crosslinkers with different bioorthogonal tags. They were subsequently used to create a suite of AfBPs based on GW841819X (a small molecule inhibitor of BRD4). Through in vitro and in situ studies under conditions that emulated native drug-target interactions, we have obtained better insights into how a tag might affect the probe's performance. Finally, SILAC-based chemoproteomic studies have led to the discovery of a novel off-target, APEX1. Further studies showed GW841819X binds to APEX1 and caused up-regulation of endogenous DNMT1 expression under normoxia conditions.
Collapse
Affiliation(s)
- Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Danyang Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhengqiu Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
29
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
30
|
Guerreiro PS, Corvacho E, Costa JG, Saraiva N, Fernandes AS, Castro M, Miranda JP, Oliveira NG. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 2017; 90:561-571. [DOI: 10.1111/cbdd.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Eduardo Corvacho
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Nuno Saraiva
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
31
|
Zhong C, Xu M, Wang Y, Xu J, Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog 2017; 13:e1006289. [PMID: 28380040 PMCID: PMC5381946 DOI: 10.1371/journal.ppat.1006289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/11/2017] [Indexed: 01/04/2023] Open
Abstract
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. As a major AIDS-associated malignancy, Kaposi’s sarcoma (KS) is caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Currently there is no definitive cure for KS. In this study, we identified a cellular protein, namely APE1, as an effective therapeutic target for blocking KSHV replication and inhibiting the development of KS phenotypes. We showed that the redox function of APE1 is absolutely required for KSHV replication, virally induced cytokine secretion and angiogenesis. Blockade of APE1 expression or inhibition of APE1 redox activity led to inhibition of KSHV replication and reduction of cytokine release and angiogenesis. Furthermore, we identified a novel small molecular compound, C10, which exhibited specific inhibitory activity on APE1 redox function and was demonstrated to efficiently inhibit KSHV replication and paracrine-mediated KS phenotypes such as angiogenesis and cell invasion. As a potent inhibitor of APE1 redox, C10 not only has value in development of a novel therapeutics for KS, but also may be used in therapies for other human diseases such as leukemia, pancreatic cancer and macular degeneration.
Collapse
Affiliation(s)
- Canrong Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyang Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (YY); (JX)
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YY); (JX)
| |
Collapse
|
32
|
Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med Chem 2017; 25:2531-2544. [PMID: 28161249 DOI: 10.1016/j.bmc.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
33
|
Kelley MR, Wikel JH, Guo C, Pollok KE, Bailey BJ, Wireman R, Fishel ML, Vasko MR. Identification and Characterization of New Chemical Entities Targeting Apurinic/Apyrimidinic Endonuclease 1 for the Prevention of Chemotherapy-Induced Peripheral Neuropathy. J Pharmacol Exp Ther 2016; 359:300-309. [PMID: 27608656 DOI: 10.1124/jpet.116.235283] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially debilitating side effect of a number of chemotherapeutic agents. There are currently no U.S. Food and Drug Administration-approved interventions or prevention strategies for CIPN. Although the cellular mechanisms mediating CIPN remain to be determined, several lines of evidence support the notion that DNA damage caused by anticancer therapies could contribute to the neuropathy. DNA damage in sensory neurons after chemotherapy correlates with symptoms of CIPN. Augmenting apurinic/apyrimidinic endonuclease (APE)-1 function in the base excision repair pathway reverses this damage and the neurotoxicity caused by anticancer therapies. This neuronal protection is accomplished by either overexpressing APE1 or by using a first-generation targeted APE1 small molecule, E3330 [(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)methylene]-undecanoic acid; also called APX3330]. Although E3330 has been approved for phase 1 clinical trials (Investigational New Drug application number IND125360), we synthesized novel, second-generation APE1-targeted molecules and determined whether they would be protective against neurotoxicity induced by cisplatin or oxaliplatin while not diminishing the platins' antitumor effect. We measured various endpoints of neurotoxicity using our ex vivo model of sensory neurons in culture, and we determined that APX2009 [(2E)-2-[(3-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methylidene]-N,N-diethylpentanamide] is an effective small molecule that is neuroprotective against cisplatin and oxaliplatin-induced toxicity. APX2009 also demonstrated a strong tumor cell killing effect in tumor cells and the enhanced tumor cell killing was further substantiated in a more robust three-dimensional pancreatic tumor model. Together, these data suggest that the second-generation compound APX2009 is effective in preventing or reversing platinum-induced CIPN while not affecting the anticancer activity of platins.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - James H Wikel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Chunlu Guo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Karen E Pollok
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Randy Wireman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| | - Michael R Vasko
- Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.R.K., J.H.W., K.E.P., B.J.B., R.W., M.L.F.), and Department of Pharmacology and Toxicology (M.R.K., C.G., K.E.P.,M.L.F., M.R.V.), Indiana University School of Medicine, Indianapolis, Indiana; and ApeX Therapeutics, Indianapolis, Indiana (J.H.W.)
| |
Collapse
|
34
|
Logsdon DP, Grimard M, Luo M, Shahda S, Jiang Y, Tong Y, Yu Z, Zyromski N, Schipani E, Carta F, Supuran CT, Korc M, Ivan M, Kelley MR, Fishel ML. Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models. Mol Cancer Ther 2016; 15:2722-2732. [PMID: 27535970 DOI: 10.1158/1535-7163.mct-16-0253] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related mortality in the United States. Aggressive treatment regimens have not changed the disease course, and the median survival has just recently reached a year. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a multifunctional protein possessing a DNA repair function in base excision repair and the ability to reduce oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling activity, which regulates the transcriptional activation of hypoxia-inducible factor 1 alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as a part of the cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We hypothesized that modulating APE1/Ref-1 function will block activation of downstream transcription factors, STAT3 and HIF1α, interfering with the hypoxia-induced gene expression. We demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in decreased HIF1α-mediated induction of CA9. Furthermore, an ex vivo three-dimensional tumor coculture model demonstrates dramatic enhancement of APE1/Ref-1-induced cell killing upon dual targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development; therefore, these studies have the potential to direct novel PDAC therapeutic treatment. Mol Cancer Ther; 15(11); 2722-32. ©2016 AACR.
Collapse
Affiliation(s)
- Derek P Logsdon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michelle Grimard
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meihua Luo
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safi Shahda
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| | - Yanlin Jiang
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yan Tong
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhangsheng Yu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicholas Zyromski
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Fabrizio Carta
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Murray Korc
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa L Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| |
Collapse
|
35
|
Georgiadis MM, Chen Q, Meng J, Guo C, Wireman R, Reed A, Vasko MR, Kelley MR. Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons. DNA Repair (Amst) 2016; 41:32-41. [PMID: 27078577 DOI: 10.1016/j.dnarep.2016.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Abstract
Although chemotherapy-induced peripheral neuropathy (CIPN) affects approximately 5-60% of cancer patients, there are currently no treatments available in part due to the fact that the underlying causes of CIPN are not well understood. One contributing factor in CIPN may be persistence of DNA lesions resulting from treatment with platinum-based agents such as cisplatin. In support of this hypothesis, overexpression of the base excision repair (BER) enzyme, apurinic/apyrimidinic endonuclease 1 (APE1), reduces DNA damage and protects cultured sensory neurons treated with cisplatin. Here, we address stimulation of APE1's endonuclease through a small molecule, nicorandil, as a means of mimicking the beneficial effects observed for overexpression of APE1. Nicorandil, was identified through high-throughput screening of small molecule libraries and found to stimulate APE1 endonuclease activity by increasing catalytic efficiency approximately 2-fold. This stimulation is primarily due to an increase in kcat. To prevent metabolism of nicorandil, an approved drug in Europe for the treatment of angina, cultured sensory neurons were pretreated with nicorandil and daidzin, an aldehyde dehydrogenase 2 inhibitor, resulting in decreased DNA damage but not altered transmitter release by cisplatin. This finding suggests that activation of APE1 by nicorandil in cisplatin-treated cultured sensory neurons does not imbalance the BER pathway in contrast to overexpression of the kinetically faster R177A APE1. Taken together, our results suggest that APE1 activators can be used to reduce DNA damage induced by cisplatin in cultured sensory neurons, although further studies will be required to fully assess their protective effects.
Collapse
Affiliation(s)
- Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States; Department of Chemistry and Chemical Biology, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States.
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Jingwei Meng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Chunlu Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randall Wireman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - April Reed
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mark R Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
36
|
Aamann MD, Nørregaard R, Kristensen MLV, Stevnsner T, Frøkiær J. Unilateral ureteral obstruction induces DNA repair by APE1. Am J Physiol Renal Physiol 2015; 310:F763-F776. [PMID: 26608791 DOI: 10.1152/ajprenal.00613.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Ureteral obstruction is associated with oxidative stress and the development of fibrosis of the kidney parenchyma. Apurinic/apyrimidinic endonuclease (APE1) is an essential DNA repair enzyme for repair of oxidative DNA lesions and regulates several transcription factors. The aim of the present study was to investigate whether APE1 is regulated by acute (24 h) and chronic (7 days) unilateral ureteral obstruction (UUO). APE1 was expressed in essentially all kidney cells with the strongest expression in proximal tubuli. After 24 h of UUO, APE1 mRNA was induced in the cortex, inner stripe of the outer medulla (ISOM), and inner medulla (IM). In contrast, the APE1 protein level was not regulated in the IM and ISOM and only slightly increased in the cortex. APE1 DNA repair activity was not significantly changed. A different pattern of regulation was observed after 7 days of UUO, with an increase of the APE1 mRNA level in the cortex but not in the ISOM and IM. The APE1 protein level in the cortex, ISOM, and IM increased significantly. Importantly, we observed a significant increase in APE1 DNA repair activity in the cortex and IM. To confirm our model, we investigated heme oxygenase-1, collagen type I, fibronectin I, and α-smooth muscle actin levels. In vitro, we found the transcriptional regulatory activity of APE1 to be involved in the upregulation of the profibrotic factor connective tissue growth factor. In summary, APE1 is regulated at different levels after acute and chronic UUO. Thus, our results suggest that DNA repair activity is regulated in response to progressive (7 days) obstruction and that APE1 potentially could play a role in the development of fibrosis in kidney disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; .,Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Balasubramanian PK, Balupuri A, Cho SJ. Structural insights into the ligand-binding hot spots of APEX1: an in silico analysis. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
39
|
Fishel ML, Wu X, Devlin CM, Logsdon DP, Jiang Y, Luo M, He Y, Yu Z, Tong Y, Lipking KP, Maitra A, Rajeshkumar NV, Scandura G, Kelley MR, Ivan M. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem 2014; 290:3057-68. [PMID: 25492865 DOI: 10.1074/jbc.m114.621995] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications.
Collapse
Affiliation(s)
- Melissa L Fishel
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology,
| | - Xue Wu
- Microbiology and Immunology
| | | | | | - Yanlin Jiang
- From the Departments of Pediatrics, Wells Center for Pediatric Research
| | - Meihua Luo
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology
| | - Ying He
- From the Departments of Pediatrics, Wells Center for Pediatric Research
| | | | | | - Kelsey P Lipking
- Pathology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Anirban Maitra
- the Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - N V Rajeshkumar
- the Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - Mark R Kelley
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology
| | | |
Collapse
|
40
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
41
|
He H, Chen Q, Georgiadis MM. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I. Biochemistry 2014; 53:6520-9. [PMID: 25251148 PMCID: PMC4204877 DOI: 10.1021/bi500676p] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Apurinic/apyrimidinic
endonuclease I (APE1) is an essential base
excision repair enzyme that catalyzes a Mg2+-dependent
reaction in which the phosphodiester backbone is cleaved 5′
of an abasic site in duplex DNA. This reaction has been proposed to
involve either one or two metal ions bound to the active site. In
the present study, we report crystal structures of Mg2+, Mn2+, and apo-APE1 determined at 1.4, 2.2, and 1.65
Å, respectively, representing two of the highest resolution structures
yet reported for APE1. In our structures, a single well-ordered Mn2+ ion was observed coordinated by D70 and E96; the Mg2+ site exhibited disorder modeled as two closely positioned
sites coordinated by D70 and E96 or E96 alone. Direct metal binding
analysis of wild-type, D70A, and E96A APE1, as assessed by differential
scanning fluorimetry, indicated a role for D70 and E96 in binding
of Mg2+ or Mn2+ to APE1. Consistent with the
disorder exhibited by Mg2+ bound to the active site, two
different conformations of E96 were observed coordinated to Mg2+. A third conformation for E96 in the apo structure is similar
to that observed in the APE1–DNA–Mg2+ complex
structure. Thus, binding of Mg2+ in three different positions
within the active site of APE1 in these crystal structures corresponds
directly with three different conformations of E96. Taken together,
our results are consistent with the initial capture of metal by D70
and E96 and repositioning of Mg2+ facilitated by the structural
plasticity of E96 in the active site.
Collapse
Affiliation(s)
- Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
42
|
Zhao M, Chai XDYQ, Han J, Gui GF, Yuan R, Zhuo Y. A reagentless electrochemiluminescent immunosensor for apurinic/apyrimidinic endonuclease 1 detection based on the new Ru(bpy)32+/bi-arginine system. Anal Chim Acta 2014; 846:36-43. [DOI: 10.1016/j.aca.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
43
|
Kelley MR, Jiang Y, Guo C, Reed A, Meng H, Vasko MR. Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLoS One 2014; 9:e106485. [PMID: 25188410 PMCID: PMC4154694 DOI: 10.1371/journal.pone.0106485] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Although chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of platinum drugs, the mechanisms of this toxicity remain unknown. Previous work in our laboratory suggests that cisplatin-induced CIPN is secondary to DNA damage which is susceptible to base excision repair (BER). To further examine this hypothesis, we studied the effects of cisplatin, oxaliplatin, and carboplatin on cell survival, DNA damage, ROS production, and functional endpoints in rat sensory neurons in culture in the absence or presence of reduced expression of the BER protein AP endonuclease/redox factor-1 (APE1). Using an in situ model of peptidergic sensory neuron function, we examined the effects of the platinum drugs on hind limb capsaicin-evoked vasodilatation. Exposing sensory neurons in culture to the three platinum drugs caused a concentration-dependent increase in apoptosis and cell death, although the concentrations of carboplatin were 10 fold higher than cisplatin. As previously observed with cisplatin, oxaliplatin and carboplatin also increased DNA damage as indicated by an increase in phospho-H2AX and reduced the capsaicin-evoked release of CGRP from neuronal cultures. Both cisplatin and oxaliplatin increased the production of ROS as well as 8-oxoguanine DNA adduct levels, whereas carboplatin did not. Reducing levels of APE1 in neuronal cultures augmented the cisplatin and oxaliplatin induced toxicity, but did not alter the effects of carboplatin. Using an in vivo model, systemic injection of cisplatin (3 mg/kg), oxaliplatin (3 mg/kg), or carboplatin (30 mg/kg) once a week for three weeks caused a decrease in capsaicin-evoked vasodilatation, which was delayed in onset. The effects of cisplatin on capsaicin-evoked vasodilatation were attenuated by chronic administration of E3330, a redox inhibitor of APE1 that serendipitously enhances APE1 DNA repair activity in sensory neurons. These outcomes support the importance of the BER pathway, and particularly APE1, in sensory neuropathy caused by cisplatin and oxaliplatin, but not carboplatin and suggest that augmenting DNA repair could be a therapeutic target for CIPN.
Collapse
Affiliation(s)
- Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana, United States of America
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Yanlin Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana, United States of America
| | - Chunlu Guo
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - April Reed
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana, United States of America
| | - Hongdi Meng
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael R. Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
44
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
45
|
Li Y, Liu X, Zhou T, Kelley MR, Edwards P, Gao H, Qiao X. Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularization. Redox Biol 2014; 2:485-94. [PMID: 24624338 PMCID: PMC3949093 DOI: 10.1016/j.redox.2014.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 02/06/2023] Open
Abstract
The effectiveness of current treatment for age related macular degeneration (AMD) by targeting one molecule is limited due to its multifactorial nature and heterogeneous pathologies. Treatment strategy to target multiple signaling pathways or pathological components in AMD pathogenesis is under investigation for better clinical outcome. Inhibition of the redox function of apurinic endonuclease 1/redox factor-1 (APE1) was found to suppress endothelial angiogenesis and promote neuronal cell recovery, thereby may serve as a potential treatment for AMD. In the current study, we for the first time have found that a specific inhibitor of APE1 redox function by a small molecule compound E3330 regulates retinal pigment epithelium (RPEs) cell response to oxidative stress. E3330 significantly blocked sub-lethal doses of oxidized low density lipoprotein (oxLDL) induced proliferation decline and senescence advancement of RPEs. At the same time, E3330 remarkably decreased the accumulation of intracellular reactive oxygen species (ROS) and down-regulated the productions of monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF), as well as attenuated the level of nuclear factor-κB (NF-κB) p65 in RPEs. A panel of stress and toxicity responsive transcription factors that were significantly upregulated by oxLDL was restored by E3330, including Nrf2/Nrf1, p53, NF-κB, HIF1, CBF/NF-Y/YY1, and MTF-1. Further, a single intravitreal injection of E3330 effectively reduced the progression of laser-induced choroidal neovascularization (CNV) in mouse eyes. These data revealed that E3330 effectively rescued RPEs from oxidative stress induced senescence and dysfunctions in multiple aspects in vitro, and attenuated laser-induced damages to RPE–Bruch׳s membrane complex in vivo. Together with its previously established anti-angiogenic and neuroprotection benefits, E3330 is implicated for potential use for AMD treatment. Specific inhibition of APE1/Ref-1 redox function with E3330 blocked RPE proliferation decline and senescence-like phenotype advancement induced by oxLDL. E3330 suppressed intracellular ROS, down-regulated the MCP-1 and VEGF production, and reduced nuclear NF-κB p65 in RPEs. E3330 repressed the redox sensitive transcription factors Nrf2/Nrf1, p53, NF-κB, HIF1, CBF/NF-Y/YY1, and MTF-1 that stimulated by oxLDL in RPEs. Intravitreal injection of E3330 markedly reduced the laser-induced CNV in mouse eyes. E3330 holds great potential for the management of AMD.
Collapse
Key Words
- AMD, age related macular degeneration
- AP-1, activator protein 1
- APE1, apurinic endonuclease 1/redox factor-1
- APE1/Ref-1redox function
- Age-related macular degeneration.
- AhR, aryl hydrocarbon receptor
- ApoE, apolipoprotein E
- CBF/NF-Y/YY1, CCAAT binding factor/nuclear factor-Y/Yin Yang 1
- CECs, choroidal endothelial cells
- CNV, choroidal neovascularization
- DCFH-DA, dichlorodihydrofluorescin diacetate
- DMSO, dimethylsulphoxide
- E3330
- Fluc, firefly luciferase
- HIF-1α, hypoxia inducible factor-1α
- HSF1, heat-shock factor 1
- IκB-α, inhibitory NF-κB-α
- MCP-1, monocyte chemoattractant protein-1
- MTF1, metal regulatory transcription factor 1
- NF-κB, nuclear factor-κB
- Nox, NADPH oxidase
- Nrf, nuclear factor erythroid-2-related factor
- Oxidative stress
- RNV, retinal neovascularization
- ROS, reactive oxygen species
- RPE, retinal pigment epithelium
- RVECs, retinal vascular endothelial cells
- Retinal pigment epithelial cell
- Rluc, renilla luciferase
- SA-β-gal, senescence associated β-gal
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- TUNEL, TdT mediated dUTP-fluorescein nick end-labeling
- Transcription factor
- VEGF, vascular endothelial growth factor
- oxLDL, oxidized low density lipoprotein
- redox, reduction/oxidation
Collapse
Affiliation(s)
- Y Li
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shanxi, People׳s Republic of China
| | - X Liu
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States
| | - T Zhou
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States
| | - M R Kelley
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - P Edwards
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States
| | - H Gao
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States
| | - X Qiao
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI, United States
| |
Collapse
|
46
|
The redox function of APE1 is involved in the differentiation process of stem cells toward a neuronal cell fate. PLoS One 2014; 9:e89232. [PMID: 24586617 PMCID: PMC3929656 DOI: 10.1371/journal.pone.0089232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Low-to-moderate levels of reactive oxygen species (ROS) govern different steps of neurogenesis via molecular pathways that have been decrypted only partially. Although it has been postulated that redox-sensitive molecules are involved in neuronal differentiation, the molecular bases for this process have not been elucidated yet. The aim of this work was therefore to study the role played by the redox-sensitive, multifunctional protein APE1/Ref-1 (APE1) in the differentiation process of human adipose tissue-derived multipotent adult stem cells (hAT-MASC) and embryonic carcinoma stem cells (EC) towards a neuronal phenotype. METHODS AND RESULTS Applying a definite protocol, hAT-MASC can adopt a neural fate. During this maturation process, differentiating cells significantly increase their intracellular Reactive Oxygen Species (ROS) levels and increase the APE1 nuclear fraction bound to chromatin. This latter event is paralleled by the increase of nuclear NF-κB, a transcription factor regulated by APE1 in a redox-dependent fashion. Importantly, the addition of the antioxidant N-acetyl cysteine (NAC) to the differentiation medium partially prevents the nuclear accumulation of APE1, increasing the neuronal differentiation of hAT-MASC. To investigate the involvement of APE1 in the differentiation process, we employed E3330, a specific inhibitor of the APE1 redox function. The addition of E3330, either to the neurogenic embryonic carcinoma cell line NT2-D1or to hAT-MASC, increases the differentiation of stem cells towards a neural phenotype, biasing the differentiation towards specific subtypes, such as dopaminergic cells. In conclusion, during the differentiation process of stem cells towards a neuroectodermic phenotype, APE1 is recruited, in a ROS-dependent manner, to the chromatin. This event is associated with an inhibitory effect of APE1 on neurogenesis that may be reversed by E3330. Therefore, E3330 may be employed both to boost neural differentiation and to bias the differentiation potential of stem cells towards specific neuronal subtypes. These findings provide a molecular basis for the redox-mediated hypothesis of neuronal differentiation program.
Collapse
|
47
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
48
|
Differential effects of methoxyamine on doxorubicin cytotoxicity and genotoxicity in MDA-MB-231 human breast cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:140-7. [PMID: 23958474 DOI: 10.1016/j.mrgentox.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Pharmacological inhibition of DNA repair is a promising approach to increase the effectiveness of anticancer drugs. The chemotherapeutic drug doxorubicin (Dox) may act, in part, by causing oxidative DNA damage. The base excision repair (BER) pathway effects the repair of many DNA lesions induced by reactive oxygen species (ROS). Methoxyamine (MX) is an indirect inhibitor of apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional BER protein. We have evaluated the effects of MX on the cytotoxicity and genotoxicity of Dox in MDA-MB-231 metastatic breast cancer cells. MX has little effects on the viability and proliferation of Dox-treated cells. However, as assessed by the cytokinesis-block micronucleus assay (CBMN), MX caused a significant 1.4-fold increase (P<0.05) in the frequency of micronucleated binucleated cells induced by Dox, and also altered the distribution of the numbers of micronuclei. The fluorescence probe dihydroethidium (DHE) indicated little production of ROS by Dox. Overall, our results suggest differential outcomes for the inhibition of APE1 activity in breast cancer cells exposed to Dox, with a sensitizing effect observed for genotoxicity but not for cytotoxicity.
Collapse
|