1
|
Afrendi E, Prastya ME, Astuti RI, Wahyuni WT, Batubara I. Bioactivity of the Ethanol Extract of Clove ( Syzygium aromaticum) as Antitoxin. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:3245210. [PMID: 37780095 PMCID: PMC10539087 DOI: 10.1155/2023/3245210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/23/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023]
Abstract
Toxic compounds can induce the formation of free radicals (reactive oxygen species (ROS)) which can trigger damage and decrease cell viability. Clove (Syzygium aromaticum) contains phenolic compounds that are useful as antioxidants which can reduce ROS toxicity. However, little is known about the antitoxin activity of clove extract. Therefore, this study is aimed at determining the effect of ethanolic clove extract as an antitoxin agent against malachite green (MG) mutagen using the yeast Saccharomyces cerevisiae as a model. The methods used to analyze the ability of ethanolic clove extract as antitoxin were decolorization assay and cell viability test towards MG. The phenol contents of leaf and bud extract were 441.28 and 394.73 mg GAE g-1 extract, respectively. Clove leaf extract has strong antioxidant activity in vitro (IC50 9.29 ppm for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 29.57 for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)). Liquid chromatography quadrupole-mass spectrometry (LC-MS/MS) analysis showed the presence of 4-O-caffeoylquinic acid and several other bioactive compounds, in which these compounds had bioactivity against toxic compound. The addition of extract reduced the ability of S. cerevisiae to decolorize malachite green but increased cell viability. Based on the data, clove leaf extract shows the potential antitoxin activity. This research should facilitate a preliminary study to investigate the antitoxin agent derived from cloves leaf extract. Further research to analyze the antitoxin mechanism of this extract in yeast model is interesting to do to provide a comprehensive insight into the potential antitoxin agents of clove leaf extract.
Collapse
Affiliation(s)
- Erwin Afrendi
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Rika Indri Astuti
- Department of Biology, Dramaga Campus, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
| | - Wulan Tri Wahyuni
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| | - Irmanida Batubara
- Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
- Department of Chemistry, Dramaga Campus, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
2
|
Patra M, Mukhopadhyay C, Chakrabarti A. Malachite green interacts with the membrane skeletal protein, spectrin. RSC Adv 2015. [DOI: 10.1039/c5ra15488j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energy minimized complex of MG with the self association domain of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department
- University of Calcutta
- Kolkata 700009
- India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
3
|
Snyder JC, Rochelle LK, Barak LS, Caron MG. The stem cell-expressed receptor Lgr5 possesses canonical and functionally active molecular determinants critical to β-arrestin-2 recruitment. PLoS One 2013; 8:e84476. [PMID: 24386388 PMCID: PMC3873998 DOI: 10.1371/journal.pone.0084476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023] Open
Abstract
Lgr5 is a membrane protein related to G protein-coupled receptors (GPCR)s whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and βarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit βarr2. Among them, a "SSS" serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail), is in a region consistent with other GPCRs that bind βarr2 with high-affinity. To test its functionality, a ligand-independent βarr2 translocation assay was implemented. We show that Lgr5 recruits βarr2 and that the "SSS" amino acids (873-875) are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and βarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease.
Collapse
Affiliation(s)
- Joshua C. Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lauren K. Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Larry S. Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|