1
|
Rush KW, Alwan KB, Conner AT, Welch EF, Blackburn NJ. Mechanisms of Copper Selectivity and Release by the Metallochaperone CusF: Insights from CO-Binding, Rapid-Freeze-Quench EXAFS, and Unnatural Amino Acid Substitution. Inorg Chem 2024; 63:21519-21530. [PMID: 39472424 DOI: 10.1021/acs.inorgchem.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Metallochaperones are small proteins that shuttle essential metal ions such as Cu selectively to their cellular targets. CusF has unusual Cu(I) coordination, bound by two methionines, one histidine and a capping tryptophan residue, W44. Here we compare the CO binding reactivity of the wild type (WT) protein and its W44A, F, and M variants. Fourier-transform infrared (FTIR) indicates that W44A provides unhindered access for CO, while W44M is unreactive. WT is also largely unreactive to CO suggesting that the tryptophan cap is effective in shielding the Cu(I) center from exogenous adduct formation, while the Phe variant shows partial reactivity suggestive of an equilibrium between cap-on and cap-off conformers. Rates of metal transfer to the partner CusB are consistent with the π-cation cap providing both selectivity and redox protection. Unnatural amino acid substitutions of the W44 ligand with cyano-Phe and Br-Phe underpin the conclusion that the Phe ligand is a less effective capping residue. Finally, density functional theory (DFT) calculations validate the CO-binding strategy. Overall, the study suggests that CusF uses the tryptophan cap to protect against exogenous ligand (O2) attack while the mechanism of protein-protein complex formation allows the cap to swing out of the way, and thus have minimal effect on the rates of metal transfer.
Collapse
Affiliation(s)
- Katherine W Rush
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Katherine B Alwan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - A Tamar Conner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Evan F Welch
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| |
Collapse
|
2
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
3
|
Li Z, Song LF, Li P, Merz KM. Parametrization of Trivalent and Tetravalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J Chem Theory Comput 2021; 17:2342-2354. [PMID: 33793233 DOI: 10.1021/acs.jctc.0c01320] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Commonly seen in rare-earth chemistry and materials science, highly charged metal ions play key roles in many chemical processes. Computer simulations have become an important tool for scientific research nowadays. Meaningful simulations require reliable parameters. In the present work, we parametrized 18 M(III) and 6 M(IV) metal ions for four new water models (OPC3, OPC, TIP3P-FB, TIP4P-FB) in conjunction with each of the 12-6 and 12-6-4 nonbonded models. Similar to what was observed previously, issues with the 12-6 model can be fixed by using the 12-6-4 model. Moreover, the four new water models showed comparable performance or considerable improvement over the previous water models (TIP3P, SPC/E, and TIP4PEW) in the same category (3-point or 4-point water models, respectively). Finally, we reported a study of a metalloprotein system demonstrating the capability of the 12-6-4 model to model metalloproteins. The reported parameters will facilitate accurate simulations of highly charged metal ions in aqueous solution.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lin Frank Song
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Chatterjee S, Salimi A, Lee JY. Molecular mechanism of amyloidogenicity and neurotoxicity of a pro-aggregated tau mutant in the presence of histidine tautomerism via replica-exchange simulation. Phys Chem Chem Phys 2021; 23:10475-10486. [DOI: 10.1039/d1cp00105a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considering ΔK280 tau mutation, δε isomer with highest sheet content may accelerate aggregation; generating small compounds to inhibit this would help tp prevent tauopathies.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Jin Yong Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Korea
| |
Collapse
|
5
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
6
|
Meir A, Lepechkin-Zilbermintz V, Kahremany S, Schwerdtfeger F, Gevorkyan-Airapetov L, Munder A, Viskind O, Gruzman A, Ruthstein S. Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. PLoS One 2019; 14:e0227070. [PMID: 31887125 PMCID: PMC6936879 DOI: 10.1371/journal.pone.0227070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Five out of six people receive at least one antibiotic prescription per year. However, the ever-expanding use of antibiotics in medicine, agriculture, and food production has accelerated the evolution of antibiotic-resistant bacteria, which, in turn, made the development of novel antibiotics based on new molecular targets a priority in medicinal chemistry. One way of possibly combatting resistant bacterial infections is by inhibiting the copper transporters in prokaryotic cells. Copper is a key element within all living cells, but it can be toxic in excess. Both eukaryotic and prokaryotic cells have developed distinct copper regulation systems to prevent its toxicity. Therefore, selectively targeting the prokaryotic copper regulation system might be an initial step in developing next-generation antibiotics. One such system is the Gram-negative bacterial CusCFBA efflux system. CusB is a key protein in this system and was previously reported to play an important role in opening the channel for efflux via significant structural changes upon copper binding while also controlling the assembly and disassembly process of the entire channel. In this study, we aimed to develop novel peptide copper channel blockers, designed by in silico calculations based on the structure of CusB. Using a combination of magnetic resonance spectroscopy and various biochemical methods, we found a lead peptide that promotes copper-induced cell toxicity. Targeting copper transport in bacteria has not yet been pursued as an antibiotic mechanism of action. Thus, our study lays the foundation for discovering novel antibiotics.
Collapse
Affiliation(s)
- Aviv Meir
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | - Shirin Kahremany
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California, United States of America
| | - Fabian Schwerdtfeger
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Centre for Biological Signaling Studies (BIOSS), Freiburg, Germany
| | | | - Anna Munder
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Olga Viskind
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Arie Gruzman
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (SR); (AG)
| | - Sharon Ruthstein
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (SR); (AG)
| |
Collapse
|
7
|
Alwan KB, Welch EF, Blackburn NJ. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity. Biochemistry 2019; 58:4436-4446. [PMID: 31626532 DOI: 10.1021/acs.biochem.9b00823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The M centers of the mononuclear monooxygenases peptidylglycine monooxygenase (PHM) and dopamine β-monooxygenase bind and activate dioxygen en route to substrate hydroxylation. Recently, we reported the rational design of a protein-based model in which the CusF metallochaperone was repurposed via a His to Met mutation to act as a structural and spectroscopic biomimic. The PHM M site exhibits a number of unusual attributes, including a His2Met ligand set, a fluxional Cu(I)-S(Met) bond, tight binding of exogenous ligands CO and N3-, and complete coupling of oxygen reduction to substrate hydroxylation even at extremely low turnover rates. In particular, mutation of the Met ligand to His completely eliminates the catalytic activity despite the propensity of CuI-His3 centers to bind and activate dioxygen in other metalloenzyme systems. Here, we further develop the CusF-based model to explore methionine variants in which Met is replaced by selenomethionine (SeM) and histidine. We examine the effects on coordinate structure and exogenous ligand binding via X-ray absorption spectroscopy and electron paramagnetic resonance and probe the consequences of mutations on redox chemistry via studies of the reduction by ascorbate and oxidation via molecular oxygen. The M-site model is three-coordinate in the Cu(I) state and binds CO to form a four-coordinate carbonyl. In the oxidized forms, the coordination changes to tetragonal five-coordinate with a long axial Met ligand that like the enzymes is undetectable at either the Cu or Se K edges. The EXAFS data at the Se K edge of the SeM variant provide unique information about the nature of the Cu-methionine bond that is likewise weak and fluxional. Kinetic studies document the sluggish reactivity of the Cu(I) complexes with molecular oxygen and rapid rates of reduction of the Cu(II) complexes by ascorbate, indicating a remarkable stability of the Cu(I) state in all three derivatives. The results show little difference between the Met ligand and its SeM and His congeners and suggest that the Met contributes to catalysis in ways that are more complex than simple perturbation of the redox chemistry. Overall, the results stimulate a critical re-examination of the canonical reaction mechanisms of the mononuclear copper monooxygenases.
Collapse
Affiliation(s)
- Katherine B Alwan
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Evan F Welch
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| |
Collapse
|
8
|
Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. PLoS One 2019; 14:e0219337. [PMID: 31465444 PMCID: PMC6715271 DOI: 10.1371/journal.pone.0219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
The dissemination of resistant pathogenic microbes has become one of the most challenging problems that modern medicine has faced. Developing novel drugs based on new molecular targets that previously were not targeted, is therefore the highest priority in antibiotics research. One approach that has been recently suggested is to inhibit copper transporters in prokaryotic systems. Copper is required for many biological pathways, but sometimes it can harm the cell. Pathogenic systems have a highly sophisticated copper-regulation network; therefore, a better understanding of how this network operates at the molecular level should assist in developing the next generation of antibiotics. The CusB protein is part of the CusCBA periplasmic Cu(I) efflux system in Gram-negative bacteria, and was recently reported to play a key role in the functioning of the whole CusCBA system, in which conformational changes as well as the assembly/disassembly process control the opening of the transporter. More knowledge of the underlying mechanism is needed to attain a full understanding of CusB functioning, which is associated with targeting specific and crucial residues in CusB. Here, we combine in-vitro structural measurements, which use EPR spectroscopy and UV-Vis measurements, with cell experiments to explore the role of the various methionine residues in CusB. We targeted two methionine residues (M227 and M241) that are essential for the proper functioning of CusB.
Collapse
|
9
|
Pavlin M, Qasem Z, Sameach H, Gevorkyan-Airapetov L, Ritacco I, Ruthstein S, Magistrato A. Unraveling the Impact of Cysteine-to-Serine Mutations on the Structural and Functional Properties of Cu(I)-Binding Proteins. Int J Mol Sci 2019; 20:E3462. [PMID: 31337158 PMCID: PMC6679193 DOI: 10.3390/ijms20143462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.
Collapse
Affiliation(s)
- Matic Pavlin
- CNR-IOM at SISSA, via Bonomea 265, 34135 Trieste, Italy
| | - Zena Qasem
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Hila Sameach
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Ida Ritacco
- CNR-IOM at SISSA, via Bonomea 265, 34135 Trieste, Italy
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
10
|
Trapping intermediates in metal transfer reactions of the CusCBAF export pump of Escherichia coli. Commun Biol 2018; 1:192. [PMID: 30456313 PMCID: PMC6235853 DOI: 10.1038/s42003-018-0181-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli CusCBAF represents an important class of bacterial efflux pump exhibiting selectivity towards Cu(I) and Ag(I). The complex is comprised of three proteins: the CusA transmembrane pump, the CusB soluble adaptor protein, and the CusC outer-membrane pore, and additionally requires the periplasmic metallochaperone CusF. Here we used spectroscopic and kinetic tools to probe the mechanism of copper transfer between CusF and CusB using selenomethionine labeling of the metal-binding Met residues coupled to RFQ-XAS at the Se and Cu edges. The results indicate fast formation of a protein-protein complex followed by slower intra-complex metal transfer. An intermediate coordinated by ligands from each protein forms in 100 ms. Stopped-flow fluorescence of the capping CusF-W44 tryptophan that is quenched by metal transfer also supports this mechanism. The rate constants validate a process in which shared-ligand complex formation assists protein association, providing a driving force that raises the rate into the diffusion-limited regime.
Collapse
|
11
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation. Sci Rep 2016; 6:39137. [PMID: 27974818 PMCID: PMC5156901 DOI: 10.1038/srep39137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases.
Collapse
|
13
|
Urbina P, Bersch B, De Angelis F, Derfoufi KM, Prévost M, Goormaghtigh E, Vandenbussche G. Structural and Functional Investigation of the Ag+/Cu+ Binding Domains of the Periplasmic Adaptor Protein SilB from Cupriavidus metallidurans CH34. Biochemistry 2016; 55:2883-97. [DOI: 10.1021/acs.biochem.6b00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patricia Urbina
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Beate Bersch
- Institut
de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabien De Angelis
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Kheiro-Mouna Derfoufi
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Martine Prévost
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Erik Goormaghtigh
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Guy Vandenbussche
- Laboratory
for the Structure and Function of Biological Membranes, Center for
Structural Biology and Bioinformatics, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| |
Collapse
|
14
|
Martin-Diaconescu V, Chacón KN, Delgado-Jaime MU, Sokaras D, Weng TC, DeBeer S, Blackburn NJ. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Inorg Chem 2016; 55:3431-9. [PMID: 26965786 PMCID: PMC4878823 DOI: 10.1021/acs.inorgchem.5b02842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological systems use copper as a redox center in many metalloproteins, where the role of the metal is to cycle between its +1 and +2 oxidation states. This chemistry requires the redox potential to be in a range that can stabilize both Cu(I) and Cu(II) states and often involves protein-derived ligand sets involving mixed histidine-methionine coordination that balance the preferences of both oxidation states. Transport proteins, on the other hand, utilize copper in the Cu(I) state and often contain sites comprised predominately of the cuprophilic residue methionine. The electronic factors that allow enzymes and transporters to balance their redox requirements are complex and are often elusive due to the dearth of spectroscopic probes of the Cu(I) state. Here we present the novel application of X-ray emission spectroscopy to copper proteins via a study of a series of mixed His-Met copper sites where the ligand set varies in a systematic way between the His3 and Met3 limits. The sites are derived from the wild-type peptidylglycine monooxygenase (PHM), two single-site variants which replicate each of its two copper sites (CuM-site and CuH-site), and the transporters CusF and CusB. Clear differences are observed in the Kβ2,5 region at the Met3 and His3 limits. CusB (Met3) has a distinct peak at 8978.4 eV with a broad shoulder at 8975.6 eV, whereas CuH (His3) has two well-resolved features: a more intense feature at 8974.8 eV and a second at 8977.2 eV. The mixed coordination sphere CusF (Met2His) and the PHM CuM variant (Met1His2) have very similar spectra consisting of two features at 8975.2 and 8977.8 eV. An analysis of DFT calculated spectra indicate that the intensity of the higher energy peak near 8978 eV is mediated by mixing of ligand-based orbitals into the Cu d(10) manifold, with S from Met providing more intensity by facilitating increased Cu p-d mixing. Furthermore, reaction of WT PHM with CO (an oxygen analogue) produced the M site CO complex, which showed a unique XES spectrum that could be computationally reproduced by including interactions between Cu(I) and the CO ligand. The study suggests that the valence-to-core (VtC) region can not only serve as a probe of ligand speciation but also offer insight into the coordination geometry, in a fashion similar to XAS pre-edges, and may be sufficiently sensitive to the coordination of exogenous ligands to be useful in the study of reaction mechanisms.
Collapse
Affiliation(s)
- Vlad Martin-Diaconescu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34 – 36, D-45470 Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
| | - Kelly N. Chacón
- Institute of Environmental Health, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Mario Ulises Delgado-Jaime
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34 – 36, D-45470 Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 97025
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 97025
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34 – 36, D-45470 Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
- Cornell University, Department of Chemistry and Chemical Biology, Ithaca, New York, 14853, United States
| | - Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
15
|
Abstract
MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Kenneth M Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
16
|
Chakravorty DK, Li P, Tran TT, Bayse CA, Merz KM. Metal Ion Capture Mechanism of a Copper Metallochaperone. Biochemistry 2016; 55:501-9. [DOI: 10.1021/acs.biochem.5b01217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhruva K. Chakravorty
- Institute
for Cyber Enabled Research, Michigan State University, 567 Wilson
Road, East Lansing, Michigan 48824, United States
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
- Department
of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Li
- Department
of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Trang T. Tran
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | - Craig A. Bayse
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Kenneth M. Merz
- Institute
for Cyber Enabled Research, Michigan State University, 567 Wilson
Road, East Lansing, Michigan 48824, United States
- Department
of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
17
|
Ucisik MN, Chakravorty DK, Merz KM. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Biochemistry 2015; 54:4226-35. [PMID: 26079272 DOI: 10.1021/acs.biochem.5b00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tripartite CusCFBA pump in Escherichia coli is a very effective heavy metal extrusion system specific for Cu(I) and Ag(I). The N-terminal region of the membrane fusion protein CusB (CusB-NT) is highly disordered, and hence, experimentally characterizing its structure is challenging. In a previous study, this disorder was confirmed with molecular dynamics simulations, although some key structural elements were determined. It was experimentally shown that CusB-NT is fully functional in transferring the metal from the metallochaperone CusF. In this study, we docked these two entities together and formed two representative metal coordination modes, which consist of residues from both proteins. In this way, we created two potential CusB-NT/CusF complexes that share coordination of Cu(I) and thereby represent structural models for the metal transfer process. Each model complex was simulated for 4 μs. The previously observed structural disorder in CusB-NT disappeared upon complexation with CusF. The only differences between the two models occurred in the M21-M36 loop region of CusB-NT and the open flap of CusF: we observed the model with two CusB-NT methionine residues and a CusF methionine as the metal coordination site (termed "MMM") to be more stable than the model with a CusB-NT methionine, a CusF methionine, and a CusF histidine ligating the metal (termed "MMH"). The observed stability of the MMM model was probed for an additional 2 μs, yielding a total simulation time of 6 μs. We hypothesize that both MMM and MMH configurations might take part in the metal exchange process in which the MMH configuration would appear first and would be followed by the MMM configuration. Given the experimental finding of comparable binding affinities of CusB-NT and CusF, the increased stability of the MMM configuration might be a determinant for the transfer from CusF to CusB-NT. The metal would be transferred from the more CusF-dominated metal binding environment (MMH model) to a more CusB-dominated one (MMM model) in which the coordination environment is more stable. From the MMM model, the metal ion would ultimately be coordinated by the CusB methionines only, which would complete the Cu(I) transfer process.
Collapse
Affiliation(s)
- Melek N Ucisik
- †Department of Chemistry and Quantum Theory Project, University of Florida, 2328 New Physics Building, P.O. Box 118435, Gainesville, Florida 32611-8435, United States.,‡Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801-3364, United States
| | - Dhruva K Chakravorty
- §Department of Chemistry, University of New Orleans, 2000 Lake Shore Drive, New Orleans, Louisiana 70148, United States
| | - Kenneth M Merz
- ∥Institute for Cyber Enabled Research, Department of Chemistry, and Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
18
|
Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 2015; 6:513. [PMID: 26074901 PMCID: PMC4446572 DOI: 10.3389/fmicb.2015.00513] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.
Collapse
Affiliation(s)
- Martyn F Symmons
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| |
Collapse
|
19
|
Meir A, Natan A, Moskovitz Y, Ruthstein S. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Metallomics 2015; 7:1163-72. [PMID: 25940871 DOI: 10.1039/c5mt00053j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper plays a key role in all living organisms by serving as a cofactor for a large variety of proteins and enzymes involved in electron transfer, oxidase and oxygenase activities, and the detoxification of oxygen radicals. Due to its toxicity, a conserved homeostasis mechanism is required. In E. coli, the CusCFBA efflux system is a copper-regulating system and is responsible for transferring Cu(I) and Ag(I) out of the periplasm domain into the extracellular domain. Two of the components of this efflux system, the CusF metallochaperone and the N-terminal domain of CusB, have been thought to play significant roles in the function of this efflux system. Resolving the metal ion transport mechanism through this efflux system is vital for understanding metal- and multidrug-resistant microorganisms. This work explores one aspect of the E. coli resistance mechanism by observing the interaction between the N-terminal domain of CusB and the CusF protein, using electron paramagnetic resonance (EPR) spectroscopy, circular dichroism (CD), and chemical cross-linking. The data summarized here show that M36 and M38 of CusB are important residues for both the Cu(I) coordination to the CusB N-terminal domain and the interaction with CusF, and K32 is essential for the interaction with CusF. In contrast, the K29 residue is less consequential for the interaction with CusF, whereas M21 is mostly important for the proper interaction with CusF.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | |
Collapse
|
20
|
Li P, Song LF, Merz KM. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J Chem Theory Comput 2015; 11:1645-57. [PMID: 26574374 DOI: 10.1021/ct500918t] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monovalent ions play fundamental roles in many biological processes in organisms. Modeling these ions in molecular simulations continues to be a challenging problem. The 12-6 Lennard-Jones (LJ) nonbonded model is widely used to model monovalent ions in classical molecular dynamics simulations. A lot of parameterization efforts have been reported for these ions with a number of experimental end points. However, some reported parameter sets do not have a good balance between the two Lennard-Jones parameters (the van der Waals (VDW) radius and potential well depth), which affects their transferability. In the present work, via the use of a noble gas curve we fitted in former work (J. Chem. Theory Comput. 2013, 9, 2733), we reoptimized the 12-6 LJ parameters for 15 monovalent ions (11 positive and 4 negative ions) for three extensively used water models (TIP3P, SPC/E, and TIP4P(EW)). Since the 12-6 LJ nonbonded model performs poorly in some instances for these ions, we have also parameterized the 12-6-4 LJ-type nonbonded model (J. Chem. Theory Comput. 2014, 10, 289) using the same three water models. The three derived parameter sets focused on reproducing the hydration free energies (the HFE set) and the ion-oxygen distance (the IOD set) using the 12-6 LJ nonbonded model and the 12-6-4 LJ-type nonbonded model (the 12-6-4 set) overall give improved results. In particular, the final parameter sets showed better agreement with quantum mechanically calculated VDW radii and improved transferability to ion-pair solutions when compared to previous parameter sets.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Lin Frank Song
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
21
|
Abstract
CONSPECTUS: The role dynamics plays in proteins is of intense contemporary interest. Fundamental insights into how dynamics affects reactivity and product distributions will facilitate the design of novel catalysts that can produce high quality compounds that can be employed, for example, as fuels and life saving drugs. We have used molecular dynamics (MD) methods and combined quantum mechanical/molecular mechanical (QM/MM) methods to study a series of proteins either whose substrates are too far away from the catalytic center or whose experimentally resolved substrate binding modes cannot explain the observed product distribution. In particular, we describe studies of farnesyl transferase (FTase) where the farnesyl pyrophosphate (FPP) substrate is ∼8 Å from the zinc-bound peptide in the active site of FTase. Using MD and QM/MM studies, we explain how the FPP substrate spans the gulf between it and the active site, and we have elucidated the nature of the transition state (TS) and offered an alternate explanation of experimentally observed kinetic isotope effects (KIEs). Our second story focuses on the nature of substrate dynamics in the aromatic prenyltransferase (APTase) protein NphB and how substrate dynamics affects the observed product distribution. Through the examples chosen we show the power of MD and QM/MM methods to provide unique insights into how protein substrate dynamics affects catalytic efficiency. We also illustrate how complex these reactions are and highlight the challenges faced when attempting to design de novo catalysts. While the methods used in our previous studies provided useful insights, several clear challenges still remain. In particular, we have utilized a semiempirical QM model (self-consistent charge density functional tight binding, SCC-DFTB) in our QM/MM studies since the problems we were addressing required extensive sampling. For the problems illustrated, this approach performed admirably (we estimate for these systems an uncertainty of ∼2 kcal/mol), but it is still a semiempirical model, and studies of this type would benefit greatly from more accurate ab initio or DFT models. However, the challenge with these methods is to reach the level of sampling needed to study systems where large conformational changes happen in the many nanoseconds to microsecond time regimes. Hence, how to couple expensive and accurate QM methods with sophisticated sampling algorithms is an important future challenge especially when large-scale studies of catalyst design become of interest. The use of MD and QM/MM models to elucidate enzyme catalytic pathways and to design novel catalytic agents is in its infancy but shows tremendous promise. While this Account summarizes where we have been, we also discuss briefly future directions that improve our fundamental ability to understand enzyme catalysis.
Collapse
Affiliation(s)
- Dhruva K. Chakravorty
- Department of Chemistry, 2000 Lakeshore Drive, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Kenneth M. Merz
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing Michigan 48824-1322, United States
| |
Collapse
|
22
|
Li P, Song LF, Merz KM. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B 2014; 119:883-95. [PMID: 25145273 PMCID: PMC4306492 DOI: 10.1021/jp505875v] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Highly charged metal ions act as
catalytic centers and structural
elements in a broad range of chemical complexes. The nonbonded model
for metal ions is extensively used in molecular simulations due to
its simple form, computational speed, and transferability. We have
proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded
model for divalent metal ions in previous work, which showed a marked
improvement over the 12-6 LJ nonbonded model. In the present study,
by treating the experimental hydration free energies and ion–oxygen
distances of the first solvation shell as targets for our parametrization,
we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions
for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6
LJ nonbonded model increases dramatically for the highly charged metal
ions. We then parametrized the 12-6-4 LJ-type nonbonded model for
these metal ions with the three water models. The final parameters
reproduced the target values with good accuracy, which is consistent
with our previous experience using this potential. Finally, tests
were performed on a protein system, and the obtained results validate
the transferability of these nonbonded model parameters.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | | | | |
Collapse
|
23
|
Chakravorty DK, Merz KM. Studying allosteric regulation in metal sensor proteins using computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:181-218. [PMID: 25443958 DOI: 10.1016/bs.apcsb.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we describe advances made in understanding the mechanism of allosteric regulation of DNA operator binding in the ArsR/SmtB family of metal-sensing proteins using computational methods. The paradigm, zinc-sensing transcriptional repressor Staphylococcus aureus CzrA represents an excellent model system to understand how metal sensor proteins maintain cellular metal homeostasis. Here, we discuss studies that helped to characterize a metal ion-mediated hydrogen-bonding pathway (HBP) that plays a dominant role in the allosteric mechanism of DNA operator binding in these proteins. The chapter discusses computational methods used to provide a molecular basis for the large conformational motions and allosteric coupling free energy (~6kcal/mol) associated with Zn(II) binding in CzrA. We present an accurate and convenient means by which to include metal ions in the nuclear magnetic resonance (NMR) structure determination process using molecular dynamics (MD) constrained by NMR-derived data. The method provides a realistic and physically viable description of the metal-binding site(s) and has potentially broad applicability in the structure determination of metal ion-bound proteins, protein folding, and metal template protein-design studies. Finally, our simulations provide strong support for a proposed HBP that physically connects the metal-binding residue, His97, to the DNA-binding interface through the αR helix that is present only in the Zn(II)-bound state. We find the interprotomer hydrogen bond interaction to be significantly stronger (~8kcal/mol) at functional allosteric metal-binding sites compared to the apo proteins. This interaction works to overcome the considerable disorder at these hydrogen-bonding sites in apo protein and functions as a "switch" to lock in a weak DNA-binding conformation once metal is bound. This interaction is found to be considerably weaker in nonresponsive metal-binding sites. These findings suggest a conserved functional role of metal-mediated second-shell coordination hydrogen bonds at allosterically responsive sites in zinc-sensing transcription regulators.
Collapse
Affiliation(s)
- Dhruva K Chakravorty
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA.
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|