1
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
2
|
Knaus T, Macheroux P, Mutti FG. Fus-SMO: Kinetics, Biochemical Characterisation and In Silico Modelling of a Chimeric Styrene Monooxygenase Demonstrating Quantitative Coupling Efficiency. Chembiochem 2024; 25:e202300833. [PMID: 38306174 DOI: 10.1002/cbic.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.
Collapse
Affiliation(s)
- Tanja Knaus
- Van 't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Francesco G Mutti
- Van 't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
3
|
Mangkalee M, Oonanant W, Aonbangkhen C, Pimviriyakul P, Tinikul R, Chaiyen P, Insin N, Sucharitakul J. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage. FEBS J 2023; 290:5171-5195. [PMID: 37522421 DOI: 10.1111/febs.16916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 μm and 4.08 ± 0.8 μm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.
Collapse
Affiliation(s)
- Montisa Mangkalee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worrapoj Oonanant
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Numpon Insin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Bhanot V, Pali S, Panwar J. Understanding the in silico aspects of bacterial catabolic cascade for styrene degradation. Proteins 2023; 91:532-541. [PMID: 36416087 DOI: 10.1002/prot.26447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Styrene is a nonpolar organic compound used in very high volume for the industrial scale production of commercially important polymers such as polystyrene resins as well as copolymers like acrylonitrile butadiene styrene, latex, and rubber. These resins are widely used in the manufacturing of various products including single-use plastics such as disposable cups and containers, protective packaging, heat insulation, and so forth. The large-scale utilization leads to the over-accumulation of styrene waste in the environment causing deleterious health risks including cancer, neurological impairment, dysbiosis of central nervous system, and respiratory problems. To eliminate the accumulating waste. Microbial enzyme-based system represents the most environmental friendly and sustainable approach for elimination of styrene waste. However, comprehensive understanding of the enzyme-substrate interaction and associated pathways would be crucial for developing large-scale disposal systems. This study aims to understand the molecular interaction between the protein-ligand complexes of the styrene catabolic reactions by bacterial enzymes of sty operon. Molecular docking analysis for catalytic enzymes namely, styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase (PAD) of the bacterial sty operon was carried out with their individual substrates, that is, styrene, styrene oxide, and phenylacetic acid, respectively. The binding energy, amino acids forming binding cavity, and binding interactions between the protein-ligand binding sites were calculated for each case. The obtained binding energies showed a stable association of these complexes indicating the future scope of their utilization for large-scale bioremediation of styrene, and its commercially used polymers and copolymers.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Snigdha Pali
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
5
|
Sequence-guided stereo-enhancing and -inverting of (R)-styrene monooxygenases for highly enantioselective epoxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Kotova IB, Taktarova YV, Tsavkelova EA, Egorova MA, Bubnov IA, Malakhova DV, Shirinkina LI, Sokolova TG, Bonch-Osmolovskaya EA. Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
The growing worldwide production of synthetic plastics leads to increased amounts of plastic pollution. Even though microbial degradation of plastics is known to be a very slow process, this capacity has been found in many bacteria, including invertebrate symbionts, and microscopic fungi. Research in this field has been mostly focused on microbial degradation of polyethylene, polystyrene, and polyethylene terephthalate (PET). Quite an arsenal of different methods is available today for detecting processes of plastic degradation and measuring their rates. Given the lack of generally accepted protocols, it is difficult to compare results presented by different authors. PET degradation by recombinant hydrolases from thermophilic actinobacteria happens to be the most efficient among the currently known plastic degradation processes. Various approaches to accelerating microbial plastic degradation are also discussed.
Collapse
|
7
|
Martínez-Montero L, Tischler D, Süss P, Schallmey A, Franssen MCR, Hollmann F, Paul CE. Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade. Catal Sci Technol 2021; 11:5077-5085. [PMID: 34381590 PMCID: PMC8328376 DOI: 10.1039/d1cy00855b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Lía Martínez-Montero
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
8
|
De Silva AJ, Sehgal R, Kim J, Bellizzi JJ. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms. Arch Biochem Biophys 2021; 704:108874. [PMID: 33862020 DOI: 10.1016/j.abb.2021.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
The short-chain flavin reductases BorF and AbeF reduce FAD to FADH2, which is then used by flavin-dependent halogenases (BorH and AbeH respectively) to regioselectively chlorinate tryptophan in the biosynthesis of indolotryptoline natural products. Recombinant AbeF and BorF were overexpressed and purified as homodimers from E. coli, and copurified with substoichiometric amounts of FAD, which could be easily removed. AbeF and BorF can reduce FAD, FMN, and riboflavin in vitro and are selective for NADH over NADPH. Initial velocity studies in the presence and absence of inhibitors showed that BorF proceeds by a sequential ordered kinetic mechanism in which FAD binds first, while AbeF follows a random-ordered sequence of substrate binding. Fluorescence quenching experiments verified that NADH does not bind BorF in the absence of FAD, and that both AbeF and BorF bind FAD with higher affinity than FADH2. pH-rate profiles of BorF and AbeF were bell-shaped with maximum kcat at pH 7.5, and site-directed mutagenesis of BorF implicated His160 and Arg38 as contributing to the catalytic activity and the pH dependence.
Collapse
Affiliation(s)
- Aravinda J De Silva
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Rippa Sehgal
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Jennifer Kim
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA.
| |
Collapse
|
9
|
Panter F, Bader CD, Müller R. The Sandarazols are Cryptic and Structurally Unique Plasmid-Encoded Toxins from a Rare Myxobacterium*. Angew Chem Int Ed Engl 2021; 60:8081-8088. [PMID: 33534143 PMCID: PMC8048970 DOI: 10.1002/anie.202014671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Herein, we describe a new plasmid found in Sandaracinus sp. MSr10575 named pSa001 spanning 209.7 kbp that harbors a cryptic secondary metabolite biosynthesis gene cluster (BGC). Activation of this BGC by homologous-recombination-mediated exchange of the native promoter sequence against a vanillate inducible system led to the production and subsequent isolation and structure elucidation of novel secondary metabolites, the sandarazols A-G. The sandarazols contain intriguing structural features and very reactive functional groups such as an α-chlorinated ketone, an epoxyketone, and a (2R)-2-amino-3-(N,N-dimethylamino)-propionic acid building block. In-depth investigation of the underlying biosynthetic machinery led to a concise biosynthetic model for the new compound family, including several uncommon biosynthetic steps. The chlorinated congener sandarazol C shows an IC50 value of 0.5 μm against HCT 116 cells and a MIC of 14 μm against Mycobacterium smegmatis, which points at the sandarazols' potential function as defensive secondary metabolites or toxins.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland University, Campus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner SiteHannover-BraunschweigGermany
- Helmholtz International Lab for Anti-Infectives, Campus E8 166123SaarbrückenGermany
| | - Chantal D. Bader
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland University, Campus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner SiteHannover-BraunschweigGermany
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Department of PharmacySaarland University, Campus E8 166123SaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner SiteHannover-BraunschweigGermany
- Helmholtz International Lab for Anti-Infectives, Campus E8 166123SaarbrückenGermany
| |
Collapse
|
10
|
Panter F, Bader CD, Müller R. Die Sandarazole sind kryptische und strukturell einzigartige, Plasmid‐codierte Toxine aus einem seltenen Myxobakterium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian Panter
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) und Fachbereich Pharmazie Universität des Saarlandes, Campus E8 1 66123 Saarbrücken Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hannover-Braunschweig Deutschland
- Helmholtz International Lab for Anti-Infectives, Campus E8 1 66123 Saarbrücken Deutschland
| | - Chantal D. Bader
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) und Fachbereich Pharmazie Universität des Saarlandes, Campus E8 1 66123 Saarbrücken Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hannover-Braunschweig Deutschland
| | - Rolf Müller
- Abteilung Mikrobielle Naturstoffe Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) und Fachbereich Pharmazie Universität des Saarlandes, Campus E8 1 66123 Saarbrücken Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hannover-Braunschweig Deutschland
- Helmholtz International Lab for Anti-Infectives, Campus E8 1 66123 Saarbrücken Deutschland
| |
Collapse
|
11
|
Yuan J, Mo Q, Fan C. New Set of Yeast Vectors for Shuttle Expression in Escherichia coli. ACS OMEGA 2021; 6:7175-7180. [PMID: 33748631 PMCID: PMC7970545 DOI: 10.1021/acsomega.1c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Promoters that play an essential role in the gene regulation are of particular interest to the synthetic biology communities. Recent advances in high-throughput DNA sequencing have greatly increased the breadth of new genetic parts. The development of promoters with broad host properties could enable rapid phenotyping of genetic constructs in different hosts. In this study, we discovered that the GAL1/10 bidirectional promoter from Saccharomyces cerevisiae could be used for shuttle expression in Escherichia coli. Further investigation revealed that the GAL1/10 bidirectional promoter is subjected to catabolite repression in E. coli. We next constructed a set of Golden-Gate assembly vectors for shuttle expression between S. cerevisiae and E. coli. The utility of shuttle vectors was demonstrated for rapid phenotyping of a multigene pathway for cinnamyl alcohol production. Taken together, our work opens a new avenue for the future development of broad host expression systems between prokaryotic and eukaryotic hosts.
Collapse
|
12
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
13
|
NfoR: Chromate Reductase or Flavin Mononucleotide Reductase? Appl Environ Microbiol 2020; 86:AEM.01758-20. [PMID: 32887719 PMCID: PMC7642083 DOI: 10.1128/aem.01758-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
Soil bacteria can detoxify Cr(VI) ions by reduction. Within the last 2 decades, numerous reports of chromate reductase enzymes have been published. These reports describe catalytic reduction of chromate ions by specific enzymes. These enzymes each have sequence similarity to known redox-active flavoproteins. We investigated the enzyme NfoR from Staphylococcus aureus, which was reported to be upregulated in chromate-rich soils and to have chromate reductase activity (H. Han, Z. Ling, T. Zhou, R. Xu, et al., Sci Rep 7:15481, 2017, https://doi.org/10.1038/s41598-017-15588-y). We show that NfoR has structural similarity to known flavin mononucleotide (FMN) reductases and reduces FMN as a substrate. NfoR binds FMN with a dissociation constant of 0.4 μM. The enzyme then binds NADPH with a dissociation constant of 140 μM and reduces the flavin at a rate of 1,350 s-1 Turnover of the enzyme is apparently limited by the rate of product release that occurs, with a net rate constant of 0.45 s-1 The rate of product release limits the rate of observed chromate reduction, so the net rate of chromate reduction by NfoR is orders of magnitude lower than when this process occurs in solution. We propose that NfoR is an FMN reductase and that the criterion required to define chromate reduction as enzymatic has not been met. That NfoR expression is increased in the presence of chromate suggests that the survival adaption was to increase the net rate of chromate reduction by facile, adventitious redox processes.IMPORTANCE Chromate is a toxic by-product of multiple industrial processes. Chromate reduction is an important biological activity that ameliorates Cr(VI) toxicity. Numerous researchers have identified chromate reductase activity by observing chromate reduction. However, all identified chromate reductase enzymes have flavin as a cofactor or use a flavin as a substrate. We show here that NfoR, an enzyme claimed to be a chromate reductase, is in fact an FMN reductase. In addition, we show that reduction of a flavin is a viable way to transfer electrons to chromate but that it is unlikely to be the native function of enzymes. We propose that upregulation of a redox-active flavoprotein is a viable means to detoxify chromate that relies on adventitious reduction that is not catalyzed.
Collapse
|
14
|
BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Sci Rep 2020; 10:17408. [PMID: 33060819 PMCID: PMC7562720 DOI: 10.1038/s41598-020-74570-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 12/04/2022] Open
Abstract
Benzene, toluene, ethylbenzene and (p-, m- and o-) xylene (BTEX) are classified as main pollutants by several environmental protection agencies. In this study, a non-pathogenic, Gram-positive rod-shape bacterium with an ability to degrade all six BTEX compounds, employed as an individual substrate or as a mixture, was isolated. The bacterial isolate was identified as Bacillus amyloliquefaciens subsp. plantarum strain W1. An overall BTEX biodegradation (as individual substrates) by strain W1 could be ranked as: toluene > benzene, ethylbenzene, p-xylene > m-xylene > o-xylene. When presented in a BTEX mixture, m-xylene and o-xylene biodegradation was slightly improved suggesting an induction effect by other BTEX components. BTEX biodegradation pathways of strain W1 were proposed based on analyses of its metabolic intermediates identified by LC–MS/MS. Detected activity of several putative monooxygenases and dioxygenases suggested the versatility of strain W1. Thus far, this is the first report of biodegradation pathways for all of the six BTEX compounds by a unique bacterium of the genus Bacillus. Moreover, B. amyloliquefaciens subsp. plantarum W1 could be a good candidate for an in situ bioremediation considering its Generally Recognized as Safe (GRAS) status and a possibility to serve as a plant growth-promoting rhizobacterium (PGPR).
Collapse
|
15
|
Amongre R, Gassner G. Regenerable copper anode for the Cu(I)-mediated reduction of FAD in the electroenzymatic styrene epoxidation reaction. Bioelectrochemistry 2020; 137:107679. [PMID: 33120296 DOI: 10.1016/j.bioelechem.2020.107679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of NADH-dependent flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA) components. The enantioselective styrene epoxidation reaction catalyzed by this enzyme can be streamlined for chemosynthetic applications by substituting NADH and the reductase with an electrode to supply the epoxidase with reducing equivalents required for catalysis. Slow kinetics of adsorption and desorption of FAD from the electrode surface and unproductive side reactions of the reduced flavin with oxygen limit the efficiency of direct electroenzymatic catalysis. In the present work we develop a miniature spectroelectrochemical cell equipped with a copper electrode for the anodic synthesis of Cu(I) chelates of EDTA, glutamate, and citrate as FAD-reducing agents, and a platinum electrode for the electrolytic generation of oxygen. Copper oxidized in the flavin reduction reaction can be reclaimed subsequently as copper metal at the electrode surface. About 80% transformation of styrene is achieved in a single cell cycle of reduction and oxygenation at pH 7 and 25 °C in good agreement with that predicted by numerical simulation. When the cell is operated in two successive cycles, styrene oxide can be synthesized with an electroenzymatic epoxidation activity of 663U/g in 94% yield. This approach to electroenzymatic catalysis shows promise for the quantitative transformation of styrene to styrene oxide and may be applied more generally to other flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Robert Amongre
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States.
| |
Collapse
|
16
|
Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents. Catalysts 2020. [DOI: 10.3390/catal10050568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases composed of a nicotinamide adenine dinucleotide (NADH)-dependent flavin adenine dinucleotide (FAD)-reductase (StyB or IndB) and a monooxygenase (StyA or IndA). The latter uses reduced FAD to activate oxygen and to oxygenate the substrate while releasing water. We circumvented the need for the reductase by direct FAD reduction in solution using the NAD(P)H-mimic 1-benzyl-1,4-dihydronicotinamide (BNAH) to fuel monooxygenases without NADH requirement. Herein, we report on the hitherto unknown solvent tolerance for the indole monooxygenase from Gemmobacter nectariphilus DSM15620 (GnIndA) and the styrene monooxygenase from Gordonia rubripertincta CWB2 (GrStyA). These enzymes were shown to convert bulky and rather hydrophobic styrene derivatives in the presence of organic cosolvents. Subsequently, BNAH-driven biotransformation was furthermore optimized with regard to the applied cosolvent and its concentration as well as FAD and BNAH concentration. We herein demonstrate that GnIndA and GrStyA enable selective epoxidations of allylic double bonds (up to 217 mU mg−1) in the presence of organic solvents such as tetrahydrofuran, acetonitrile, or several alcohols. Notably, GnIndA was found to resist methanol concentrations up to 25 vol.%. Furthermore, a diverse substrate preference was determined for both enzymes, making their distinct use very interesting. In general, our results seem representative for many IMOs as was corroborated by in silico mutagenetic studies.
Collapse
|
17
|
Tischler D, Kumpf A, Eggerichs D, Heine T. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:399-425. [DOI: 10.1016/bs.enz.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Lingkon K, Bellizzi JJ. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH. Chembiochem 2019; 21:1121-1128. [PMID: 31692209 DOI: 10.1002/cbic.201900667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/19/2022]
Abstract
Flavin-dependent halogenases carry out regioselective aryl halide synthesis in aqueous solution at ambient temperature and neutral pH using benign halide salts, making them attractive catalysts for green chemistry. BorH and BorF, two proteins encoded by the biosynthetic gene cluster for the chlorinated bisindole alkaloid borregomycin A, are the halogenase and flavin reductase subunits of a tryptophan-6-halogenase. Quantitative conversion of l-tryptophan (Trp) to 6-chlorotryptophan could be achieved using 1.2 mol % BorH and 2 mol % BorF. The optimal reaction temperature for Trp chlorination is 45 °C, and the melting temperatures of BorH and BorF are 48 and 50 °C respectively, which are higher than the thermal parameters for most other halogenases previously studied. Steady-state kinetic analysis of Trp chlorination by BorH determined parameters of kcat =4.42 min-1 , and KM of 9.78 μm at 45 °C. BorH exhibits a broad substrate scope, chlorinating and brominating a variety of aromatic substrates with and without indole groups. Chlorination of Trp at a 100 mg scale with 52 % crude yield, using 0.2 mol % BorH indicates that industrial scale biotransformations using BorH/BorF are feasible. The X-ray crystal structure of BorH with bound Trp provides additional evidence for the model that regioselectivity is determined by substrate positioning in the active site, showing C6 of Trp juxtaposed with the catalytic Lys79 in the same binding pose previously observed in the structure of Thal.
Collapse
Affiliation(s)
- Kazi Lingkon
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, OH, 43606, USA
| |
Collapse
|
19
|
Danso D, Chow J, Streit WR. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl Environ Microbiol 2019; 85:e01095-19. [PMID: 31324632 PMCID: PMC6752018 DOI: 10.1128/aem.01095-19] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plastics are widely used in the global economy, and each year, at least 350 to 400 million tons are being produced. Due to poor recycling and low circular use, millions of tons accumulate annually in terrestrial or marine environments. Today it has become clear that plastic causes adverse effects in all ecosystems and that microplastics are of particular concern to our health. Therefore, recent microbial research has addressed the question of if and to what extent microorganisms can degrade plastics in the environment. This review summarizes current knowledge on microbial plastic degradation. Enzymes available act mainly on the high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane (PUR). Unfortunately, the best PUR- and PET-active enzymes and microorganisms known still have moderate turnover rates. While many reports describing microbial communities degrading chemical additives have been published, no enzymes acting on the high-molecular-weight polymers polystyrene, polyamide, polyvinylchloride, polypropylene, ether-based polyurethane, and polyethylene are known. Together, these polymers comprise more than 80% of annual plastic production. Thus, further research is needed to significantly increase the diversity of enzymes and microorganisms acting on these polymers. This can be achieved by tapping into the global metagenomes of noncultivated microorganisms and dark matter proteins. Only then can novel biocatalysts and organisms be delivered that allow rapid degradation, recycling, or value-added use of the vast majority of most human-made polymers.
Collapse
Affiliation(s)
- Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Yuan J, Lukito BR, Li Z. De Novo Biosynthesis of ( S)- and ( R)-Phenylethanediol in Yeast via Artificial Enzyme Cascades. ACS Synth Biol 2019; 8:1801-1808. [PMID: 31339686 DOI: 10.1021/acssynbio.9b00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to oil depletion and global climate change, sustainable manufacturing of fine chemicals from renewable feedstocks has gained increasing attention in the scientific community. In the present study, we attempted to engineer Saccharomyces cerevisiae toward de novo synthesis of (S)- or (R)-phenylethanediol, an important pharmaceutical intermediate. More specifically, the biocatalytic cascades contain the following: l-phenylalanine undergoes deamination/decarboxylation to styrene by using phenylalanine ammonia lyase (PAL) and ferulic acid decarboxylase (FDC), followed by S-selective epoxidation of styrene to give (S)-styrene oxide with styrene monooxygenase (SMO); regioselective hydrolysis of (S)-styrene oxide with epoxide hydrolase from Sphingomonas HXN-200 (SpEH) or from potato (StEH) gives rise to (S)- or (R)-phenylethanediol. In this work, we found that the artificial enzyme cascades could be functionally expressed in the heterologous host of S. cerevisiae. Small-scale shake flask studies revealed that the engineered yeast cell factories produced approximately 100-120 mg/L of (S)- or (R)-phenylethanediol after 96 h cultivation. To the best of our knowledge, this is the first attempt to explore an artificial route with styrene as an intermediate for producing phenylethanediol in S. cerevisiae. We envision that our engineering strategy will open a new research field for synthesizing other vicinal diol derived chemicals in yeast.
Collapse
Affiliation(s)
- Jifeng Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
21
|
Cui C, Guo C, Lin H, Ding ZY, Liu Y, Wu ZL. Functional characterization of an (R)-selective styrene monooxygenase from streptomyces sp. NRRL S-31. Enzyme Microb Technol 2019; 132:109391. [PMID: 31731956 DOI: 10.1016/j.enzmictec.2019.109391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022]
Abstract
Styrene monooxygenases (SMOs) are two-component enzymes known to catalyze the epoxidation of styrene to (S)-styrene oxide. In this work, we identified a new oxygenase component, named StStyA, from the genome of Streptomyces sp. NRRL S-31. StStyA displayed complementary stereoselectivity to all of the known SMOs when coupled with a known reductase component (PsStyB), which made it the first natural SMO that produces (R)-styrene oxide. Accordingly, a plasmid co-expressing StStyA and PsStyB was constructed, which led to an artificial two-component SMO, named StStyA/B. When applied in the bio-epoxidation of nine aromatic alkenes, the enzyme showed activity toward five alkenes, and consistently displayed (R)-selectivity. Excellent stereoselectivity was achieved for all five substrates with enantiomeric excesses ranging from 91% to >99%ee.
Collapse
Affiliation(s)
- Can Cui
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Zhao-Yun Ding
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhong-Liu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
22
|
Simulation-based protein engineering of R. erythropolis FMN oxidoreductase (DszD). Heliyon 2019; 5:e02193. [PMID: 31428711 PMCID: PMC6695286 DOI: 10.1016/j.heliyon.2019.e02193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
The sulfur contents of fossil fuels have negative impacts on the environment and human health. The bio-catalytic desulfurization strategies and the biological refinement of fossil fuels are a cost-effective process compared to classical chemistry desulfurization. Rhodococcus erythropolis IGTS8 is able to metabolize the organic sulfur compound by the unique genes cluster (i.e. DszA, B, C and D genes) in the 4S metabolic pathway. The dszD gene codes a key enzyme for sulfur reduction in the gene cluster. In this study, the structure of the DszD enzyme was predicted and then the key residues toward FMN binding were identified which were Thr62, Ser63, Asn77, and Ala79. To investigate the effect of manipulation in key residues on the enzymatic activity of the DszD, different mutations were performed on key residues. The molecular docking simulation showed that A79I and A79N mutants have the lowest binding free energies compared to the wild-type enzyme in binding with FMN substrate. A 50 ns molecular dynamics (MD) simulation performed using GROMACS software. The RMSD and RMSF analysis showed that two mutants are more stable than the wild-type enzyme during MD simulation. The binding free energies between FMN substrate and complexes were calculated and analyzed by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) method. The experimental results showed that the enzyme activity for the oxidoreductase process toward biodesulfurization increased 1.9 and 2.3 fold for A79I and A79N mutants, respectively.
Collapse
|
23
|
Abstract
Styrene monooxygenases are soluble two-component flavoproteins that catalyze the NADH and FAD-dependent enantioselective epoxidation of styrene to styrene oxide in the aqueous phase. These enzymes present interesting mechanistic features and potential as catalysts in biotechnological applications ranging from green chemical synthesis to bioremediation. This chapter presents approaches for the expression of the reductase (SMOB, StyB) and epoxidase (SMOA, StyA) components of SMO from pET-vectors as native or N-terminally histidine-tagged proteins in commercial strains of E. coli. The two-component structure of SMO and hydrophobic nature of styrene substrate requires some special consideration in evaluating the mechanism of this enzyme. The modular composition of the enzyme allows the flavin-reduction reaction of SMOB and styrene epoxidation reaction of SMOA to be evaluated both independently and as a composite catalytic system. The freedom to independently study the reductase and epoxidase components of SMO significantly simplifies studies of equilibrium-binding and the coupling of the free energy of ligand binding to the electrochemical potential of bound FAD. In this chapter, methods of steady-state and pre-steady-state kinetic assay, experimental approaches to equilibrium-binding reactions of flavin and substrate, and determination of the electrochemical midpoint potential of FAD bound to the reductase and epoxidase components of SMO are presented. This presentation focuses on approaches that have been successfully used in the study of the wild-type styrene monooxygenase system recovered from Pseudomonas putida (S12), but similar approaches may be effective in the characterization of related two-component enzyme systems.
Collapse
Affiliation(s)
- George T Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States.
| |
Collapse
|
24
|
van Schie MMCH, Paul CE, Arends IWCE, Hollmann F. Photoenzymatic epoxidation of styrenes. Chem Commun (Camb) 2019; 55:1790-1792. [DOI: 10.1039/c8cc08149b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemical reduction of flavin adenine dinucleotide (FAD) enables the direct, non-enzymatic regeneration of styrene monooxygenase for enantiospecific epoxidation reactions.
Collapse
Affiliation(s)
| | - Caroline E. Paul
- Laboratory of Organic Chemistry, Wageningen University & Research
- 6708WE Wageningen
- The Netherlands
| | | | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| |
Collapse
|
25
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
26
|
Corrado ML, Knaus T, Mutti FG. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. Chembiochem 2018; 19:679-686. [PMID: 29378090 PMCID: PMC5900736 DOI: 10.1002/cbic.201700653] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/23/2022]
Abstract
The styrene monooxygenase (SMO) system from Pseudomonas sp. consists of two enzymes (StyA and StyB). StyB catalyses the reduction of FAD at the expense of NADH. After the transfer of FADH2 from StyB to StyA, reaction with O2 generates FAD-OOH, which is the epoxidising agent. The wastage of redox equivalents due to partial diffusive transfer of FADH2 , the insolubility of recombinant StyB and the impossibility of expressing StyA and StyB in a 1:1 molar ratio reduce the catalytic efficiency of the natural system. Herein we present a chimeric SMO (Fus-SMO) that was obtained by genetic fusion of StyA and StyB through a flexible linker. Thanks to a combination of: 1) balanced and improved expression levels of reductase and epoxidase units, and 2) intrinsically higher specific epoxidation activity of Fus-SMO in some cases, Escherichia coli cells expressing Fus-SMO possess about 50 % higher activity for the epoxidation of styrene derivatives than E. coli cells coexpressing StyA and StyB as discrete enzymes. The epoxidation activity of purified Fus-SMO was up to three times higher than that of the two-component StyA/StyB (1:1, molar ratio) system and up to 110 times higher than that of the natural fused SMO. Determination of coupling efficiency and study of the influence of O2 pressure were also performed. Finally, Fus-SMO and formate dehydrogenase were coexpressed in E. coli and applied as a self-sufficient biocatalytic system for epoxidation on greater than 500 mg scale.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
27
|
Tischler D, Schwabe R, Siegel L, Joffroy K, Kaschabek SR, Scholtissek A, Heine T. VpStyA1/VpStyA2B of Variovorax paradoxus EPS: An Aryl Alkyl Sulfoxidase Rather than a Styrene Epoxidizing Monooxygenase. Molecules 2018; 23:E809. [PMID: 29614810 PMCID: PMC6017014 DOI: 10.3390/molecules23040809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 02/08/2023] Open
Abstract
Herein we describe the first representative of an E2-type two-component styrene monooxygenase of proteobacteria. It comprises a single epoxidase protein (VpStyA1) and a two domain protein (VpStyA2B) harboring an epoxidase (A2) and a FAD-reductase (B) domain. It was annotated as VpStyA1/VpStyA2B of Variovorax paradoxus EPS. VpStyA2B serves mainly as NADH:FAD-oxidoreductase. A Km of 33.6 ± 4.0 µM for FAD and a kcat of 22.3 ± 1.1 s-1 were determined and resulted in a catalytic efficiency (kcatKm-1) of 0.64 s-1 μM-1. To investigate its NADH:FAD-oxidoreductase function the linker between A2- and B-domain (AREAV) was mutated. One mutant (AAAAA) showed 18.7-fold higher affinity for FAD (kcatKm-1 of 5.21 s-1 μM-1) while keeping wildtype NADH-affinity and -oxidation activity. Both components, VpStyA2B and VpStyA1, showed monooxygenase activity on styrene of 0.14 U mg-1 and 0.46 U mg-1, as well as on benzyl methyl sulfide of 1.62 U mg-1 and 3.11 U mg-1, respectively. The high sulfoxidase activity was the reason to test several thioanisole-like substrates in biotransformations. VpStyA1 showed high substrate conversions (up to 95% in 2 h) and produced dominantly (S)-enantiomeric sulfoxides of all tested substrates. The AAAAA-mutant showed a 1.6-fold increased monooxygenase activity. In comparison, the GQWCSQY-mutant did neither show monooxygenase nor efficient FAD-reductase activity. Hence, the linker between the two domains of VpStyA2B has effects on the reductase as well as on the monooxygenase performance. Overall, this monooxygenase represents a promising candidate for biocatalyst development and studying natural fusion proteins.
Collapse
Affiliation(s)
- Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Ringo Schwabe
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Lucas Siegel
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Kristin Joffroy
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Stefan R Kaschabek
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Anika Scholtissek
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| |
Collapse
|
28
|
Oelschlägel M, Zimmerling J, Tischler D. A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Front Microbiol 2018; 9:490. [PMID: 29623070 PMCID: PMC5874493 DOI: 10.3389/fmicb.2018.00490] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for the styrene degradation among microorganisms. It comprises the following enzymes: styrene monooxygenase (SMO; NADH-consuming and FAD-dependent, two-component system), styrene oxide isomerase (SOI; cofactor independent, membrane-bound protein) and phenylacetaldehyde dehydrogenase (PAD; NAD+-consuming) and allows an intrinsic cofactor regeneration. This specific way harbors a high potential for biotechnological use. Based on the enzymatic steps involved in this degradation route, important reactions can be realized from a large number of substrates which gain access to different interesting precursors for further applications. Furthermore, stereochemical transformations are possible, offering chiral products at high enantiomeric excess. This review provides an actual view on the microbiological styrene degradation followed by a detailed discussion on the enzymes of the side-chain oxygenation. Furthermore, the potential of the single enzyme reactions as well as the respective multi-step syntheses using the complete enzyme cascade are discussed in order to gain styrene oxides, phenylacetaldehydes, or phenylacetic acids (e.g., ibuprofen). Altered routes combining these putative biocatalysts with other enzymes are additionally described. Thus, the substrates spectrum can be enhanced and additional products as phenylethanols or phenylethylamines are reachable. Finally, additional enzymes with similar activities toward styrene and its metabolic intermediates are shown in order to modify the cascade described above or to use these enzyme independently for biotechnological application.
Collapse
Affiliation(s)
- Michel Oelschlägel
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Juliane Zimmerling
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Environmental Microbiology Group, Institute of Biosciences, Technische Universität Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Duan HD, Lubner CE, Tokmina-Lukaszewska M, Gauss GH, Bothner B, King PW, Peters JW, Miller AF. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris. J Biol Chem 2018; 293:4688-4701. [PMID: 29462786 DOI: 10.1074/jbc.ra117.000707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e-) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e-) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - George H Gauss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163
| | | |
Collapse
|
30
|
Heine T, Scholtissek A, Westphal AH, van Berkel WJH, Tischler D. N-terminus determines activity and specificity of styrene monooxygenase reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1770-1780. [PMID: 28888693 DOI: 10.1016/j.bbapap.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s-1, one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity.
Collapse
Affiliation(s)
- Thomas Heine
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Anika Scholtissek
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| |
Collapse
|
31
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
Crabo AG, Singh B, Nguyen T, Emami S, Gassner GT, Sazinsky MH. Structure and biochemistry of phenylacetaldehyde dehydrogenase from the Pseudomonas putida S12 styrene catabolic pathway. Arch Biochem Biophys 2017; 616:47-58. [PMID: 28153386 PMCID: PMC5318141 DOI: 10.1016/j.abb.2017.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/07/2023]
Abstract
Phenylacetaldehyde dehydrogenase catalyzes the NAD+-dependent oxidation of phenylactealdehyde to phenylacetic acid in the styrene catabolic and detoxification pathway of Pseudomonas putida (S12). Here we report the structure and mechanistic properties of the N-terminally histidine-tagged enzyme, NPADH. The 2.83 Å X-ray crystal structure is similar in fold to sheep liver cytosolic aldehyde dehydrogenase (ALDH1), but has unique set of intersubunit interactions and active site tunnel for substrate entrance. In solution, NPADH occurs as 227 kDa homotetramer. It follows a sequential reaction mechanism in which NAD+ serves as both the leading substrate and homotropic allosteric activator. In the absence of styrene monooxygenase reductase, which regenerates NAD+ from NADH in the first step of styrene catabolism, NPADH is inhibited by a ternary complex involving NADH, product, and phenylacetaldehyde, substrate. Each oligomerization domain of NPADH contains a six-residue insertion that extends this loop over the substrate entrance tunnel of a neighboring subunit, thereby obstructing the active site of the adjacent subunit. This feature could be an important factor in the homotropic activation and product inhibition mechanisms. Compared to ALDH1, the substrate channel of NPADH is narrower and lined with more aromatic residues, suggesting a means for enhancing substrate specificity.
Collapse
|
33
|
Heine T, Tucker K, Okonkwo N, Assefa B, Conrad C, Scholtissek A, Schlömann M, Gassner G, Tischler D. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins. Appl Biochem Biotechnol 2016; 181:1590-1610. [PMID: 27830466 DOI: 10.1007/s12010-016-2304-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s-1. This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.
Collapse
Affiliation(s)
| | | | - Nonye Okonkwo
- San Francisco State University, San Francisco, CA, USA
| | | | | | | | | | | | - Dirk Tischler
- TU Bergakademie Freiberg, Freiberg, Germany.
- San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
34
|
Chang CY, Lohman JR, Cao H, Tan K, Rudolf JD, Ma M, Xu W, Bingman CA, Yennamalli RM, Bigelow L, Babnigg G, Yan X, Joachimiak A, Phillips GN, Shen B. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus. Biochemistry 2016; 55:5142-54. [PMID: 27560143 PMCID: PMC5024704 DOI: 10.1021/acs.biochem.6b00713] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
C-1027
is a chromoprotein enediyne antitumor antibiotic produced
by Streptomyces globisporus. In the last step of
biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine
moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose
a two-component monooxygenase that hydroxylates the C-5 position of
(S)-3-chloro-β-tyrosine. This two-component
monooxygenase is remarkable for two reasons. (i) SgcE6 specifically
reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl
carrier protein (PCP)-tethered substrate. To address the molecular
details of substrate specificity, we determined the crystal structures
of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively.
SgcE6 shares a similar β-barrel fold with the class I HpaC-like
flavin reductases. A flexible loop near the active site of SgcE6 plays
a role in FAD binding, likely by providing sufficient space to accommodate
the AMP moiety of FAD, when compared to that of FMN-utilizing homologues.
SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but
not structurally characterized homologues. The crystal structures
reported here provide insights into substrate specificity, and comparison
with homologues provides a catalytic mechanism of the two-component,
FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes
the hydroxylation of a PCP-tethered substrate.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Hongnan Cao
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Weijun Xu
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Ragothaman M Yennamalli
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Waknaghat, Himachal Pradesh, India 173234
| | - Lance Bigelow
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - George N Phillips
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
35
|
Riedel A, Heine T, Westphal AH, Conrad C, Rathsack P, van Berkel WJH, Tischler D. Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding. AMB Express 2015; 5:112. [PMID: 26054733 PMCID: PMC4460183 DOI: 10.1186/s13568-015-0112-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022] Open
Abstract
Styrene monooxygenases (SMOs) are flavoenzymes catalyzing the epoxidation of styrene into styrene oxide. SMOs are composed of a monooxygenase (StyA) and a reductase (StyB). The latter delivers reduced FAD to StyA on the expense of NADH. We identified Rhodococcus opacus 1CP as the first microorganism to possess three different StyA isoforms occurring in two systems StyA1/StyA2B and StyA/StyB, respectively. The hydrodynamic properties of StyA isozymes were found to be modulated by the binding of the (reduced) FAD cofactor. StyA1 and SyA2B mainly occur as dimers in their active forms while StyA is a monomer. StyA1 showed the highest epoxidation activity and excellent enantioselectivity in aromatic sulfoxidation. The hydrodynamic and biocatalytic properties of SMOs from strain 1CP are of relevance for investigation of possible industrial applications.
Collapse
|
36
|
A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1. Arch Microbiol 2014; 196:829-45. [PMID: 25116410 DOI: 10.1007/s00203-014-1022-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.
Collapse
|
37
|
Sucharitakul J, Tinikul R, Chaiyen P. Mechanisms of reduced flavin transfer in the two-component flavin-dependent monooxygenases. Arch Biochem Biophys 2014; 555-556:33-46. [DOI: 10.1016/j.abb.2014.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
38
|
Steinkellner G, Gruber CC, Pavkov-Keller T, Binter A, Steiner K, Winkler C, Łyskowski A, Schwamberger O, Oberer M, Schwab H, Faber K, Macheroux P, Gruber K. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nat Commun 2014; 5:4150. [PMID: 24954722 PMCID: PMC4083419 DOI: 10.1038/ncomms5150] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/15/2014] [Indexed: 12/03/2022] Open
Abstract
The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites ('catalophores'). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C-C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts.
Collapse
Affiliation(s)
- Georg Steinkellner
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- These authors contributed equally to this work
| | - Christian C. Gruber
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- These authors contributed equally to this work
| | | | | | | | - Christoph Winkler
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | - Orsolya Schwamberger
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Helmut Schwab
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kurt Faber
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Peter Macheroux
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Karl Gruber
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| |
Collapse
|
39
|
Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch Biochem Biophys 2013; 544:2-17. [PMID: 24361254 DOI: 10.1016/j.abb.2013.12.005] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. As such, they are involved in key biological processes ranging from catabolism, detoxification and biosynthesis, to light emission and axon guidance. Based on fold and function, flavin-dependent monooxygenases can be distributed into eight groups. Groups A and B comprise enzymes that rely on NAD(P)H as external electron donor. Groups C-F are two-protein systems, composed of a monooxygenase and a flavin reductase. Groups G and H comprise internal monooxygenases that reduce the flavin cofactor through substrate oxidation. Recently, many new flavin-dependent monooxygenases have been discovered. In addition to posing basic enzymological questions, these proteins attract attention of pharmaceutical and fine-chemical industries, given their importance as regio- and enantioselective biocatalysts. In this review we present an update of the classification of flavin-dependent monooxygenases and summarize the latest advances in our understanding of their catalytic and structural properties.
Collapse
Affiliation(s)
- Mieke M E Huijbers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Stefania Montersino
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Dirk Tischler
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands; Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
40
|
Tischler D, Schlömann M, van Berkel WJH, Gassner GT. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase. FEBS Lett 2013; 587:3848-52. [PMID: 24157359 DOI: 10.1016/j.febslet.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst.
Collapse
Affiliation(s)
- Dirk Tischler
- Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands; Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, United States.
| | | | | | | |
Collapse
|